Jelenlét, pozíció, elmozdulás érzékelők

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Jelenlét, pozíció, elmozdulás érzékelők"

Átírás

1 Jelenlét, pozíció, elmozdulás érzékelők 1

2 A szenzorok néhány főbb típusa: Ellenállásos szenzorok, Kapacitív szenzorok, Elektromágneses szenzorok, Piezoelektromos szenzorok, Optoelektronikus szenzorok és Digitális szenzorok.

3 Ellenállásos szenzorok

4 Ellenállásos szenzorok Működésük elve: Mechanikai erő, hőmérsékletváltozás vagy különböző sugárzások hatására ellenállásváltozás jön létre. Az érzékelő elem maga az ellenállás. Halmazállapota lehet: szilárd, cseppfolyós gáz.

5 Az ellenállásos érzékelők felépítése Szilárd anyagból készült ellenállásos érzékelők: olyan fizikai nagyságok mérésénél használatosak, amelyek mechanikai erővel vagy hőmérséklettel hozhatók kapcsolatba. Fémből vagy félvezetőből készülnek. A fém ellenállások értékét a következő ismert képlet alapján számítjuk: R l S Az ellenállás értéke megváltozik ha bármely tényező ebben a képletben valamilyen külső hatásra megváltozik. 5

6 A szilárd halmazállapotú ellenállások egyik alaptulajdonsága, hogy az ellenállásuk kisebb vagy nagyobb mértékben függ a hőmérséklettől. R t R T T0 T T0 T T0... ahol: R 0 -A T 0 referens hőmérsékleten mért ellenállás, R t -A T aktuális hőmérsékleten mért ellenállás, α,β,γ, -Az ellenállás megfelelő hőmérsékleti együtthatói.

7 Potenciométeres jelátalakítók A potenciométerek változtatható ellenállások. Két alaptípusuk van: forgó és egyenes vonalú (toló). 7

8 Forgó potencióméterek Forgó szolenoidos kivitel 8

9 Forgó potencióméterek Forgó szolenoidos kivitel 9

10 Forgó potencióméterek Forgó grafit érintkezővel 10

11 Különleges alkalmazás 11

12 Potenciométeres jelátalakítók tulajdonságai csúszka súrlódása hiszterézis hibát okoz; csúszka és az ellenálláspálya kopik; csúszka és az ellenálláspálya közötti átmeneti ellenállás elektronikus zajt okoz; csak terheletlenül (R t = ) lineáris; a linearitást a vezeték-ellenállások is kedvezőtlenül befolyásolják; 12

13 Nyúlásmérő bélyegek R l S 13

14 Nyúlásmérő bélyegek fajtái Fémes ellenállásanyagú Félvezetőből készült 14

15 Nyúlásmérő bélyegek fajtái Fémes ellenállásanyagú 15

16 Nyúlásmérő bélyegek 16

17 Mit mérhetünk vele? elmozdulást, sebességet, gyorsulást, erőt, nyomatékot, nyomást 17

18 Hogyan mérhetünk vele? U CD U 0 R 1 R 1 R 2 R 3 R 3 R 4 U 0 R R R R 1 R R R 3 2 R 3 4 Wheatstone-híd A hídágban megjelenő villamos feszültség nagysága arányos a mérendő mechanikai feszültséggel, illetve az ebből visszakövetkeztethető megnyúlással. 18

19 Kapacitív érzékelők 19

20 Kapacitiv érzékelők Két fém felület, melyek között dielektromos (szigetelő) anyag van kondenzátort képeznek. A kapacitás a következő képlettel számítható: C 0 S d Amennyiben az S, d vagy ε nagyságot megváltoztatjuk a kondenzátor kapacitása megváltozik a megváltoztatott nagyság függvényében, ezáltal kapacitív érzékelőt kapunk. A kapacitív szenzorok jó tulajdonságai a következők: egyszerűség, áttekinthetőség, magas érzékenység és alkalmazhatóság magasabb hőmérsékleteknél is.

21 Kapacitiv szenzorok felépítése A kapacitív szenzorok jó tulajdonságai a következők: egyszerűség, áttekinthetőség, magas érzékenység és alkalmazhatóság magasabb hőmérsékleteknél is. Oda kell figyelni a parazita kapacitásokra és más tökéletlenségek-re!

22 Kapacitív érzékelők felépítése

23 Váltakozó felületű kapacitív szenzorok -Egyszrű síklemezes kapacitív szenzor

24 -Síklemezes kondenzátor, feljavított változat -Differenciális szenzor váltakozó felülettel, -Féldifferenciális kapacitív szenzor váltakozó felülettel

25 -Forgókondenzátor - kapacitív szenzor -Cilindrikus kapacitív szenzor.

26 Váltakozó elektródatávolságú kapacitív szenzorok -Egyszerű sík kapacitív szenzor, -Differenciális kapacitív szenzor -Féldifferenciális kapacitív szenzor

27 Váltakozó dielektrikumú kapacitív szenzorok -Váltakozó dielektrikumú síkkondenzátorok -Váltakozó dielektrikumú cilindrikus kondenzátorok

28 Mérési sémák kapacitív érzékelőkkel: Mérőkörök felépítése kapacitív szenzorokkal. A kapacitív érzékelőkkel végzett mérések egyik kikerülhetetlen problémája: a parazita kapacitások, a kondenzátorok borító lemeze és a csatlakozó vezetékek, valamint a föld (massza) között. A parazita kapacitások időben váltakoznak és gyakran nagyságrendjük megegyezik a mért kapacitások nagyságával, és a mért fizikai nagyság függvényében változik. -Sémák amplitudó modulációval -Sémák frekvencia modulációval -Kompenzaciós-hidas sémák

29 Sémák frekvencia modulációval

30 Alkalmazási példa 30

31 Alkalmazási példa 31

32 Elektromágneses szenzorok (átalakítók) Működési elvük Az elektromágneses szenzorok működése a tekercs induktivitásának, a mágneses kör mágneses ellenállásának változásán vagy az elektromágneses indukción alapul. E tekintetben megkülönböztetjük az öninduktivitás-, kölcsönös induktivitás változásán alapuló és indukciós érzékelőket. A kölcsönös- és öninduktivitás változáson alapuló szenzorokat passzív, az indukciós szenzorokat pedig aktív szenzoroknak is nevezzük.

33 A légréses, ferromágneses magú, tekercs induktivitását a következő képlettel számíthatjuk: L N Z 2 m 2 2 R m N R 2 R 2 g 0 l m S m N S 2 2P N m 2 m Ahol: Z m a mágneses ellenállás [H -1 ], R m, R δ és R g a vasmag, légrés és a veszteség mágneses ellenállásai [H -1 ], a légrés hossza, [m], S m és S δ a vasmag és a légrés keresztmetszete [m 2 ], 0 = a vákuum mágneses permeabilitása r a ferromágneses anyag relatív permeabilitása, l m a mágneses erővonalak középhossza, P m, a vasmag teljesítményvesztesége W, a mágneses fluxus Wb és N a menetek száma.

34 Mivel a vasmag mágneses ellenállása kicsi, a vasmag veszteségei elhanyagolhatóak, így az induktivitás a következő képlettel határozható meg: L N 2 S 0 2

35 Induktív szenzorok felépítése Váltakozó légrésű induktív szenzorok

36 Induktív szenzorok váltakozó keresztmetszetű légréssel Egyszerű Vátozó vasmaggal Differenciális

37 Kölcsönös induktivitás elvén működő szenzorok Működési elv: A kölcsönös induktivitás elvén működő szenzorok az induktív szenzorok külön csoportját képezik, mivel két mágnesesen összekötött tekercsel rendelkeznek. Ennek köszönhetően a betáplálás és a kimenet között transzformátoros kapcsolat van, így ezeket a szenzorokat transzformátoros szenzoroknak is nevezik. Váltakozó hosszú vagy keresztmetszetű légréssel készülnek. Alkalmasak kicsiny mechanikus elmozdulások mérésére.

38 kölcsönös induktivitás elvű szenzorok (LVDT = Linear Variable Differential Transformer)

39 kölcsönös induktivitás elvű szenzorok nem a tekercs induktivitását mérjük, hanem a két szélső (szekunder) tekercsben indukált feszültséget a jelátalakító súrlódás nélkül is megépíthető, nagy a megbízhatósága

40 Indukciós szenzorok Ezeknek a szenzoroknak a működési elve az elektromágneses indukción alapszik. Ha egy mozgó vezető egy állandó mágnes erővonalait metszi abban feszültség indukálódik. U=NlBν Az önindukciós és a kölcsönös indukció elvén működő szenzoroktól eltérően az indukciós szenzorok valójában generátorok, így az aktiv szenzorok csoportjába tartoznak.

41 Az indukciós szenzorok felépítése attól függ hogy mozgó tekercses vagy mozgó mágneses kivitelről van szó, illetve hogy szögsebesség mérésére szolgálnak-e. Mérési sémák elektromágneses szenzorokkal: ezeket a sémákat megkülönböztetjük asszerint hogy az öninduktivitás, a kölcsönös induktivitás vagy az indukció elvén dolgozó szenzorokra alkalmazzuk őket. Azután az első csoport felosztható asszerint is hogy egyszerű vagy különböző diferenciális szenzorok részére készülnek.

42 Hall effektus Az érzékelő elem egy félvezető lemez, melyen keresztül egy I h állandó értékű áram folyik. Ha a lemez egy homogén B indukciójú mágneses térben helyezkedik el, a lemez oldalsó élein feszültség indukálódik U i K BI d ahol: d -a lemez vastagsága, K h -Hall álandó B -Indukció h h

43

44 Piezoelektromos szenzorok Működési elvük Bizonyos egykristály szerkezetű dielektromos anyagok mechanikai igénybevétel hatására elektromos potenciált produkálnak. A legismertebb ilyen anyag a kvarc (SiO2)... A piezoelektromos dielektrikum állapota Általános esetben függ az elektromos, mechanikus és termikus nagyságoktól.

45 Működési elvük

46

47 A piezoelektromos érzékelők felépítése Készülnek: prizma, tárcsa, henger(cső) vagy hengerszelet alakjában.

48 Az érzékenység akkor a legnagyobb, ha az l/d arány maximális, azaz ha a piezoelektromos átalakító szalag alakú. Sajnos, a szalag szilárdsága kicsi és könnyen törik hosszanti terhelés esetén. Szilárdság szempontjából legmegfelelőbb a cilindrikus alak, de nehéz előállítani. Többrétegű piezoelektromos érzékelők A piezoelektromos érzékelők hiányosságai az alacsony kimeneti feszültség, és a gyenge mechanikai szilárdság. Ezek a hiányosságok kevésbé kifejezettek a többszörös és összetett szenzoroknál, melyek több egyszerű érzékelő soros, párhuzamos csatolásával jönnek létre.

49

50 Transzformátoros piezoelektromos érzékelők Ezek az érzékelők két piezoaktiv szekcióból tevődnek össze. Az első szekció a fordított piezo effektus elvén működik, úgy hogy a bemenő feszültség mechanikus oszcilációkat gerjeszt a rezonáns frekvencia tartományában, ahol a belső amplitúdó a legnagyobb. A második szekció a közvetlen piezo effektus elvén működik. Az érzékelők ezen típusát villamos nagyságok mérésére használjuk (áram, feszültség, frekvencia) és két csoportra osztjuk őket:

51 Feszültség transzformátorok melyek kimenő feszültsége nagyobb a bemenőnél relatív kicsi kimenő áram mellett (1 ma-ig) Áram transzformátorok melyek kimenő feszültsége kisebb a bemenőnél, míg a kimenő áram viszonylag nagy (10 A-ig)

52 Optoelektronikus szenzorok 52

53 Optoelektronikus szenzorok Az optoelektronikus átalakítók működési elve a fény valamely paraméterének a mért fizikai nagyság hatására történő változásán alapul. Az optoelektronikus átalakítóknál csak optikai kapcsolat van a mért nagysággal és nincs sem galvanikus sem mágneses. 53

54 Optoelektronikus szenzorok tulajdonságai Előnyös: galvanikus szétválasztás, egyszerű csatolási sémák, a mérés és a jel átvitelének kompatibilitása, zajvédelem, lehetőség a fizikai nagyságok kicsi és nagy intenzitásának mérésére, a kimenő jel szabványosításának lehetősége, a statikus és a dinamikus mérési karakterisztikák jó minősége. Hátrányos: összetett kivitelezés, a jelfeldolgozás komplikáltsága érzékenység a mechanikus vibrációkra és viszonylag magas ár. 54

55 Az optikai szenzorok felépítése Az optikai szenzorok általában három részből álnak: (fény)forrás, fényérzékelő és szállítóközeg. Fényforrás mint érzékelő Leginkább LED-diodákat vagy lézer diodákat (LD) alkalmazunk. Fényérzékelő mint optikai szenzor Fényérzékelő mint optikai szenzor: a fényenergiát elektromos nagysággá (áram, feszültség, ellenállás, kapacitás vagy villamos töltés) alakítja át.

56 Az optikai szenzorok alkalmazása Közelítés Távolság Fényerősség Stb.

57 Fényellenálás CdS (kadmium-szulfid) és CdSe (kadmiumszelenid) anyagokból készül.

58 Optikai közelítés érzékelők Az optikai érzékelők optikai és elektronikai eszközök kombinációját használva jelzik a különböző objektumok tárgyak, anyagok jelenlétét. Fényforrásként LED-et használnak (infra vörös vagy vörös színtartomány) Vevőoldalon fotodióda vagy foto tranzisztor található

59 Optikai közelítés érzékelők típusai Alkalmazásuk szerint feloszthatjuk őket: Egyutas fénykapu Reflexiós fénykapu Tárgyreflexiós

60 Optikai közelítés érzékelők típusai Egyutas fénykapu

61 Optikai közelítés érzékelők típusai Egyutas fénykapu Egyutú fénykapu előnyei: nagyobb biztonság nagy érzékelési távolság kisméretű tárgyak érzékelhetők nagy távolságból is a tárgy fényvisszaverő képessége tetszőleges, korlátozott fényáteresztő képességű objektum jelzésére is alkalmas nagy pozicionálási pontosság Egyutú fénykapu hátrányai: két különálló eszközből áll az átlátszó objektumokat nem jelzi

62 Optikai közelítés érzékelők típusai Reflexiós fénykapu

63 Optikai közelítés érzékelők típusai Reflexiós fénykapu előnyei: nagy érzékelési biztonság adó és vevő egybe van építve egyszerű beállítás a fényt szórtan visszaverő, korlátozottan tükröző és korlátozottan átlátszó tárgyak egyaránt detektálhatók a tárgyreflexiós érzékelőkhöz képest nagyobb érzékelési távolság Reflexiós fénykapu hátrányai: jól átlátszó objektumok és erősen tükröző felületek esetén nem jelez (beállítással korri-gálható) tükröt kell felszerelni, beállítani és karbantartani

64 Optikai közelítés érzékelők típusai Tárgyreflexiós kapu

65 Optikai közelítés érzékelők típusai Tárgyreflexiós fénykapu előnyei: adó és vevő egy elemet alkot illetve nincs szükség tükörre a fényt szórtan visszaverő, tükröző és korlátozottan átlátszó tárgyak egyaránt detektál-hatók, ha elegendő a visszavert fény erőssége nem csak oldalirányból érkező objektumokat jelez, hanem szemben is használható beállítástól függően az objektum a háttértől elkülöníthető (háttérkioltás) Tárgyreflexiós közelítéskapcsolók hátrányai: a visszavert fény iránya nem egzakt, a fénykapu pontosabb kisebb érzékelési tartomány fényelnyelő (pl. fekete) objektumokat nem jelez

66 Optikai távolságmérő SHARP optikai távolságmérő 66

67 Enkóder Abszolút Inkrementális 67

68 Ultrahangos érzékelők Az ultrahang érzékelő a nagyfrekvenciás hanghullámok visszaverődése alapján működik. 68

69 Ultrahangos érzékelők Az ultrahang érzékelő a nagyfrekvenciás hanghullámok visszaverődése alapján működik. 69

70 Ultrahangos érzékelők 70

71 Szimbólumok mágnessel működtetett (záró) induktív (záró) kapacitív (záró) ultrahang (záró) 71

72 Szimbólumok egyutú optikai (adó +vevő) reflexiós optikai (záró+nyitó adó-vevő) reflexiós (záró adóvevő) 72

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is. 1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?

Részletesebben

LI 2 W = Induktív tekercsek és transzformátorok

LI 2 W = Induktív tekercsek és transzformátorok Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken

Részletesebben

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Elmozdulás mérés BELEON KRISZTIÁN 2016.11.17. 2016.11.17. BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Mérési eljárás szerint Rezisztív Induktív Kapacitív Optikai Mágneses 2016.11.17. BELEON KRISTIÁN

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Mérőátalakítók Összefoglaló táblázat a mérőátalakítókról

Mérőátalakítók Összefoglaló táblázat a mérőátalakítókról Összefoglaló táblázat a mérőátalakítókról http://www.bmeeok.hu/bmeeok/uploaded/bmeeok_162_osszefoglalas.pdf A mérőátalakító a mérőberendezésnek az a része, amely a bemenő nem villamos mennyiséget villamos

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL 1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG LKLMZÁSÁVL nyúlásmérő bélyegek mechanikai deformációt alakítanak át ellenállás-változássá. lkalmazásukkal úgy készítenek erőmérő cellát, hogy egy rugalmas alakváltozást szenvedő

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. 2008 / 2009.BSc.II.évf. Érzékelők általános összefoglalója Az előadás anyaga részletesen megtalálható: http://e-oktat.pmmf.hu/irtech2 1. fejezet Nem villamos jelek mérésének

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

MIB02 Elektronika 1. Passzív áramköri elemek

MIB02 Elektronika 1. Passzív áramköri elemek MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő

Részletesebben

Nyomás fizikai állapotjelző abszolút és relatív fogalom

Nyomás fizikai állapotjelző abszolút és relatív fogalom Nyomásérzékelés Nyomásérzékelés Nyomás fizikai állapotjelző abszolút és relatív fogalom közvetlenül nem mérhető: nyomásváltozás elmozdulás mechanikus kijelző átalakítás elektromos jellé nemcsak önmagában

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

Mechanikai érzékelők I. Érzékelési módszerek

Mechanikai érzékelők I. Érzékelési módszerek Mechanikai érzékelők I. Érzékelési módszerek Battistig Gábor MTA EK Műszaki Fizikai és Anyagtudományi Intézet Mikrotechnológiai laboratórium battistig@mfa.kfki.hu 1 MECHANIKAI ÉRZÉKELŐK Érzékelő: a mérendő

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Intelligens Rendszerek Elmélete. Technikai érzékelők. A tipikus mérőátalakító transducer

Intelligens Rendszerek Elmélete. Technikai érzékelők. A tipikus mérőátalakító transducer Intelligens Rendszerek Elmélete A tipikus mérőátalakító transducer dr. Kutor László Technikai érzékelők http://mobil.nik.bmf.hu/tantargyak/ire.html Login: ire jelszó: IRE07 IRE 3/1 IRE 3/4 Mitől okos (intelligens?)

Részletesebben

Speciális passzív eszközök

Speciális passzív eszközök Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf.

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf. HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás 2010/2011.BSc.II.évf. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók 1.Ellenállás változáson alapuló

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Bekötési diagramok. Csatlakozó típusok. 2: A.C. típus. 2 vezetékes (Emitter) 1 = L1 3 = N

Bekötési diagramok. Csatlakozó típusok. 2: A.C. típus. 2 vezetékes (Emitter) 1 = L1 3 = N Bekötési diagramok FT18EL FT13 D.C. FT18 A.C FT18SPFT18SMFTQ D.C. FTQ (relés) 1: NPN/PNP típus 2 vezetékes (Emitter) 1 = Barna / + 3 = Kék / 4 vezetékes 1 = Barna / + 3 = Kék / 4 = Fekete / NPNPNP kimenet/no

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége

Részletesebben

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

1. ábra A Wheatstone-híd származtatása. és U B +R 2 U B =U A. =0, ha = R 4 =R 1. Mindezekből a hídegyensúly: R 1

1. ábra A Wheatstone-híd származtatása. és U B +R 2 U B =U A. =0, ha = R 4 =R 1. Mindezekből a hídegyensúly: R 1 A Wheatstone-híd lényegében két feszültségosztóból kialakított négypólus áramkör, mely Sir Charles Wheatstone (1802 1875) angol fizikus és feltalálóról kapta a nevét. UA UB UA UB Írjuk fel a kész feszültségosztó

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Intelligens Rendszerek Elmélete. Technikai érzékelők

Intelligens Rendszerek Elmélete. Technikai érzékelők Intelligens Rendszerek Elmélete Dr. Kutor László Technikai érzékelők http://mobil.nik.bmf.hu/tantargyak/ire.html Login: ire jelszó: IRE07 IRE 3/1 Mitől okos (intelligens?) egy technika? 1. Érzékelés (érzékszervek)

Részletesebben

Intelligens Rendszerek Elmélete IRE 3/51/1

Intelligens Rendszerek Elmélete IRE 3/51/1 Intelligens Rendszerek Elmélete 3 IRE 3/51/1 Technikai érzékelők jellemzői és alkalmazási lehetőségei http://uni-obuda.hu/users/kutor/ IRE 3/51/2 Mitől okos (intelligens?) egy technika? 1. Érzékelés (érzékszervek)

Részletesebben

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete.

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 11.a Évfolyam: 11. 36 hét, heti 2 óra, évi 72 óra Ok Dátum: 2013.09.21

Részletesebben

Rogowski-tekercses árammérő rendszer tervezése és fejlesztése

Rogowski-tekercses árammérő rendszer tervezése és fejlesztése Rogowski-tekercses árammérő rendszer tervezése és fejlesztése Fekete Ádám, Schmidt László, Szabó László, Dr. Varga László Fekete Ádám és Varga Balázs Budapest, 2013.04.24 Transzformátorok és mérőváltók

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető

Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető hurokban elektromos áramot hoz létre. Mozgási indukció A

Részletesebben

Mechatronika Modul 5: Mechatronikus komponensek

Mechatronika Modul 5: Mechatronikus komponensek Mechatronika Modul 5: Mechatronikus komponensek Jegyzet (Elképzelés) Készítették: Wojciech Kwaśny Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, engyelország

Részletesebben

Forgójeladók (kép - Heidenhain)

Forgójeladók (kép - Heidenhain) Forgójeladók A forgójeladók választékában számos gyártó különböző szempontoknak megfelelő terméke megtalálható, ezért a felhasználónak a megfelelő típus kiválasztása néha nem kis nehézséget okoz. Ezen

Részletesebben

HELYZET, ELMOZDULÁS ÉS ELFORDULÁS ÉRZÉKELŐK 1. MÉRŐ ÉRINTKEZŐK:

HELYZET, ELMOZDULÁS ÉS ELFORDULÁS ÉRZÉKELŐK 1. MÉRŐ ÉRINTKEZŐK: 1. MÉRŐ ÉRINTKEZŐK: 1. MÉRŐ ÉRINTKEZŐK (folytatás): FOJTÓSZELEP KAPCSOLÓ INERCIA KAPCSOLÓ FÉKBETÉTKOPÁS JELZŐ AJTÓHELYZET KAPCSOLÓ 1. MÉRŐ ÉRINTKEZŐK (folytatás): REED CSÖVES HELYZETÉRZÉKELŐ: 1. MÉRŐ ÉRINTKEZŐK

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

Ipari méréstechnika. Készítette: Kiss László. 2010.02.16. Ipari méréstechnika

Ipari méréstechnika. Készítette: Kiss László. 2010.02.16. Ipari méréstechnika Ipari méréstechnika Készítette: Kiss László 2010.02.16. Ipari méréstechnika 1 Az ipari méréstechnika alapjai Az ipari, méréstechnika tárgya, a műszaki folyamatokban végbemenő változások fizikai jellemzőinek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Összefüggő szakmai gyakorlat témakörei

Összefüggő szakmai gyakorlat témakörei Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Fizika vizsgakövetelmény

Fizika vizsgakövetelmény Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben