TestLine - sikenepeva tesztje-01 Minta feladatsor
|
|
- Diána Ballané
- 7 évvel ezelőtt
- Látták:
Átírás
1 1. z alábbi grafikon azt mutatja, hogy egy külföldi valutát hány forintért lehetett megvásárolni az ábrázolt időszakban. Melyik napon volt a legdrágább ez a valuta az ábrázolt időszakban? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) án én én án 2. következő diagram egy tornasorban álló öt fiú magasságát ábrázolja. z osztályba új tanuló érkezett ngliából. John 5 láb és 10 hüvelyk magas. (1 láb = 30,48 cm, 1 hüvelyk = 2,54 cm) Melyik két tanuló közé álljon John a tornasorban? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) Máté és Norbi közé Lajos és Máté közé Kálmán és Lajos közé Norbi és Ottó közé 3. Egy iskola farsangi bálján a büfé kínálata a lenti ábrán látható. farsangi bálra 220 db szendvicset készítettek a büfések. szendvicsek alapanyagaira összesen Ft-ot költöttek. Volt-e haszna a büfének a szendvicsek eladásából, ha minden szendvicset eladtak? Válaszodat számítással indokold! \'Kínálat\' \'Egységár\' Szendvics 70 Ft Pogácsa 50 Ft 2 dl rostos üdítő 60 Ft 2 dl ásványvíz 30 Ft TestLine - sikenepeva tesztje-01 oldal 1/12
2 4. következő zászlók közül melyiknek van PONTOSN KÉT szimmetriatengelye? Satírozd be a helyes ábra betűjelét! (1 helyes válasz) E 5. \' csapat\' \' csapat\' \' csapat\' 1. versenyző 1 perc 54 másodperc 1 perc 30 másodperc 1 perc 10 másodperc 2. versenyző 59 másodperc 1 perc 5 másodperc 1 perc 8 másodperc 3. versenyző 1 perc 2 másodperc 1 perc 18 másodperc 1 perc 5 másodperc 4. versenyző 1 perc 5 másodperc 45 másodperc 55 másodperc Egy úszóversenyen 3 csapat indult váltóban, a csapatok 4 főből álltak. Minden csapatból akkor indulhat a következő versenyző, ha a csapattársa beért a célba. z alábbi táblázat azt mutatja, melyik versenyző mennyi idő alatt úszta le a távot. mikor a csapat 4. versenyzője elkezdett úszni, az csapatból hányadik versenyző úszott? Válaszodat számítással indokold! 6. Nap és a Föld távolsága 150 millió kilométer. Stereo nevű űrszonda egy 50 millió kilométer sugarú körpályán kering a Nap körül. következő méretarányos ábrán válaszd ki, melyik pályán kering a Stereo-űrszonda! szükséges adatokat az ábrán mérd le! Satírozd be a helyes válasz betűjelét! (1 helyes válasz) 4-es körpályán 3-as körpályán 1-es körpályán 2-es körpályán TestLine - sikenepeva tesztje-01 oldal 2/12
3 7. Valér kártyavárat épít. Vízszintesen letesz egy kártyát az asztalra, majd erre állít fel két lapot. kártyavár építését a következő ábra szerint folytatja. Legfeljebb hány szintes kártyavárat tud felépíteni Valér egy 52 lapos kártyacsomagból? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) E pécsi tv-torony az 535 m magas Misina tetőn áll a Mecsekben. Lifttel lehet feljutni a 72 méter magasságban lévő üvegfalú eszpresszóba, onnan pedig lépcsőn a 3 méterrel magasabban lévő nyitott kilátóteraszra. Mecsek lábánál terül el Pécs városa. város átlagos tengerszint feletti magassága 120 m. Hány méterrel van a város felett a tv-torony nyitott kilátóteraszán álló nézelődő? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! TestLine - sikenepeva tesztje-01 oldal 3/12
4 9. Klára a konyhája falát lila színűre szeretné festeni. lila festéket három színből: kékből, pirosból és sárgából keverik ki számára. keverékben a kék, piros és sárga színek aránya 4 : 5 : 1. raktárban 6 liter kék, 9 liter piros és 2 liter sárga festéket találtak. Legfeljebb hány liter LiL színű festéket lehet kikeverni a raktárban lévő készletből? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! 10. Egy kisváros lakótelepén három üzlet van egymás szomszédságában. pékség 4.30-tól 8.00-ig és tól ig, a vegyesbolt 7.00-tól ig, az állateledelt árusító üzlet 9.00-tól ig tart nyitva. Tibornak mindhárom boltban kell vásárolnia. Mikor van egyszerre nyitva mind a három üzlet? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) és óra között 7.00 és 8.00 óra között és óra között és óra között TestLine - sikenepeva tesztje-01 oldal 4/12
5 11. levegő minőségének egyik fontos jellemzője a páratartalom; mérésére a higrométer nevű mérőműszer szolgál, amely az ábrán látható. Hány százalékos relatív páratartalmat mutat a képen látható higrométer? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) 63% 61,5% 67% 62% 12. \'Helyezés\' \'Ország\' \'ranyérem\' \'Ezüstérem\' \'ronzérem\' 1. Magyarország Németország Nagy-ritannia Fehéroroszország ben a spanyolországi kajak-kenu Európa-bajnokságon a magyar versenyzők kiemelkedő eredményt értek el. nemzetek éremtáblázatán az első helyen végzett csapatunk. z éremtáblázat első négy helyezettje a következő volt. táblázatban látható országok közül melyiknek a versenyzői gyűjtötték a legtöbb érmet? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) Magyarország Nagy-ritannia Németország Fehéroroszország TestLine - sikenepeva tesztje-01 oldal 5/12
6 13. Teriék kézilabdacsapata egyforma pólót szeretne rendelni. következő diagram a lányok testmagasság-eloszlását mutatja, a táblázat pedig a pólóméreteket a testmagasság függvényében. diagram és a táblázat adatai alapján melyik alábbi táblázat tartalmazza helyesen a csapat számára megrendelendő pólók darabszámát? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) \'Pólóméret\' \'arab\' XS 3 S 7 M 6 L 3 XL 1 \'Pólóméret\' \'arab\' XS 3 S 7 M 4 L 2 XL 4 \'Pólóméret\' \'arab\' XS 1 S 4 M 10 L 5 XL 0 \'Pólóméret\' \'arab\' XS 3 S 3 M 10 L 4 XL Matematikaórán a tanulók 4 fős csoportokban dolgoztak. Óra végén a tanár értékelte a csoportok munkáját. Tomiék csoportja 16 pontot kapott összesen. Ezt a 16 pontot szétosztották maguk között úgy, hogy mindenki, teljesítményétől függően 1, 2, 3, 4 vagy 5 pontot kaphatott. Minden csoporttag azt az érdemjegyet kapta, ahány pontot a csoportja adott neki. öntsd el, melyik igaz, illetve melyik hamis a következő állítások közül! Válaszodat a megfelelő négyzetbe beírt x-szel jelöld! Lehet, hogy három csoporttag 5-öst kapott. Lehet, hogy minden csoporttag 4-est kapott. Lehet, hogy két csoporttag 2-est kapott. csoportban nem születhetett négy különböző érdemjegy. igaz hamis TestLine - sikenepeva tesztje-01 oldal 6/12
7 15. társasházakban a lakások alapterületével arányosan kell közös költséget fizetni. Petiék lakása 80 m2, és havonta 8960 forint közös költséget fizetnek. velük egy házban lakó Tamásék lakása 110 m2. Mennyi közös költséget fizetnek Tamásék havonta? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! 16. diagram adatai alapján döntsd el, melyik igaz, illetve melyik hamis a következő állítások közül! Válaszodat a megfelelő négyzetbe tett x-szeljelöld 2008-ban az évi összfogyasztás több volt, mint 2009-ben. vizsgált évek során a legkevesebb ivóvizet 2009 októberében fogyasztotta a város ban minden hónapban több volt az ivóvízfogyasztás, mint 2009 azonos időszakában. igaz hamis 17. Egy terület népsűrűsége az 1 km2-re jutó lakosok számát jelenti. következő grafikon hat európai ország területét és népsűrűségét ábrázolja. bal oldali tengelyről a népsűrűség, a jobb oldali tengelyről az ország területének nagysága olvasható le. grafikon alapján döntsd el, melyik igaz, illetve melyik hamis a következő állítások közül! Válaszodat a megfelelő négyzetbe tett X-szel jelöld! Hollandia a legsűrűbben lakott ország. Németország területe a legnagyobb. Luxemburgban a legkisebb a népsűrűség. igaz hamis TestLine - sikenepeva tesztje-01 oldal 7/12
8 18. Mekkora mennyiségre van szükség az egyes összetevőkből, ha ttila 4 főre készíti el ezt a fogást? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! 19. Egy televízió információs oldala a filmek kezdési és befejezési időpontja mellett azt is mutatja, hogy az éppen futó film hányad részénél tart. Ha a fenti képet látjuk az információs oldalon, hány perc van még hátra a filmből? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) 32 perc 55 perc 20 perc 60 perc 20. Petra a születésnapjára meghívta 7 barátnőjét. Pudinggal szeretné megkínálni őket. Egy tasakból 4 adag készíthető, a hozzávalók: egy tasak pudingpor, 5 dl tej, 4 evőkanál cukor. Hány tasak pudingport kell vennie ahhoz, hogy mind a nyolcuk táljába jusson egy adag csoki- és egy adag vaníliapuding? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) Két vaníliát és két csokit. Négy vaníliát és négy csokit. Egy vaníliát és egy csokit. Nyolc vaníliát és nyolc csokit. TestLine - sikenepeva tesztje-01 oldal 8/12
9 21. Ákos kockákból egy testet épített. felülnézeti ábrán a számok azt jelzik, hány kocka van egymás tetejére rakva; az X-szel jelölt hely Ákos elhelyezkedését mutatja. Mit látott Ákos? Satírozd be a helyes ábra betűjelét! (1 helyes válasz) 22. Marci 0,5 liter málnaszörpöt töltött egy olyan üvegbe, amelybe pontosan 1 liter folyadék fér. szürke rész jelzi az üvegben lévő folyadékot. Rajzold be vonalzó segítségével, hol lesz a folyadék szintje, ha az üveget megfordítja! TestLine - sikenepeva tesztje-01 oldal 9/12
10 23. Éva a tengerparton sétált a nyíllal jelzett irányban. következő ábrákon az látható, hogy négy különböző pontból nézve milyen az épületek egymáshoz viszonyított helyzete. Milyen sorrendben láthatta a lenti képeket, írd alájuk sorszámmal! 24. ndrás egy centiméter méretű festményt szeretne elhelyezni szobája 3 méter széles és 2,6 méter magas falának pontosan a közepére. Milyen távolságra tegye ndrás a festményt az oldalfalaktól, illetve a mennyezettől? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! TestLine - sikenepeva tesztje-01 oldal 10/12
11 25. Egy 72 oldalas újság minden oldalán van oldalszám. z újság lapjai nincsenek összetűzve, csak egymásra helyezve és félbehajtva. Ha elveszítjük a 4. oldalt tartalmazó lapot, mely oldalak fognak még hiányozni? 26. Egy történelemversenyen 42 tanuló szeretne részt venni. tanulók csapatokat alkotnak, amelyek legalább 2, legfeljebb 5 főből állnak. Mindenki csak egy csapatnak lehet a tagja. Legkevesebb hány csapatot hozhatnak létre? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! 27. Egy konzervgyárban adagolóautomata tölti a dobozokat. z egy dobozba töltendő anyag súlya 500 gramm, ettől mindkét irányba 2%-os eltérés még elfogadható. Milyen súlyhatárok között változhat az egy dobozba töltendő anyag mennyisége? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) 495 g 505 g 498 g 502 g 480 g 520 g 490 g 510 g TestLine - sikenepeva tesztje-01 oldal 11/12
12 Powered by TPF ( TestLine - sikenepeva tesztje Gabi 7 építőkockából álló alakzatokat épít. z alábbi alakzatok közül melyik az, amelyiket IZTOSN NEM tud megépíteni (a kockákat nem ragaszthatja össze)? Satírozd be az ábra betűjelét! (1 helyes válasz) 29. E Egy iskola házi versenyt hirdetett matematikából. feladatlap 10 kérdést tartalmazott. helyes válasz 2 pontot ér, ha nincs válasz 0 pont jár, ha hibás a válasz -1 pontot kap a tanuló. Péter 8 jó választ adott, 1 kérdést elhibázott, 1-re nem válaszolt. Hány pontot szerzett? Satírozd be a helyes válasz betűjelét! (1 helyes válasz) Egy iskolarádió riporterei 4,5 órás riportanyagot készítettek olyan híres emberekkel, akik korábban az iskola tanulói voltak. Minden héten egy 10 perces anyagot szerettek volna lejátszani 15 egymást követő héten. Hány percnyi anyagot kellett kihagyni ehhez a riportanyagból? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! TestLine - sikenepeva tesztje-01 oldal 12/12
TestLine - sikenepeva tesztje-01 Minta feladatsor
2016.07.09. 13:10:37 1. Mekkora mennyiségre van szükség az egyes összetevőkből, ha ttila 4 főre készíti el ezt a fogást? Úgy dolgozz, hogy számításaid nyomon követhetők legyenek! 2. Egy terület népsűrűsége
TestLine - Gergelyfi J. tesztje 6. évfolyam Minta feladatsor
2017.01.11. 06:51:44 1. következő ábrán egy kirándulóterület szintvonalas 2:12 Normál térképe látható, amelyen 4 túraútvonal is szerepel. ( szintvonal az azonos tengerszint feletti magasságban lévő pontokat
TestLine - Másoktól Minta feladatsor
1. 2:17 Normál Magyarországon általában tízévente végeznek népszámlálást. következő diagram az utóbbi nyolc népszámlálás eredményét mutatja. Állapítsd meg a diagramon ábrázolt népszámlálási adatok alapján,
6. évfolyam MATEMATIKA
212 6. évfolyam MATEMATIKA Országos kompetenciamérés 212 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 213 6. ÉVFOLYAM A kompetenciamérésekről
TestLine - Matematika teszt Minta feladatsor
Hello! Ez egy matematikával kapcsolatos teszt. 15 kérdésből áll. Sok sikert! Ebben az egyenletben mennyi az x értéke? 32x+1-3x+2 = 162. (1 helyes válasz) 1. 1:37 Normál x=2 x=4 x=3 Egy iskolai kosárlabdacsapat
Válogatás a kompetenciamérések
I. Válogatás a kompetenciamérések feladataiból Az ORSZÁGOS KOMPETENCIAMÉRÉS 2001-ben indult el, és mára már Európa és a világ szakmailag és szolgáltatásaiban legkorszerűbb mérési rendszerei között tartják
Javítókulcs MateM atika
6. évfolyam Javítókulcs MateM atika Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2012 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2012-es Országos kompetenciamérés matematikafeladatainak
TestLine - Bemeneti mérés 8. o. matematika Minta feladatsor
TestLine - emeneti mérés 8. o. matematika oldal 1/12 1. 4:05 Normál nyolcadikosok a pályaválasztás előtt orvosi vizsgálaton vesznek részt. vizsgálat után a kosaras lányok táblázatba foglalták a tömegmérés
TestLine - Bemeneti mérés 8. o. matematika Minta feladatsor
lkalom: n/a átum: 2018.12.25 14:47:48 Oktató: n/a soport: n/a Kérdések száma: 14kérdés kérdés Kitöltési idő: 1:02:54 Szélsőséges pontok: 0 pont +52 pont 1. 3:20 Normál z autók üzemanyag-fogyasztása elsősorban
Javítókulcs M a t e m a t i k a
6. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2012 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2011-es Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében.
Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára
Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára
6. évfolyam MATEMATIKA
213 6. évfolyam MATEMATIKA Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Köznevelési Mérési Értékelési Osztály Budapest, 214 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL
Országos kompetenciamérés 2012 Feladatok és jellemzőik. matematika 8. évfolyam
2012 Országos kompetenciamérés 2012 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal Budapest, 2013 8. ÉVFOLYAM A kompetenciamérésekről 2012 májusában immár kilencedik alkalommal került
TestLine - Matematika teszt Minta feladatsor
Hello! Ez egy matematikával kapcsolatos teszt. 15 kérdésből áll. Sok sikert! z ábrán látható alakzatot egyforma méretű 1. kockákból építették.minimálisan hány kockát 2:28 Nehéz használtak fel az építéshez?
Iskola neve:... AJTP levelezős verseny. Magyar nyelv. 2. Folytasd a szóláncot legalább tíz szóval a szótagolás szabályai szerint!
b.r.m v.d.t f.rn. Magyar nyelv 1. Egészítsd ki a mássalhangzókat magánhangzókkal úgy, hogy magas, mély és vegyes hangrendű szavak szülessenek! (A pontok helyére egy-egy magánhangzót írj!) Magas Mély Vegyes
Javítókulcs M a t e m a t i k a
6. évfolyam Javítókulcs M a t e m a t i k a Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak
A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény
A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı
PISA2006. Nyilvánosságra hozott feladatok matematikából
PISA2006 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Autózás 5 Füzetkészítés 7 Kerékpárok 10 Nézd a tornyot 12 Testmagasság Autózás M302 AUTÓZÁS Kati autózni ment. Útközben egy macska
Figyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag!
Átlag Kidolgozott mintapélda Bence hét matematikadolgozatának érdemjegyei:,,,,,, Szeretné kiszámolni a dolgozatokra kapott érdemjegyeinek átlagát. Bence jegyei:,,,,,, Jegyek átlaga: ( + + + + + + ) : 7
I. Szakközépiskola
I. Szakközépiskola - 2018 Knáb László Megyei Matematika Verseny Kedves Versenyző! A feladatok megoldásához használhatsz számológépet! Sok sikert kívánunk! *Kötelező 1. Név: * 2. Középiskola * Bornemissza
Javítókulcs M a t e m a t i k a
6. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében. A Javítókulcs
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét?
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét? A) 37 m B) 22 m C) 30 m D) 44 m E) 105 m 2. Ádám három barátjával közösen a kis kockákból
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
TestLine - szabol 10. oszt. matek kompetencia gyak Minta feladatsor
2016.06.18. 03:07:24 Egy idős fa 50 kg oxigént termel egy év alatt. Egy ember éves oxigénigénye 180 kg. 1. 1 hektár idős fákból álló erdő kb. hány ember oxigénigényét elégíti ki? (1 helyes válasz) 1:49
PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
Országos kompetenciamérés 2012 Feladatok és jellemzőik. matematika 10. évfolyam
212 Országos kompetenciamérés 212 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 213 1. ÉVFOLYAM A kompetenciamérésekről 212 májusában immár kilencedik alkalommal került sor
2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Feladatgyűjtemény matematikából
Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes
Levelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: január 19. Feladatok
Postára adási határidő: 2017. január 19. Tollal dolgozz! Feladatok 1.) Az ábrán látható piramis természetes számokkal megszámozott kockákból áll. Az alsó szinten semelyik két kockának nincs ugyanolyan
Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat
Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő
PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
M A T EMATIKA 9. évfo lyam
Fıvárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Az iskola Az osztály A tanuló A tanuló neme: Kompetenciaalapú mérés 2007/2008. M A T EMATIKA 9. évfo lyam A változat Az FPPTI nem járul hozzá a
Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.
Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan.
Jedlik korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 7. o. 017. március 01. 1. A következő sebességkorlátozó táblával találkoztunk. Az alábbi járművek közül melyik közlekedik szabályosan?
MATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138
IX. PANGEA Matematika Verseny I. forduló 5. évfolyam. 1. Öt gyerek összesen 50 éves. Hány év múlva lesznek együttvéve 65 évesek?
1. Öt gyerek összesen 50 éves. Hány év múlva lesznek együttvéve 65 évesek? A) 3 B) 5 C) 10 D) 15 2. Egy 8-tagú család minden tagja vesz 1-1 ajándékot a többieknek, de mindenki csak a nála idősebbeknek.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.
Feladatok a MATEMATIKA. standardleírás 2. szintjéhez
Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.
1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt?
1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? A) 35 B) 210 C) 343 D) 1320 E) 1728 2. Hány olyan háromjegyű természetes szám van,
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
2009. májusi matematika érettségi közép szint
I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két
XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA
XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan
Matematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
A) 0 B) 2 C) 8 D) 20 E) 32
1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)
MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága:
MATEMATIKA KISÉRETTSÉGI 2010. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont
7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold!
7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold! 1. Az alábbi táblázatban az látható, hogy Gábor a legutóbbi hat kosárlabda-mérkőzésén hány büntetődobást
2012. május 30., 8.00
6. évfolyam 2012. május 30., 8.00 füzet Országos kompetenciamérés 2012 Oktatási Hivatal OKM2012_6 evfolyam_ fuzet.indb 1 2012.02.01. 10:52:51 Általános tudnivalók a feladatokhoz Ebben a tesztfüzetben matematika-
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám
MATEMATIKA KISÉRETTSÉGI 011. Ponthatárok: (5) 83-100 (4) 65-8 (3) 47-64 () 30-46 (1) 0-9 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont Összesen
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van
1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont
2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott
Statisztika 10. évfolyam. Adatsokaságok ábrázolása és diagramok értelmezése
Adatsokaságok ábrázolása és diagramok értelmezése A statisztikában adatsokaságnak (mintának) nevezik a vizsgálat tárgyát képező adatok összességét. Az adatokat összegyűjthetjük táblázatban és ábrázolhatjuk
MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc
MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont
AZ ÉLELMISZEREK ELOSZTÁSA
World Robot Olympiad 2018 Regular kategória Senior korosztály A játék leírása, szabályok és pontozás AZ ÉLELMISZER FONTOS ÜGY AZ ÉLELMISZEREK ELOSZTÁSA Verzió: Végleges változat január 15. Tartalomjegyzék
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Egy 20 feladatból álló tesztet kell megoldanod. A munka elvégzésére 120
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET TESZT matematikából a 2014/2015-es tanévben
2014. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
01. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat
b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.
Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros
MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Próba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
XI. PANGEA Matematika Verseny I. forduló 9. évfolyam
1. Tekintsük a következő két halmazt: F = {11-nél nem nagyobb prímszámok} és G = {egyjegyű páratlan pozitív egészek}. Az alábbi halmazok közül melyiknek van a legkevesebb eleme? A) F B) G C) F G D) F G
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T
6. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
Matematika javítókulcs
2003 ORSZÁGOS KOMPETENCIAMÉRÉS Matematika javítókulcs 6. évfolyam Kiss Árpád Országos Közoktatási Szolgáltató Intézmény - Értékelési Központ ÁLTALÁNOS TUDNIVALÓK A 2003-as tavaszi felmérés célja a tanulók
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Tanulmányi verseny. Matematika. 4. osztály
Klebelsberg Intézményfenntartó Központ Tanulmányi verseny Matematika 4. osztály A verseny időpontja: 2016. november 17. Kedves Versenyző! Szeretettel köszöntünk versenyünkön! Kérlek, figyelmesen olvasd
MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat2 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.
Elérhető pontszám: 30 pont
MEGOLDÓKULCS: Elérhető pontszám: 30 pont Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-. 5.osztály DÖNTŐ 016.március 18. 1. Írj a számok közé megfelelő
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
Javítókulcs 4. osztály megyei 1. Titkos üzenetet kaptál, amelyben a hét minden napja le van írva egyszer, kivéve azt a napot, amelyiken találkozol az üzenet küldőjével. Minden betű helyett egy szimbólumot
Sorba rendezés és válogatás
Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap
JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:
Diagramok elemzése. egy kozmetikai termékcsalád hatóanyagösszetételét
Diagramok elemzése 1. Egy cég közös grafikonban ábrázolja a teljesítményét és az alkalmazottak létszámát. Le tudná-e olvasni, mekkora volt a cég teljesítménye és a dolgozók létszáma 2000-ben, ha csak az
TestLine - Kompetencia 8. osztály Minta feladatsor
1. 1:40 Normál 2. E 18. feladat Egy városban sakk-, jégtánc- és kerékpárversenyt is rendeztek ebben az évben. LEGKÖZELE hány év múlva fognak a városban mindhárom sportágban versenyt rendezni, ha sakkversenyt
1. Az allergiás betegekről azt tartjuk nyilván, hogy mire allergiások.
1. Az allergiás betegekről azt tartjuk nyilván, hogy mire allergiások. Pl. [Peti [tej tojás] Lotti [tojás] Ákos [tojás liszt]] a., Kik allergiások a legtöbb anyagra [Peti Ákos] b. Gyűjtsük ki, hogy melyik
térképet, és válaszolj a kérdésekre római számokkal!
A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából
2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!
Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p
Javítókulcs M a t e m a t i k a
8. évfolyam Javítókulcs M a t e m a t i k a Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak
10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
10. Javítókulcs M a t e m a t i k a. Országos kompetenciamérés. évfolyam
10. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2013 ÁLTALÁNOS TUDNIVALÓK Ön a 2013-as Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében. A Javítókulcs
TestLine - kolosi tesztje-01 Minta feladatsor
2016.09.27. 15:29:47 1. 2:07 Normál téli sportok egyik kedvelt ága a síugrás. z ugrásért kapott távolsági pontot a következő módon számítják ki. Távolsági pont = 60 + (s h) 1,8 s: ugrás hossza méterben
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai
Levelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: november 21. Feladatok
Postára adási határidő: 2018. november 21. Tollal dolgozz! Feladatok 1.)Bernáth és négy barátja négy napig a hegyekben síeltek. A négy éjszakára egy ötszemélyes apartmant béreltek ki. Három napon át, naponta