4 A. FELÜLETI FESZÜLTSÉG MÉRÉSE BUBORÉKNYOMÁSOS MÓDSZERREL

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4 A. FELÜLETI FESZÜLTSÉG MÉRÉSE BUBORÉKNYOMÁSOS MÓDSZERREL"

Átírás

1 4 A. FELÜLETI FESZÜLTSÉG MÉRÉSE BUBORÉKNYOMÁSOS MÓDSZERREL Az összefüggő anyagi endszeek (az ún. tömbfázisok, agy angol elneezéssel "bulk" fázisok) közötti atáfelületi étegek alkotóészei más enegetikai állapotban annak, mint a tömbfázisok belsejében léők. Ennek oka az, ogy a tömbfázis felületén (két kondenzált tömbfázis esetén a atáfelületen) a kémiai és fizikai tulajdonságokat megatáozó mikoészecskék (atomok, egyszeű és komplex ionok, molekulák agy ezekből felépülő kisebb aggegátumok) a más kölcsönös enegetikai lekötöttség miatt nagyobb enegiájú állapotban annak, mint a tömbfázis belsejében elelyezkedő azonos kémiai és fizikai felépítésű, egymásoz képest enegetikailag kiegyensúlyozott(abb) tásaik. Ebben a felületben ualkodó feszültséget atáfelületi feszültségnek () neezzük. A atáfelületi feszültség édefiníciói: a felületben, annak egységnyi osszúságú onalában ató eő (N/m), agy egységnyi nagyságú felület izotem-izoco szükséges munka (J/m 2 ) (felületi munka). eezibilis úton aló léteozásáoz A felületi feszültség tiszta - egykomponensű - fázisoknál az anyagi minőség, a őméséklet és kisebb métékben a nyomás függénye. Ha a tömbfázisok elegyek, oldatok, akko a felületi feszültség a komponensek összetételétől is számotteően függ, mégpedig annál nagyobb métékben, minél felületaktíabb az oldott komponens, az ún. tenzid, a felületaktí anyag. A tenzidek, agy felületaktí anyagok csökkentik a folyadék atáfelületi feszültségét, amit az okoz, ogy ezek mindig amfipatikus jellegű együletek, melyek osszabb szénláncú liofób (íze onatkoztata idofób) csopotot és liofil (íze onatkoztata idofil) atomot, agy öid atomcsopotot tatalmaznak. idofób csopot idofil csopot 1. ába Felületaktí anyag molekulái és koodinációi a atáfelületen 1

2 Az ilyen molekulák a felületen liofil (idofil) észükkel az egyik fázisba (folyadék-gőz endszeben általában a folyadékba, íz - szees folyadék endszeben a idofilebb, azaz a izes fázisba) meüle iányítottan endeződe elyezkednek el 1. ába alsó észe), így a felületen fajlagosan több leet belőlük, mint a tömbfázis belsejében. Ezek teát a felületen feldúsulnak, pozití adszopciójuk köetkezik be. Az adszopció az a jelenség, ami akko áll elő, amiko a szóban fogó komponens koncentációja a atáfelületi étegben más, mint az őket léteozó tömbfázisokban. Felületaktí molekulákat tatalmazó oldatok esetén még inkább különbözik a felületi éteg szekezete az oldatbelitől, mint a tiszta folyadékok esetében, ami - mint má említettük - a atáétegben égbemenő adszopció köetkezménye. Az adszopció folyamatában a atáfelületi éteg összetétele megáltozik. Adott őmésékleten és nyomáson magáa agya a endszet beáll az adszopciós egyensúly, ami - szigoúan dinamikus jellegű léén - azt jelenti, ogy ekko a atáfelületi étegből időegység alatt ugyanannyi anyagmennyiség táozik a tömbfázisba, mint amennyi odakeül. Folyadék almazállapotú endszeek felületi (atáfelületi) feszültségének méésée többféle módsze is kínálkozik, pl.: a kapilláis emelkedés módszee, a buboéknyomásos módsze, a sztalagmométees módsze, a leszakítási módsze és a nyugó csepp módsze. A kapilláis emelkedés (süllyedés) módszeéel a felületi feszültség megatáozását a folyadékba meülő, sugaú kapilláisban, magasa emelkedő (agy mélye süllyedő), folyadék idosztatikai nyomásának méésée ezetjük issza (2. a. ába). A ρ sűűségű folyadékoszlop idosztatikai nyomása egyensúlyt tat az R göbületi sugáal jellemezető meniszkusz (a kapilláisban léő folyadék felszínének alakja) két oldala (folyadék- és a gőzfázis) közötti nyomáskülönbséggel, agyis 2 cosθ g p. (2.1) a kapilláis és a folyadék közötti nedesítési peemszög. A felületi feszültség (2.1)-ből kifejeze: g. (2.2) 2cosΘ 2

3 2 2R a.) b.) c.) d.) 2. ába: Felületi feszültség méési módszeek A buboéknyomásos módszeel azt a külső nyomást méjük, amely szükséges aoz, ogy a méendő felületi feszültségű folyadékba mélysége bemátott sugaú kapilláis égén buboék képződjék 2.d. ába). Ez a nyomás a p kapilláis nyomás. Ha a buboék sugaát d-el megnöeljük, a buboék téfogata 4 2 d-el, felülete pedig 8d -el nő meg. A közben égzett téfogati munkának egyenlőnek kell lennie a felületi feszültség munkájáal: amiből a felületi feszültség: (2.4) A méése a 3. ábán látató készüléket asználjuk. Ez egy 1,5-2 dm 3 -es, alul csappal ellátott és ízzel töltött edény (1), amelynek egyik oldaláoz milliméteskálás manométe (2), a másik oldaláoz méőkapilláist (melyen kököös jel látató) tató, gumidugóal ellátott méőedény (3) csatlakozik. A méés soán az edény alján léő alsó csapon keesztül a izet lassan kifolyatjuk. Ennek atásáa csökken az edény belsejében a nyomás, és így a (4) kapilláis két ége között nyomáskülönbség áll elő. Aoz azonban, ogy az sugaú kapilláison keesztül leegőbuboék jusson a készülékbe, le kell győzni a kapilláis égén képződő sugaú buboék kapilláis nyomását és a kapilláis bemeülési mélységének megfelelő idosztatikai nyomást. Ez egyúttal a maximális nyomáskülönbség is. Lassan folyata ki a izet a (2) manométeen leolasott níókülönbség buboékolás közben mindig ugyanazon kis inteallumban áltozik, így a maximális nyomáskülönbség méető. 3

4 izsgált oldat 3. ába. Buboék-nyomásos felületi feszültség-méő beendezés Izibutil-alkool, íz elegy felületi feszültségének méése buboéknyomásos módszeel A méési feladat: 1. Hatáozza meg a méőkapilláis sugaát! 2. Méje meg a különböző koncentációjú izobutil-alkool - íz elegy felületi feszültségét! 3. Állapítsa meg egy ismeetlen elegy izobutil-alkool koncentációját! A gyakolat kiitelezése: A méőedénybe előszö desztillált izet töltünk a kapilláis sugaának megatáozásáa. A ízbe belemeítjük a kapilláist úgy, ogy a dugó mellett leegő ne sziáogasson be és a íz szintje a kököös jelig éjen. Ezután megkezdjük a íz kifolyatását egyenletes lassú áamban úgy, ogy a kapilláison át leetőség szeint egyenletes buboékolás alakuljon ki. A manométe maximális szintkülönbségét feljegyezzük. A kíséletet elégezzük egye nöekő koncentációjú izobutil-iz elegyekkel is. Minden újabb oldat betöltése előtt a méendő oldattal átöblítjük a méőedényt, égül megméjük az ismeetlen koncentációjú oldat felületi feszültségét. A méés égén megméjük a kapilláis bemeülési mélységét a kapilláis köjelétől a kapilláis égéig. (Ügyelni kell aa, ogy a kapilláis tiszta maadjon, met a áakodó szennyeződés megamisítja a méést.) A kapott méési adatokból kiszámítjuk az oldatok felületi feszültségét, és millimétepapíon ábázoljuk az oldatösszetétel függényében, majd az ismeetlen oldatunk koncentációját leolassuk a megajzolt kalibációs göbénkől. 4

5 Né:... Tcs:... Dátum:... IZOBUTIL-ALKOHOL - VÍZ ELEGYEK FELÜLETI FESZÜLTSÉGÉNEK MÉRÉSE BUBORÉKNYOMÁSOS MÓDSZERREL Észlelési- és eedménylap 1. KISÉRLETI ADATOK A felületaktí anyag:... A kisélet őméséklete: t =... o C A kapilláis bemeülési mélysége: =... m Ismeetlen: Koncentáció g. dm -3 Desztillált íz 1,25 2,5 5,0 10,0 m m Felületi feszültség, N. m SZÁMÍTOTT ADATOK A desztillált íz felületi feszültsége: = 0,0729-1, [t ( o C) -18] =... N. m -1 A kapilláis sugaa: 2, g m íz A különböző koncentációjú oldatok felületi feszültsége az alábbi összefüggéssel számítató: m, old g old 0,5 Melléklet: = f(c)diagam 5

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje. Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 izika ménm nök k infomatikusoknak 1. BNxE-1 Mechanika 6. előadás D. Geetovszky Zsolt 2010. októbe 13. Ismétl tlés Ütközések tágyalása Egymáshoz képest mozgó vonatkoztatási endszeek egymáshoz képest EVEM-t

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Optikai hullámvezető fénymódus spektroszkópia Majerné Baranyi Krisztina Adányiné Dr. Kisbocskói Nóra

Optikai hullámvezető fénymódus spektroszkópia Majerné Baranyi Krisztina Adányiné Dr. Kisbocskói Nóra Optikai hullámvezető fénymódus spektoszkópia Majené Baanyi Kisztina Adányiné D. Kisbocskói Nóa NAIK ÉKI 1022 Budapest, Heman Ottó út 15. 4. épület Az optikai hullámvezető fénymódus spektoszkópia (OWLS)

Részletesebben

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Laboratóriumi gyakorlat AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Az alumínium - mivel tipikusan amfoter sajátságú elem - mind savakban, mind pedig lúgokban H 2 fejldés közben oldódik. A fémoldódási

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI II. ELEKTRÓDOK

HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI II. ELEKTRÓDOK HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI II. ELEKTRÓDOK Elektódok Elektód: olyan heteogén elektokémiai endsze, amelyben legalább két fázis éintkezik, s ezek közül az egyik elekton- vagy félvezet,

Részletesebben

1. TRANSZPORTFOLYAMATOK

1. TRANSZPORTFOLYAMATOK 1. TRNSZPORTFOLYMTOK 1.1. halmazállapot és az anyagszekezet kapcsolata. folyadékállapot általános jellemzése - a szilád, folyadék és gáz halmazállapotok jellemzése (téfogat, alak, endezettség, észecskék

Részletesebben

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Vegyész ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2019. május 15. VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Áramlástan Tanszék Méréselőkészítő óra I.

Áramlástan Tanszék Méréselőkészítő óra I. Budapesti Műszaki és Gazdaságtudomái Egyetem Áamlástan Tanszék óa I. Hoáth Csaba hoath@aa.bme.hu & Nagy László nagy@aa.bme.hu M1 M Váhegyi Zsolt ahegyi@aa.bme.hu M3 M11 Hoáth Csaba hoath@aa.bme.hu M4 M10

Részletesebben

Ecetsav koncentrációjának meghatározása titrálással

Ecetsav koncentrációjának meghatározása titrálással Ecetsav koncentrációjának meghatározása titrálással A titrálás lényege, hogy a meghatározandó komponenst tartalmazó oldathoz olyan ismert koncentrációjú oldatot adagolunk, amely a reakcióegyenlet szerint

Részletesebben

Számítógépek és modellezés a kémiai kutatásokban

Számítógépek és modellezés a kémiai kutatásokban Számítógépek és modellezés a kémiai kutatásokban Jedlovszky Pál Határfelületek és nanorendszerek laboratóriuma Alkímia ma 214 április 3. VALÓDI RENDSZEREK MODELL- ALKOTÁS MODELL- RENDSZEREK KÍSÉRLETEK

Részletesebben

Lencsék fókusztávolságának meghatározása

Lencsék fókusztávolságának meghatározása Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIAI FELADATMEGOLDÓ VERSENY Hódezőásáhely, 04. ácius 8-0. 9. éfolya 9/. feladat: Adatok: a /s, t 6 s, a 0, t 5 s, a - /s, édések: s?, t?, átl?, a átl? [/s] 0 0 0 40 Az

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek

Részletesebben

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:

Részletesebben

Kétváltozós vektor-skalár függvények

Kétváltozós vektor-skalár függvények Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt

Részletesebben

A kolloidika alapjai. 4. Fluid határfelületek

A kolloidika alapjai. 4. Fluid határfelületek A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2

Részletesebben

Anyagismeret a gyakorlatban (BMEGEPTAGA0) KEMÉNYSÉGMÉRÉS

Anyagismeret a gyakorlatban (BMEGEPTAGA0) KEMÉNYSÉGMÉRÉS Anyagismeret a gyakorlatban (BMEGEPTAGA0) KEMÉNYSÉGMÉRÉS Elméleti áttekintés Az anyag képlékeny alakváltozással, különösen valamely mérőszerszám beatolásával, szembeni ellenállását keménységnek nevezzük.

Részletesebben

Áramlástan Tanszék

Áramlástan Tanszék Áamlástan Tanszék www.aa.bme.hu Méés előkészítő óa II. Vaga Áád aga@aa.bme.hu Összeállította: Nagy László nagy@aa.bme.hu 06. Ősz A méési adminisztáció felelőse: D. Istók Balázs istok@aa.bme.hu Áamlástan

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Villamos művek 8. GYŰJTŐSÍNEK

Villamos művek 8. GYŰJTŐSÍNEK 8.1 Felaata, anyaga, elenezése 8. GYŰJTŐSÍNE A gyűjtősín a villamos kapcsolóbeenezés azon észe, amelye a leágazások csatlakoznak. A gyűjtősínnek, mint a kapcsolóbeenezés tében széthúzott csomópontjának

Részletesebben

Számítástudományi Tanszék Eszterházy Károly Főiskola.

Számítástudományi Tanszék Eszterházy Károly Főiskola. Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés

Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés BME Gépészeti Eljárástechnika Tanszék zakaszos rektifikálás mérés Budapest, 006 1. Elméleti összefoglaló A mérés célja: laboratóriumi rektifikáló oszlopban szakaszos rektifikálás elvégzése, etanol víz

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2) I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak

Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak Fizika I. (Mecanika, áamlástan, eológia, fénytan) előadási jegyzet Élelmiszeménök, Szőlész-boász ménök és Bioménök BSc allgatóknak D. Fita Feenc Fizika-Automatika Tanszék Tatalom 0 (- 05..). Statika, kinematika

Részletesebben

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

Többkomponensű rendszerek I.

Többkomponensű rendszerek I. Többkomponensű rendszerek I. Műszaki kémia, Anyagtan I. 9. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Többkomponensű rendszerek Folytonos közegben (diszpergáló, ágyazó

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

ELÕADÁS ÁTTEKINTÉSE. Környezetgazdálkodás 2. A hidraulika tárgya. Pascal törvénye. A vízoszlop nyomása

ELÕADÁS ÁTTEKINTÉSE. Környezetgazdálkodás 2. A hidraulika tárgya. Pascal törvénye. A vízoszlop nyomása ELÕADÁS ÁTTEKINTÉSE Környezetgazdálkodás. A ízgazdálkodás története, elyzete és kilátásai A íz szerepe az egyén életében, a társadalomban, és a mezõgazdaságban. A ízügyi jog pillérei. Hidrológiai alapismeretek

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van! TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai

Részletesebben

Felületi jelenségek. Gáz folyadék határfelület. γ V 2/3 = k E (T kr -T) Általános és szervetlen kémia 8. hét. Elızı héten elsajátítottuk, hogy

Felületi jelenségek. Gáz folyadék határfelület. γ V 2/3 = k E (T kr -T) Általános és szervetlen kémia 8. hét. Elızı héten elsajátítottuk, hogy Általános és szervetlen kémia 8. hét Elızı héten elsajátítottuk, hogy a többkomponenső homogén rendszereknek milyen csoportjai lehetségesek milyen sajátságai vannak az oldatoknak Mai témakörök határfelületi

Részletesebben

VI. A tömeg növekedése.

VI. A tömeg növekedése. VI A tömeg nöekedése Egyszerű tárgyalás A tehetetlenség a test egy tlajdonsága, egy adata A tömeg az adott test tehetetlenségének kantitatí mértéke A tömeg meghatározásának módszere: meg kell izsgálni,

Részletesebben

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1 Fizikai kémia gyakorlat 1 Felületi feszültség mérés és viszkozimetria 2 I. Felületi feszültség mérése 1. Bevezetés Felületi feszültség és viszkozitás mérése A felületi feszültség fázisok határfelületén

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás 6. Oldatok felületi feszültségének meghatározása Előkészítő előadás 2017.02.13. Elméleti áttekintés Felületi feszültség: a szabadentalpia függvény felület szerinti parciális deriváltja. Ez termodinamikai

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

Elektrokémia 02. (Biologia BSc )

Elektrokémia 02. (Biologia BSc ) Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az

Részletesebben

Elektromosság, áram, feszültség

Elektromosság, áram, feszültség Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok

Részletesebben

Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak

Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak Fizika I. (Mecanika, áamlástan, eológia, fénytan) előadási jegyzet Élelmiszeménök, Szőlész-boász ménök és Bioménök BSc allgatóknak Tatalom D. Fita Feenc Fizika-Automatika Tanszék 05. Statika, kinematika

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL)

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) /Az elméleti számonkérés mindig a gyakorlatok legelején írásos formában történik az előadások idetartozó anyaga, valamint Szekrényesy T.:

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

Áramlástan Tanszék

Áramlástan Tanszék Áamlástan Tanszék www.aa.bme.hu Méés előkészítő óa II. Benedek Tamás benedek@aa.bme.hu Összeállította: Nagy László nagy@aa.bme.hu 05. Ősz A méési adminisztáció felelőse: D. Istók Balázs istok@aa.bme.hu

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást. . Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan

Részletesebben

ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE

ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE S ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE TANULÁSIRÁNYÍTÓ Ismételje át a szerves kozmetikai anyagokat: 1. Szerves alapanyagok ismerete szénhidrogének alkoholok (egyértékű és többértékű

Részletesebben

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani

Részletesebben

TERMIKUS KÖLCSÖNHATÁSOK

TERMIKUS KÖLCSÖNHATÁSOK ERMIKUS KÖLCSÖNHAÁSOK ÁLLAPOJELZŐK, ERMODINAMIKAI EGYENSÚLY A mindennai élet legkülönbözőbb területein találkozunk a hőmérséklet fogalmáal, méréséel, a rendszerek hőtani jellemzőiel (térfogat, nyomás,

Részletesebben

Készült az FVM Vidékfejlesztési, Képzési és Szaktanácsadási Intézet megbízásából

Készült az FVM Vidékfejlesztési, Képzési és Szaktanácsadási Intézet megbízásából Készült az FVM Vidékfejlesztési, Kézési és Szaktanácsadási Intézet mebízásából Kélettár Készült az Élelmiszer-iari mőeletek és folyamatok tankönyöz Összeállította: Pa ászló ektorálta: Koács Gáborné Budaest,

Részletesebben

Áramlástan Tanszék

Áramlástan Tanszék Áamlástan Tanszék www.aa.bme.hu Méés előkészítő óa I. D. Balczó Máton balczo@aa.bme.hu D. Benedek Tamás benedek@aa.bme.hu D. Istók Balázs istok@aa.bme.hu D. Szente Vikto szente@aa.bme.hu Összeállította:

Részletesebben

Desztilláció: gyakorló példák

Desztilláció: gyakorló példák Desztilláció: gyakorló példák 1. feladat Számítsa ki egy 40 mol% benzolt és 60 mol% toluolt tartalmazó folyadékelegy egyensúlyi gőzfázisának összetételét 60 C-on! Az adott elegyre érvényes Raoult törvénye.

Részletesebben

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban A folyósító szerek viselkedése a kerámia anyagokban Bevezetés A kerámia masszák folyósításkor fő cél az anyag

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

Kristóf Miklós: Az Áramló Térid -Plazma

Kristóf Miklós: Az Áramló Térid -Plazma Kistóf Miklós: Az Áamló Téid -Plazma Kounkban egye több az éte-hí. Rájuk az jellemz, hogy többnyie áfolni akaják Einstein elatiitáselméletét. Különösen a Speiális Relatiitáselméletet (SR) támadják, és

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

AXIÁL VENTILÁTOROK MÉRETEZÉSI ELJÁRÁSÁNAK KORREKCIÓJA

AXIÁL VENTILÁTOROK MÉRETEZÉSI ELJÁRÁSÁNAK KORREKCIÓJA DEBECENI MŰSZAKI KÖZLEMÉNYEK 7/ AXIÁL VENTILÁTOOK MÉETEZÉSI ELJÁÁSÁNAK KOEKCIÓJA MOLNÁ Ildió*, SZLIVKA Feenc** Szent Istán Egyetem, Géészmén Ka Könyezetiai endszee Intézet Gödöllő Páte Káoly út. *Ph.D

Részletesebben

GŐZNYOMÁS MÉRÉSE SZTATIKUS MÓDSZERREL

GŐZNYOMÁS MÉRÉSE SZTATIKUS MÓDSZERREL GŐZNYOMÁS MÉÉSE SZTATIKUS MÓDSZEEL (Takács Mihály Bencze László) A gyakorlaton a dietil-éter folyadék gőz egyensúlyi görbéjének egy szakaszát határozzuk meg, és az ln p = f(t -1 ) függvény meredekségéből

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy

Részletesebben

feladatmegoldok rovata

feladatmegoldok rovata feladatmegoldok ovata Kémia K. 664. Egy nátium-kloid oldat töménységének megállapításáa abból 6,5g tömegű mintához addig csepegtettek ezüst-nitát oldatot, míg megszűnt a csapadékkiválás. A csapadékot szűték,

Részletesebben

Az oldatok összetétele

Az oldatok összetétele Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyes százalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:

Részletesebben

8. Reológia3: összetett viselkedés

8. Reológia3: összetett viselkedés 8. Reológia3: összetett viselkedés Bigam, ált. Bigam Nem-ewtoi viszkozitás összefoglalása ált. Bigam áamlása csőbe (levezetés Kolloid edszeek, biológiai edszeek Reometia (plasztikus, ugalmas, viszkózus

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú

Részletesebben

É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í

Részletesebben

ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö

Részletesebben

É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á

Részletesebben

ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő

Részletesebben

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben