Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)
|
|
- Valéria Nagyné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást, különbözőek vonzzák egymást. Két fajta elektromos állapot hozható létre: elnevezésük: pozitív (+) és negatív ( ) Az azonosak (+ + vagy ) taszítják egymást, a különbözőek (+ ) vonzzák egymást.
2 A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test pozitív töltéssel rendelkezik. A vonzás, taszítás jelenségek magyarázata: A testek, tárgyak atomjai, molekulái + protonokat és elektronokat tartalmaznak. Ha nincsenek elektromos állapotban, akkor ezek száma azonos, kiegyenlítik egymást, a tárgy semleges. A tárgyak szoros érintkezésekor a negatív elektronok képesek leválni az atomról és átmenni az egyik tárgyról a másik tárgyra. Ekkor az egyiken elektron hiány, a másikon elektron többlet alakul ki. Egy töltött test közelében: a semleges vezetőben a töltések megoszlanak. (elektromos megosztás) semleges szigetelőben kis elektromos dipólusok alakulnak ki (polarizáció) Ezért létrejön az összességében vonzásban mutatkozó kölcsönhatás.
3 Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív) 1 proton töltése: 1, C Elektromos állapot kimutatására szolgáló eszköz: elektroszkóp Az elektroszkóp mutatója kitér, mivel azonos töltésű lesz a tartó rúddal, ezért taszítják egymást. Minél nagyobb a kitérése, annál nagyobb többlettöltéssel rendelkezik. Vezető anyag: amelyben a töltések könnyen tudnak mozogni. Elektromos állapotú tárggyal érintkezve az elektromos állapotot könnyen átveszik. Pl. fémek, oldatok, víz, emberi test Szigetelő anyagok: amelyben a töltések nem, vagy csak nehezen tudnak kimozdulni a helyükből, ezért a külső elektromos állapotú testtel érintkezve az elektromos állapotot nem veszik át. Pl. gumi, műanyag, porcelán, üveg, desztillált víz, száraz fa Földelés: Ha egy tárgyat vezető anyaggal összekötünk a Földdel, akkor a tárgyra kerülő töltések levezetődnek a tárgyról a Földbe, és a tárgy semleges lesz. Pl. háztartási eszközök földelt vezetéke
4 Coulomb törvény Két töltés közötti vonzó vagy taszító erő akkor nagyobb, ha a két töltés nagyobb, vagy távolságuk kisebb. Vagyis az erő egyenesen arányos a töltések nagyságával, és fordítottan arányos a távolságuk négyzetével. Képletben: Q 1 és Q 2 a két töltés, r a távolságuk, k egy arányossági tényező: N m 2 /C 2 Ha egy töltésre több töltés is hat, akkor a rá ható elektromos erőket irányuk szerint vektoriálisan összegezni kell.
5 Elektromos térerősség Bármely elektromos test körül elektromos mező, tér alakul ki. Ha ebbe a mezőbe egy kis pontszerű töltést rakunk, akkor arra erő hat. Az elektromos térerősség megadja a mező egy pontjába helyezett 1 C nagyságú töltésre ható erő nagyságát. Jellemzi az elektromos mező erősségét egy-egy pontban. Képletben: E = F/Q, ahol az F a Q töltésre ható erő. Az elektromos térerősség jele: E, mértékegysége N/C Ponttöltés által létrehozott elektromos mező térerőssége Mivel a Q 1 pontszerű töltés a tőle r távolságban levő Q 2 -re F=k Q 1 Q 2 /r 2 nagyságú erővel hat, a Q 1 töltés elektromos térerőssége r távolságban E=F/Q 2, vagyis:
6 Elektromos térerősség vonalak Az elektromos teret jellemezhetjük térerősség vonalakkal. Az erővonalakhoz húzott érintők megadják a térerősség vektorok irányvonalát, a vektor iránya az erővonalak irányába mutat, az erővonalak sűrűsége ott nagyobb, ahol a térerősség nagyobb. Homogén elektromos tér: Az E térerősség minden pontban ugyanakkora. A térerősség vonalak párhuzamos egyenesek. Példák elektromos mezők erővonalaira a) + ponttöltés el.tere b) ponttöltés el.tere e) + és töltések el.tere c) + lemez el. tere d) lemez el. tere f) + és lemezek
7 Szuperpozíció elv: Ha egy időben a térben több töltéssel rendelkező test van, a létrejövő elektromos tér térerősség vektorát egy adott helyen az egyes testek saját térerősségeinek vektori összege adja meg. Geogebra animáció a szuperpozícióhoz.
8 A
9 Zárt felület
10 r B r A +q
11 A +q B d r B r A +q
12 Potenciál, potenciálvonalak Ha az elektromos mező egy pontjának ( A pont) feszültségét egy választott 0 ponthoz viszonyítjuk (pl. a végtelen pontja, ahol az elektromos térerősség nulla), akkor az A pont feszültségét a 0 -hoz képest az A pont potenciáljának nevezzük. Jele: U A = U AO = U A U O Így két pont feszültsége = a két pont potenciáljának különbségével: U AB = U A U B Ha az azonos potenciálú pontokat összekötjük ekvipotenciális potenciálvonalakat (felületeket) kapunk, amelyek jellemzik az elektromos tér feszültségeit. Hasonlóság a gravitációs térhez: potenciál tengerszinthez viszonyított magasság feszültség két magasság közti különbség potenciálvonalak azonos magasságú szintvonalak a térképen
13 Az ekvipotenciális felületek: U=70V Homogén térben: az erővonalakra merőleges egymással párhuzamos síkok. földelés U=0V 0V 10V 20V 30V 40V 50V 60V 70V Ponttöltés terében: Koncentrikus gömbfelületek melynek középpontja a mező forrását képező ponttöltés. 10V 20V A potenciálérték az erővonalak irányába mindig csökken Végtelenben (a töltéstől távol) U=0V
14 U=70V q földelés U=0V 0V 10V 20V 30V 40V 50V 60V 70V 10V 20V r A q Végtelenben (a töltéstől távol) U=0V Q
15 Többlettöltések elhelyezkedése vezető anyagban A vezetőre vitt többlettöltés mindig a vezető külső felületére szorul a taszítás miatt. Így a vezető belsejében a térerősség nulla, belül nincs elektromos tér. A kisebb görbületű felületeken kisebb a töltéssűrűség. A fém bármely két pontjának feszültsége nulla, tehát egy fém egyetlen potenciálértékkel jellemezhető (minden pontjának azonos a potenciálja) Leföldelt fémek elektromos potenciálja nulla.
16 Elektromos árnyékolás Mivel a vezető belsejében nincs elektromos tér, ha egy vezető anyag vesz körül egy térrészt, akkor abban a térrészben nincs elektromos tér akkor sem, ha a vezető burok feltöltődik (elnevezése: Faraday kalitka). A vezető anyagú burok leárnyékolja a külső elektromos teret. Ezt hívják elektromos árnyékolásnak. Felhasználása: Fém autóban, repülőben utazókat nem éri a villámcsapás, fémburok árnyékolás védi a külső elektromos zajoktól a híradástechnikai vezetékeket (pl. antennakábel, hangszerek, erősítők vezetékei)
17 Csúcshatás A vezető anyag felületén elhelyezkedő töltések sűrűbben helyezkednek el ott, ahol a tárgy keskenyebb, csúcsos kialakítású. A nagy töltéssűrűség erős inhomogén teret hoz létre a csúcs közelében. Az elektromos mező polarizálja a levegő molekuláit, magához vonzza, majd feltöltődés után eltaszítja ezeket. Az ionizált levegő vezetőként viselkedik csúcsok közelében. Kísérletek a csúcshatás bemutatására: Elektromos szél Segner-kerék
18 Példák a csúcshatás felhasználására: Villámhárító: A villámhárító hegyes fémrúd. A fémrúdból fémkötél vezet a földbe. Ha a villám belecsap a csúcsba, nem okoz kárt, mert a fémkötél az áramot a földbe vezeti. De a villámhárítónak más szerepe is van. Ha elektromos töltésű felhő kerül a ház fölé, a házban megosztás folytán elektromos töltés keletkezik. Ámde a villámhárító csúcsán át elveszíti a ház elektromos töltését, és így elmarad a villámcsapás. Gépszíjak elektromos semlegesítése Szíjáttétellel meghajtott gépeknél a szoros érintkezés miatt a gépszíj feltöltődik. Ahol a szétválasztott töltések közötti esetleges szikrakisülés robbanásveszélyt jelent, ott földelt fémfésűvel szívják le a töltéseket.
19 Töltéssel ellátott gömb alakú vezető térerőssége és potenciálja Kívülről úgy észleljük a vezető terét, mintha az összes töltésmennyisége nem a külső felületen, hanem a gömb középpontjába lenne sűrítve.
20 Semleges vezető elektrosztatikus térben A külső elektromos tér hatására a vezető elektronjainak egy része igen gyorsan kialakít egy olyan elrendeződést (elektromos megosztás) felületi töltéssűrűséget amely leárnyékolja a külső teret azaz a vezetőn belül az elektromos térerősség zérus. Ha a vezetőnek nincs elég szabad elektronja a megfelelő megosztáshoz a vezető leföldelésével tökéletes árnyékolást érhetünk el.
21 Kondenzátor Két egymással szemben álló vezető anyagú lemezt (fegyverzetek) feltöltünk + és töltéssel. A két lemez között homogén elektromos tér alakul ki. A kondenzátor elektromos töltések felhalmozására, tárolására szolgáló eszköz, másképpen sűrítőnek nevezzük. A sűrítő elnevezés abból adódik, hogy a kondenzátor a fegyverzetek közé sűríti az elektromos mezőt, és így az elektromos térerősség vonalakat is.
22 A kondenzátor kapacitása Az egyik lemez töltésének (Q) és a lemezek közötti feszültségnek (U) a hányadosa a kondenzátorra jellemző állandó, amit a kondenzátor kapacitásának (C) nevezünk. Kiszámítás a : C Q U Mértékegysége : A síkkondenzátor kapacitása: egyenesen arányos a lemezek területével (A) fordítottan arányos a lemezek közötti távolsággal (d) függ a szigetelőanyag minőségétől (ε r ) C εr ε0 A d ahol ε 0 a légüres tér permittivitása: C ε0 8, π k N m 2 C V F (farad)
23 Kondenzátorok soros kapcsolása - A sorosan kapcsolt kondenzátor mindegyikén azonos a töltésmennyiség. Q = Q 1 = Q 2 = Q 3 - A kondenzátorra jutó feszültségek összeadódnak, a teljes feszültség megoszlik rajtuk. U = U 1 + U 2 + U A kondenzátorok eredő kapacitásának reciproka az egyes kapacitások reciprokának összege:
24 Kondenzátorok párhuzamos kapcsolása - A párhuzamosan kapcsolt kondenzátor mindegyikére ugyanakkora feszültség jut. U = U 1 = U 2 = U 3 - A kondenzátorokon levő töltések összeadódnak, a teljes össztöltés megoszlik rajtuk. Q = Q 1 + Q 2 + Q A kondenzátorok eredő kapacitása, az egyes kapacitások összege: C eredő = C 1 + C 2 + C 3 +
25 Kondenzátor energiája A kondenzátor két lemezének feltöltéséhez elektromos munkát kell végezni. Amikor pedig a Q töltéssel feltöltött, U feszültségű kondenzátor leadja töltését és semleges lesz, akkor az elektromos tere a töltések áramlását idézi elő és ehhez munkát végez. Tehát feltöltésekor munkavégző képessége, vagyis energiája lesz. Az U feszültségre feltöltött kondenzátor energiája: Kondenzátorokat használnak az elektronikai áramkörökben feszültség tárolásra, feszültség szabályozásra. Készítik különböző méretekben, alakokban.
26 Egyéb példák a kondenzátor felhasználására: A kondenzátor arra is használható, hogy feltöltve képes tárolni a töltését, feszültségét, majd egy alkalmas pillanatban ezt a töltést leadja és így rövid ideig tartó nagy áramot (töltésmozgást) tud előidézni. Vaku: A kondenzátort az akkumulátor feltölti töltéssel, majd hirtelen kisül, hirtelen leadja töltését egy erős fényű lámpának, ami felvillan. Defibrillátor: Hasonlóan a vakuhoz, az akkumulátor feltölti a kondenzátort, majd az hirtelen leadja töltését, és rövid ideig tartó áramot (kis áramütést) hoz létre.
27 A lézernyomtatók a fénymásolókkal azonos elven működnek: fotóvezető réteggel borított henger felületén először fényhatással elektromos töltéskép formájában alakítjuk ki a nyomtatandó ábrát, a hengert festékporral hozzuk érintkezésbe, és azon a töltésképnek megfelelően megtapad a festék, a hengerről a festéket ráhengereljük a papírra és ott beégetjük.
28 Az elektrosztatikus szűrőfokozat mint egy erős mágnes magához vonzza a feltöltött parányi - 0,01 mikrométer - részecskéket is, és 99%-os hatásfokkal kiszűri a levegőből. Az elektrosztatikus elven működő készülékekkel az olyan egészségkárosító szennyező anyagok is, mint a dohányfüst, utcai porok, allergiát okozó háziporok, pollenek, gombaspórák, baktériumok, sőt számos vírusfajta is kiszűrhetők.
29 Az elektrosztatikus festés során a festékszóróban porlasztás közben elektrosztatikusan feltöltött festékanyagot a festék elektromos töltésével ellentétes polaritású festendő felületre szórják. A kiszórt festékanyag az elektrosztatikus vonzás következtében jobban tapad a felülethez, és ugyancsak a vonzás következtében nagyobb része jut a festendő felületre (kisebb az anyagveszteség), mint a hagyományos eljárás esetén.
30 A Van de Graaff generátorban motorral hajtott, selyem vagy más, alkalmas anyagú szalag a feszültségforrás segítségével néhány ezer volt potenciálra emelt csúcs közelében az abból a csúcshatás miatt távozó töltéshordozók révén töltésre tesz szert, amit a nagy méretű fémgömb belsejében levő másik csúcs szív le az oda behaladó szalagról. A töltés a fémgömb felületén oszlik el, így annak belsejébe tetszőleges mennyiségű töltés vihető be akadálytalanul. A fémgömb akár több millió volt feszültségre feltölthető, határt ennek csak a gömb szigetelése, illetve távolsága szab a környező tárgyaktól.
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
Elektromos töltés, áram, áramkörök
Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
ELEKTROSZTATIKA. Ma igazán feltöltődhettek!
ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Elektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektromosság Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
Elektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Elektromos töltés, áram, áramkör
Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály II. rész: Elektrosztatika Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék II. rész:
FIZIKA ÓRA. Tanít: Nagy Gusztávné
F FIZIKA ÓRA Tanít: Nagy Gusztávné Iskolánk 8.-os tanulói az Esze Tamás Gimnázium európai színvonalon felszerelt természettudományos laboratóriumában fizika órán vettek részt. Az óra témája: a testek elektromos
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Elektromos áram, áramkör, kapcsolások
Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az
TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor
Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Az elektromosságtan alapjai
Az elektromosságtan alapjai Elektrosztatika Áramkörök Ohm-törvény Türmer Kata 2012. október 8-9. Tudománytörténet Már az ókori görögök is tudták a gyapjúval megdörzsölt borostyánkő magához vonz apró, könnyű
Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:
3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző
Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér
Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli.
Tanári segédlet Ajánlott évfolyam: 8. Időtartam: 45 Töltődj fel! FIZIKA LEVEGŐ VIZSGÁLATAI Kötelező védőeszköz: Balesetvédelmi rendszabályok: Pacemakerrel vagy hallókészülékkel élő ember ne végezze a kísérleteket!
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás
Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Elektrotechnika 9. évfolyam
Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Időben állandó mágneses mező jellemzése
Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű
Elektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Elektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverı kis papírdarabkákat messzirıl magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
Fizika Vetélkedő 8 oszt. 2013
Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika. Elektromosságtan és mágnességtan az életfolyamatokban Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 0.november 8. Az életjelenségek elektromos
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás
Vegyes témakörök 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom F. M.
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása
É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása A testek elektromos állapotát valamilyen közvetlenül nem érzékelhető
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.
Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN
ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Elektrosztatikai jelenségek
Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt borostyánkő között
Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok
Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok Kiemelt témák: Elektromosságtan alapfogalmai Szilárdtestek energiasáv modelljei Félvezetők és alkalmazásaik Tankönyv fej.:
Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ
Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Fizika 1 Elektrodinamika belépő kérdések
Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
EHA kód:...2009-2010-1f. As,
MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza
TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor
1. Fizikai mennyiségek Jele: (1), (2), (3) R, (4) t, (5) Mértékegysége: (1), (2), (3) Ohm, (4) s, (5) V 3:06 Normál Számítása: (1) /, (2) *R, (3) *t, (4) /t, (5) / Jele Mértékegysége Számítása dő Töltés
Elektromos áram, áramkör, ellenállás
Elektromos áram, áramkör, ellenállás Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
Bevezető fizika (VBK) zh2 tesztkérdések
Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.
.feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú
1. ELEKTROSZTATIKA. 1.1 Elektromos kölcsönhatás. Fizika 10.
Fizika.. ELEKTOSZTATKA. Elektromos kölcsönhatás. Elektromosság a görög (elektron) borostyánkő szóból származik, amely megdörzsölve magához vonz kisebb testeket.. A foncsorozott bőrrel megdörzsölt üvegrúd,
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Csináljuk a feszültséget! Van de Graaff-generátor
Csináljuk a feszültséget! Van de Graaff-generátor A Van de Graaff-generátor (más néven szalaggenerátor) nagyfeszültség előállítására alkalmas elektrosztatikus generátor. Az iskolai kísérletek céljára készített
Elektrosztatikai jelenségek
Elektrosztatika Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
1. Cartesius-búvár. 1. tétel
1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!
TARTALOMJEGYZÉK. Előszó 9
TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:
A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.
Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja