ELEKTROSZTATIKA Thalész Gilbert A testek dörzsöléssel hozhatók elektromos állapotba. Az elektromos állapot oka az elektromos töltés.
|
|
- Vilmos Orbán
- 9 évvel ezelőtt
- Látták:
Átírás
1 ELEKTROSZTATIKA I.e. 600-ban Thalész (i.e ) felfedezte, hogy a megdözsölt boostyánkő apó testeket magához vonz, majd eltaszít. Például poszem, madátoll, száaz fűszál. Gilbet ( ) 1600-ban azt íta, hogy nagyon sok anyag a boostyánkőhöz hasonlóan viselkedik. Az itt fellépő eőt boostyánkő eőnek nevezte el (vis electica). A testek dözsöléssel hozhatók elektomos állapotba. Például: - Amiko a szél nagy sebességgel sodoja a felhőket, akko ennek hatásáa a felhők feltöltődnek, Közöttük kisülési ívek figyelhetők meg. Ha a felhő és a Föld között jön léte kisülés, azt villámlásnak nevezzük. A felhő megosztó hatást gyakool a föld felszínén lévő vezető teste, így azok a felhővel ellentétes töltésűvé válnak. Főleg zivata idején a felhők többsége pozitív töltésű. A villámot fény és hangjelenség kíséi. A fényt az ütközéstől magasabb enegiájú állapotba jutott (gejesztett) levegőmolekulák bocsátják ki. A hang (mennydögés) abból számazik, hogy a villám okozta hitelen felmelegedés, majd lehűlés miatt a levegő lökésszeűen kitágul, majd összehúzódik. A villámháító magába gyűjti a villámokat azét, hogy a könyezetet ne káosítsák. Villámlásko ne álljunk közvetlenül a fa alá, hanem attól 5-10 m távolságban guggoljunk le. Zivataos időben ne akjunk tüzet, met a tűz vezető ioncsatonát hoz léte, mely könnyen válhat az elektomos kisülés útvonalává. Tökéletes a villámvédelmünk, ha fémkaosszéiás gépkocsiban ülünk. A földbe lefutó villám kiégeti ugyan a gumiköpenyeket, és ez okozhat balesetet, de az álló gépkocsi teljes biztonságot jelent. A motot le kell állítani, met a kipufogógáz is ioncsatonát hozhat léte. - A fissen mosott és száított hajat műanyag fésűvel fésülve, a fésű és a hajunk is feltöltődik. - A benzinkutakon nem szabad műanyag kannába benzint kéni, met a kanna dözsöléssel feltöltődhet, és egy csepp kifolyt benzin is elég a belobbanáshoz. - Az autó is képes sztatikusan feltöltődni. - A fénymásolókban és a lézenyomtatókban a nyomóhenge a megvilágítás következményeként egyes pontokon elektomosan töltötté válik. Itt a festékpot magához vonzza, amely azután a hengee nyomott papílapa tapad. Ezt a festékpot hőkezeléssel ögzítik a papí ostjai közé. Az elektosztatikus fénymásolás kidolgozásában jelentős szeepe volt Selényi Pál ( ) magya fizikusnak, az eljáást azonban az ameikai heste alson ( ) szabadalmaztatta 1937-ben xeox néven. Az elektomos állapot oka az elektomos töltés. Fanklin ezeket pozitívnak és negatívnak nevezte el. Benjamin Fanklin - Tételezte fel előszö, hogy a villám a légköi elektomosság következménye. A nevéhez fűződik a villámháító feltalálása. (sákányos kísélet 175) - Ő készített előszö bifokális lencsét. Az egyiptomiak má i.e könyékén ismeték a fémek villámcsapás-elvezető tulajdonságát, a templomokat ézzel vagy aannyal boított csúcsú ábocokkal látták el. III. Ramszesz fáaó paancsáa az újonnan épült templomokat is ellátták aanyozott hegyű ábocokkal.
2 Dözsöléssel a kétféle elektomos töltés szétválasztható, de zát endszeben a töltések algebai összege állandó. Ez a töltésmegmaadás tövénye. Az azonos nemű töltések taszítják, a különböző neműek vonzzák egymást. Két pontszeű, nyugvó töltés között ható eő egyenesen aányos a töltések nagyságával és fodítottan aányos a közöttük lévő távolság négyzetével. Ezt a tövényt oulomb fedezte fel. 1 F = k k = N m kg hales oulomb ( ) fancia fizikus volt, aki az elektomosságon kívül az egyszeű gépek elméletével is foglalkozott. Két 0,5 töltésű pontszeű test 10 cm távolságból akkoa eővel taszítja egymást, amely megegyezik 50 olyan vonat súlyával, amelynek mindegyike 100 db egyenként 100 tonnás kocsiból áll. Az elektomos vezetés szempontjából az anyagokat két csopotba oszthatjuk: Vezetők: Valamely helyükön létesített elektomos állapot széttejed. Bennük szabad töltéshodozók vannak. Pl.: fém, víz, embei test. A töltések mindig a vezető felületén helyezkednek el. Szigetelők: Valamely helyükön létesített elektomos állapot nem képes széttejedni. Bennük szabad töltéshodozók nincsenek. Pl.: műanyag, pocelán, gumi Az esővíz, a csapvíz, a tengevíz vezető, azonban a desztillált víz szigetelő. Ha a desztillált vízbe konyhasót oldunk, akko vezetővé válik. Eszeint a víz vezetőképességét a benne oldott anyagoknak köszönheti. A szigetelőkben az elektomos mező téeőssége kisebb, mint vákuumban. Az átmenet köztük folytonos. Vannak úgynevezett félvezetők. Pl.: fa, papí, vászon, mávány Az elektomos állapot kimutatásáa elektoszkópot használunk, mely az azonos töltések taszításának elvén működik. Az elektoszkóp göög eedetű kifejezés. Az elekto- jelentése elektomossággal kapcsolatos, a szkóp a szkopein szóból számazik, jelentése nézni, megfigyelni. Ha egy testben a pozitív és negatív töltések száma megegyezik, és eloszlásuk egyenletes, akko semleges testől beszélünk. Ha egy semleges vezető közelébe elektomosan töltött testet viszünk, de nem éintjük hozzá, akko a vezetőben felboul a töltések egyenletes eloszlása. Ez a jelenség az elektomos megosztás. A vezetőből a megosztó töltéssel egynemű influencia töltés elvezethető. Az elektomosan töltött testek köül elektomos mező alakul ki, amely közvetíti az elektomos kölcsönhatást. Ezt Faaday ( ) angol fizikus fedezte fel. A temészettudományok tanulmányozását a szellem oppant iskolájának tatom Faaday nevéhez fűződik az elektomos ányékolás jelenségének felfedezése (Faadaykalitka): Az elektomos töltés mindig a vezető külső felületén helyezkedik el. Ha ezt a téészt fémhálóval vesszük köül, akko a háló által hatáolt té minden pontjában nulla lesz a téeősség. (autó kaosszéia, epülőgép utastee, mikohullámú sütő ajtaja, fémáccsal védett gázpalackok, az elektomos távvezetékek feszültség alatti javításánál a sűű szövésű fémhálóba öltöztetett munkás)
3 súcshatás: Ha a feltöltött vezető csúcsban végződik, akko a csúcsnál nagyobb lesz a töltéssűűség. A csúcs közelében lévő levegő és poszem molekulák dipólussá válnak, a csúcs vonzó hatása miatt a csúcs felé áamlanak, ott feltöltődnek, majd a csúcs eltaszítja őket. Ez az elektomos szél képes eloltani egy gyetyát. - Ezen az elven működik a villámháító is, amely tulajdonképpen nem elháítja, hanem a földbe vezeti a villámlásko kiáamló töltést úgy, hogy a csúcshatáson alapulva vezetővé válik a levegő és kijelöli a villám útját. - A villám szelídebb változata a Szent Elmo tüze. A zivatafelhők töltésmegosztó hatásáa a földi tágyak élein és csúcsain (tonyok, telefonvezetékek) olyan eős lehet a levegő ionizációja, hogy kíséőjeként különféle fényjelenségeket (táncoló fények) tapasztalunk. Az elektomosan töltött testek köül elektomos mező alakul ki, amely közvetíti az elektomos kölcsönhatást. Ezt Faaday fedezte fel. Az elektomos mező alapvetően különbözik a gavitációs mezőtől, met a gavitációnál csak vonzás lép fel és minden teste hat, míg az elektomos mező vonzó és taszító hatást is kifejt, de csak a töltéssel endelkező teste. Az elektomosan töltött testek között tehát egy időben elektomos és gavitációs kölcsönhatás is fellép. AZ ELEKTROMOS MEZŐ JELLEMZÉSÉRE SZOLGÁLÓ FIZIKAI MENNYISÉGEK: Téeősség: Az elektomos mezőbe helyezett töltése ható eő és a töltés hányadosa. Vektomennyiség, iánya a pozitív töltése ható eő iányával egyezik meg. E N F E = Pontszeű töltés esetén: E = k Az elektomos mező szemléltetésée eővonalakat használunk (kimutatásuk: gíz, olaj, plexilap). Az eővonalak éintője megadja a téeősség iányát. Megállapodás szeint a pozitív töltésből mindig kifelé, a negatív töltésbe mindig befelé ajzoljuk. Ha az eővonalak páhuzamosak és egyenletes sűűségűek, akko homogén elektomos mezőől beszélünk. Pl.: kondenzáto két fegyvezete közötti elektomos mező. Egy tetszőleges, az eővonalaka meőleges felületen áthaladó eővonalak számát az elektomos fluxus adja meg. Ψ N m Ψ = E A
4 Mivel az elektomos mező a benne levő töltése eőt gyakool, ezét képes azt elmozdítani, tehát munkát tud végezni. s E W = E s s E W = 0 W = E s cos α Zát göbe mentén a mező munkavégzése nulla. Ez az enegia-megmaadás megnyilvánulása. Feszültség: Az elektomos mezőben mozgatott töltésen végzett munka és a töltés hányadosa. A feszültség skalá mennyiség. M.e.: V = W Ponttöltés esetén: = k A nulla szinthez viszonyított feszültséget potenciálnak nevezzük. Ez egy latin eedetű szó, jelentése teljesítőképesség. Néhány jellemző feszültség: ceuzaelem zsebtelep gépkocsi-akkumuláto hálózat TV, monito képcsöve vasúti felsővezeték távvezeték villám 1,5 V 4,5 V 1 V 30 V 5000 V 5000 V 000 V V V Ha két pont között a feszültség nulla, akko ezeket ekvipotenciálisnak mondjuk. A téeősség vonalaka mindenütt meőleges felületeket ekvipotenciálisak. A téeősség és a feszültség egyaánt az elektomos mezőt jellemzi. Homogén elektomos mezőben a kettő közötti kapcsolatot megadhatjuk az alábbi összefüggéssel: B = E d A d
5 Az olyan két vezetőből álló endszet, melynek egyik tagjáa +, másika töltést viszünk, kondenzátonak nevezzük. A kondenzáto szó, sűítőt jelent és Volta olasz fizikus nevéhez fűződik. Az első kondenzátook leydeni palackok voltak, melyeket Jedlik Ányos is továbbfejlesztett. A kondenzáto nagy mennyiségű töltést képes táolni. Jellemzésée a kapacitás szolgál. A vakuban az elem néhány voltos feszültségét egy elektonikus áamköel 00 V-a növelik és ezzel néhány másodpec alatt egy kondenzátot töltenek fel. A fényképezés pillanatában a kondenzáto egy villanócsőhöz csatlakozva kisül. Az elektonikában sokféle kondenzátot használnak, melyeket alakjuk (sík, gömb, henge) és szigetelőanyaguk (levegő, papí, csillám, olaj) szeint különböztetünk meg. Az elektolitikus kondenzátook különlegessége, hogy a két fegyvezet között elektolízissel kialakított molekuláis vastagságú oxigénéteg biztosítja a szigetelést. Ezeke csak a feltüntetett polaitással szabad feszültséget kapcsolni, met tönkemegy a szigetelőéteg és a heves gőzfejlődéstől a kondenzáto felobban. Eltejedt a változtatható kapacitású fogókondenzáto, például a ádióknál, miko adóállomást keesünk. Kapacitás: A vezetőe vitt töltés és az általa létehozott potenciál hányadosa. F( faad) = A kapacitás latin eedetű szó, jelentése befogadóképesség, táolóképesség.
Elektrosztatika (Vázlat)
lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
Elektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
ELEKTROSZTATIKA. Ma igazán feltöltődhettek!
ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
Elektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
FIZIKA ÓRA. Tanít: Nagy Gusztávné
F FIZIKA ÓRA Tanít: Nagy Gusztávné Iskolánk 8.-os tanulói az Esze Tamás Gimnázium európai színvonalon felszerelt természettudományos laboratóriumában fizika órán vettek részt. Az óra témája: a testek elektromos
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :
Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor
Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály II. rész: Elektrosztatika Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék II. rész:
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Elektromos töltés, áram, áramkör
Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
Elektromos töltés, áram, áramkörök
Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú
Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
A Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző
Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli.
Tanári segédlet Ajánlott évfolyam: 8. Időtartam: 45 Töltődj fel! FIZIKA LEVEGŐ VIZSGÁLATAI Kötelező védőeszköz: Balesetvédelmi rendszabályok: Pacemakerrel vagy hallókészülékkel élő ember ne végezze a kísérleteket!
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
X. MÁGNESES TÉR AZ ANYAGBAN
X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének
ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007
ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos
A hétvégi vihar ismertetése
A hétvégi vihar ismertetése Zivatarlánc Szupercella Dió nagyságú jég Tuba Tornádó Jégeső Villámok Tatabánya Pécs felett Pécs felett Csontváry u. szombat 20:10 Köszönöm a kitartó figyelmet! ;) Készítette:
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.
A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
Időben állandó mágneses mező jellemzése
Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű
BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet
SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI
IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete
A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 8. osztálya számára 8. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Elektrosztatika
f r homorú tükör gyűjtőlencse O F C F f
0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp
A magnetosztatika törvényei anyag jelenlétében
TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok
5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR
5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ
Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos
Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság
Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
4. STACIONÁRIUS MÁGNESES TÉR
4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt
A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés
MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt
Newton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás
Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja
Elektrosztatikai jelenségek
Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt borostyánkő között
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
1. A gyorsulás Kísérlet: Eszközök Számítsa ki
1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
OPTIKA. Elektromágneses hullámok. Dr. Seres István
OPTIK D. Sees István Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó
1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r
A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi
Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:
3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban
TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanári segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea
FIZIKA Tananyag a tehetséges gyerekek oktatásához
HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Bevezetés az anyagtudományba II. előadás
Bevezetés az anyagtudományba II. előadás 010. febuá 11. Boh-féle atommodell 1914 Niels Henik David BOHR 1885-196 Posztulátumai: 1) Az elekton a mag köül köpályán keing. ) Az elektonok számáa csak bizonyos
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Elektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverı kis papírdarabkákat messzirıl magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Csináljuk a feszültséget! Van de Graaff-generátor
Csináljuk a feszültséget! Van de Graaff-generátor A Van de Graaff-generátor (más néven szalaggenerátor) nagyfeszültség előállítására alkalmas elektrosztatikus generátor. Az iskolai kísérletek céljára készített
MÁGNESESSÉG. Türmer Kata
MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak
A KÉSZÜLÉK LEÍRÁSA P Q A B C D
A KÉSZÜLÉK LEÍRÁSA A termosztát gomb B időkapcsoló gomb C ellenőrző lámpa D funkcióválasztó gomb E üvegajtó F alsó fűtőszál G lapos sütőrács H zsírfelfogó tálca I íves sütőrács (egyes modelleknél) L morzsatálca