Villamos tulajdonságok
|
|
- Margit Vörös
- 8 évvel ezelőtt
- Látták:
Átírás
1 Villamos tulajdonságok Alapfogalmak Ohm törvény: j = σ E σ = 1/ρ j: áramsűrűség, σ: fajlagos vezetőképesség, E: térerősség ρ: fajlagos ellenálás σ = n e µ n: töltéshordozók száma, e: töltés, µ: töltéshordozó mozgékonysága Vezetők - szigetelők σ [Ωcm] -1 Ag, Cu, Al Fe, Ni Félvezetők Ge, Si Szigetelők üvegek, polimerek kerámiák 1
2 Hőmérsékletfüggés: Fémes vezetők: Töltéshordozók: Fémes vezetők: elektron Félvezetők: elektron, lyuk Szigetelők, gázok: Ionok, elektronok Mert az elektronok mozgékonysága csökken Hőmérsékletfüggés: szigetelők, félvezetők ρ ~ exp(-t) Mert a töltéshordozók száma nő A vezetés s magyarázata Elektron függőleges falú potenciálgödörben: állóhullámok alap és gerjesztett állapotok Több elektron: Pauli-elv Sok elektron: Energia sávok Sávelmélet let 2
3 Fémrácsban: sok elektron egy kollektív rendszerben A megengedett energiasávok között tiltott sávok Szabad elektronmozgás (vezetés) csak az üres, vagy a részben betöltött sávokban lehet. Vezetők: E tiltott < 0,5 ev Félvezetők: E tiltott ~ 0,5..2 ev Szigetelők: E tiltott > 3 ev A vegyértéksáv rtéks és s a vezetési sáv v kialakulása a Li atomok kondenzálódása során Az egymáshoz közeledő atomok külső elektronpályái ( a betöltetlenek és a betöltöttek) közössé válnak. A sok azonos szint egy-egy sávvá szélesedik. A betöltött legfelső a vegyértéksáv, a betöltetlen legalsó a vezetési sáv. 3
4 Az energiasávok betöltöttségeltötts ttsége A Fermi energia Elektronok energia-eloszlásának leírására: Egy sávon belül hogyan töltődnek fel az energiaszintek Fermi-Dirac statisztika Ideális gázok energiaeloszlása: Boltzmann eloszlás n/n 0 = e -ΔE/kT f(e) azt mutatja meg, hogy egy adott E szint mennyire van feltöltve elektronokkal ( a megengedetthez képest) A Fermi-Dirac függvény Energiaminimum elv + Pauli elv T = 0K en: a sávon belül az elektronok alulról kezdik feltölteni a szinteket, minden szint teljesen betöltve, a legnagyobb energiájú: Fermi-energia Nagyobb T-n: a felső szintekre jut többlet energia 4
5 Fermi szint E F : a legmagasabb betöltött energiaszint 0K-en (50%-os betöltési valószínűség nagyobb hőmérsékleten). Fermi szinten f(e) = 0,5 Az előző függvény 90 -kal elforgatva és ráillesztve a sávdiagramra A Fermi szint szerepe Két vezető érintkezésénél a Fermi szintek igazodnak egymáshoz Az elektronok az alacsonyabb potenciál (=kisebb E F ) felé vándorolnak töltésszétválás kontaktpotenciál, Volta potenciál Kilépési munka: E 0 - E F W ki E 0 Vez. sáv E F Vegy. sáv 5
6 Az energiaállapotok eloszlása sa Az adott szinten (az E és E+dE intervallumban) található elektronok számát mutatja meg. Az ábra szabad elektronokra vonatkozik, a fémrács elektronjaira hasonló, csak a Fermi szint környékén kissé torzul. A vezetőképességet meghatározó tényezők Klasszikus modell: Szabadelektron közelítés Elektron gyorsul Ütközik a rács atomjaival Újra gyorsul. Átlagos haladási (drift) sebesség számítható fajlagos vezetőképesség Nem magyarázza a hőmérséklet-függést, a szennyezés, ötvözés hatását A töltéshordozók száma egységnyi térfogatban 6
7 Az elektronok mozgása síkhullámként is leírható De Broglie : λ = h/mv (sokféle v, sokféle λ) A kristályrács fémionjai periodikus potenciálteret alkotnak úgy működik, mint egy optikai rács. Interferencia Bragg feltétele: n λ = 2d sinθ n = 1, 2, Merőleges beesésnél: n λ = 2d λ = 2d/n Állóhullám; ilyen hullámhosszok nem terjedhetnek Más λ-val akadály (ellenállás) nélkül A vezetőképességet meghatározó tényezők Fentiek ideális rácsra vonatkoznak, egyféle geometriai rend, kevés λ tiltott: Ha torzul a kristályszerkezet újabb hullámhosszakra válik akadállyá a rács nő a fajlagos ellenállás Torzulás okai: Hőmérséklet emelése Ötvözés, szennyező anyagok Kristályhibák, szemcsehatár a: korlátlan elegykristály b: korlátozott elegyedés, az elegyedési határon belül két külön fázis c: intermetallikus vegyület képződése a két komponens között 7
8 Vezető anyagok Cu alapú vezetők: Tisztán vagy 1-2 % ötvözővel (Ag, Cr, Be) Nagy- és kisfeszültségű hálózatok NYHL összeköttetés Kontaktusok Nagyon jó vezetőképesség, Jó kémiai ellenállóképesség Közepes mechanikai tul. Al alapú vezetők: Tisztán vagy 1-2 % ötvözővel (Si, Cu) Távvezetékek IC vezetőhálózat Jó vezetőképesség, Jó kémiai ellenállóképesség Közepes mechanikai tul. Olcsóbb Alkalmazások Érintkezők: Követelmények: Kicsi átmeneti ellenállás Terhelés alatt ne lágyuljon, ne olvadjon, ne kopjon Ne elegyedjen, diffundáljon a másik fémmel Alkalmas mechanikai jell. pl. rugalmasság Szokásos anyagok: C (grafit), Cu, Ag, Au, Ru, Pd, Os, Ir, Pt, Mo, W Ellenállások: Követelmények: Széles R tartomány Kis hőmérsékletfüggés (TK) Kis zaj Ne öregedjen Cu-val kicsi termoelektromos feszültség Szokásos anyagok: Konstantán: (55% Cu, 44% Ni, 1% Mn), Ni, Cr, Ta-TaN 8
9 Fűtőellenállások: Követelmények: Magas op. Kémiai stabilitás nagy T-n Mechanikai tartósság nagy T-n FeNiCr, FeNiAl ötvözetek Pt, W, Ta, Mo SiC, MoSi 2 Grafit (3000 K-ig semleges atmoszférában IC kontaktusfémezés Eredetileg Al, mert könnyen gőzölhető, jól köthető a Sihoz Nagyobb működési sebesség, miniatűrizálás miatt jobb vezető fém kellett. Cu (ρ = 1,7 µώcm), de diffundál a Si-ba. Köztes védőréteg (barrier) W, Ta/TaN, Ti/TiN vagy Ru 9
10 Kívánt tulajdonság Nagyon jó vezetőképesség Magas eutektikus hőmérséklet Si-vel Csekély diffúzió Si-ben Kis oxidációs hajlam, stabil oxid Magas olvadáspont Csekély kölcsönhatás a Si hordozóval, poli-si-mal Csekély kölcsönhatás a SiO 2 -dal Jó tapadás a SiO 2 -on Kémiai stabilitás HF-os közegben is Könnyű strukturálhatóság Csekély elektromigráció Anyagok, amelyek NEM teljesítik Mind, kivéve Ag, Cu, Au Au, Pd, Al, Mg Cu, Ni Mg, Fe, Cu, Ag, hőálló fémek Al, Mg, Cu Pt, Pd, Rh, V, Ni, Mo, Cr Hf, Zr, Ti, Ta, Nb, V. Mg, Al? Fe, Co, Ni, Cu, Mg, Al Pt, Pd, Ni, Co, Au Al, Cu Győztes: Al, Cu (?) Nemfémes mes vezetők Vezető polimerek: Konjugált kettőskötés p, n adalékolás félvezető jelleg Egydimenziós fémes vezetés Optoelektronikai eszközök: LED, display, fényelem TFT (vékonyréteg tranzisztor) Átlátszó vezetők: ITO = indium-ón oxid Vékony réteg ~ 1Ωcm Alkalmazás: kijelzők, napelemek ZnO Ionvezetők: Elemek, akkumulátorok, Tüzelőanyag cellák Szenzorok, pl. ZrO 2 (O 2 érzékelő λ szonda) 10
11 Félvezetők Elemek: Si, Ge Vegyületek: III V: II VI: GaAs, InP, GaN ZnS, CdS, HgTe Polimer Adalékolatlan, (intrinsic): Nagyon kevés töltéshordozó a vezetési sávban, mert a hőenergia kevés a gerjesztéshez Elektron lyuk egyensúlyban Fermi szint a tiltott sáv közepén A vegyértékelektronok a hőenergia segítségével feljuthatnak a vezetési sávba A sávszerkezet s kialakulása 11
12 Adalékolt (dopolt, szennyezett, extrinsic): új szint a tiltott sávban - p típus: B, Ga, Al n típus: P, As, Sb a Fermi szint is eltolódik Az n adalék a vezetési sáv alatt hoz létre új szintet. A Fermi szint a vezetési sáv és a donor szint között p adalék szintjei 12
13 A p-n átmenet sávdiagramja feszültségmentes állapotban. Előfesz feszített p-n p átmenet Töltésátrendeződés addig, amíg a Fermi szintek kiegyenlítődnek Optoelektronikai eszközök LED Nyitó irányú kapcsolás Elektron lyuk rekombináció A sávszélességnek megfelelő energia fotonként szabadul fel. E g = hν = hc/λ Fotodetektor, napelem Egyensúlyi vagy záró irányú előfeszítés Beérkező foton elektron lyuk párt kelt, ha E foton > E g áramtermelés 13
14 Vegyület félvezetők A rácsállandó és tiltott sáv szélessége a vegyület félvezetőknél Elsősorban optoelektronikai alkalmazás Előny, hogy a tiltott sáv szélessége a kül. anyagok keverésével hangolható Csak a nagyon hasonló rácsállandójú anyagok alkotnak feszültségmentes elegykristályt B. S. Guide to Semiconductor Physics /physics/semiconductors/ /physics/transistor/function/index.html 14
15 Szigetelők Jellemző tulajdonságok: Fajlagos ellenállás: ρ > 10 6 Ωcm Szabad elektron: n < 10 6 /cm 3 Tiltott sáv: E g > 3 ev Dielektromos állandó (relatív permittivitás) ε r = C/C o, D = ε o ε r E = ε o E + P Veszteségi tényező: tgδ = I hat /I meddő Átütési szilárdság [kv/cm] Polarizáció dipólmomentum: µ = q d polarizáció: P =N µ a villamos tér hatására az anyag molekulái deformálódnak, a töltések kissé szétválnak, dipólusok alakulnak ki 1. Elektronpolarizáció: Indukált dipólmomentum Független f- től, Független T-től 2. Ionpolarizáció Indukált, függ f-től és T-től 3. Orientációs polarizáció Állandó µ, E: rendeződés, kt: rendezetlen 15
16 A polarizálhatóság lhatóság g frekvenciafüggése Maxwell egyenlet: n = (ε r ) 1/2 Piezoelektromosság Hooke törvény: σ = Y S - d E piezo hatás Elektrosztatika: D = ε E + g S reciprok piezo σ: mechanikai feszültség S: deformáció Y: Young modulus d, g: piezoelektromos állandó Szerkezetfüggő tulajdonság; alacsonyabb szimmetriájú kristályokban Kvarc SiO 2, BaTiO 3 perovszkit szerk. LiNbO 3 niobát szerk 16
17 Jellemzők: Csatolási tényező Mechanikai jósági tényező Frekvenciaállandó = f r d Curie pont: kristályszerkezet változás Alkalmazás: elektro-mechanikai átalakítók; rezgéskeltés, érzékelés Frekvenciastabilizálás Precíz mozgatás (pl: STM) Q = W W me,be hő me,be el, Ferroelektromosság Jellemzők: Spontán polarizáció Domén szerkezet Nagyon nagy relatív permittivitás; ε r függ az E-től Hiszterézis Curie hőmérséklet Alkalmazás: kerámia kondenzátorok 17
Villamos tulajdonságok
Villamos tulajdonságok A vezetés s magyarázata Elektron függıleges falú potenciálgödörben: állóhullámok alap és gerjesztett állapotok Több elektron: Pauli-elv Sok elektron: Energia sávok Sávelméletlet
RészletesebbenAlapfogalmak. Szigetelők. Ohm törvény: j = E = 1/ Vezetők - szigetelők. [ cm] -1. Ag, Cu, Al. Fe, Ni. Félvezetők Ge, Si. üvegek, polimerek kerámiák
Villamos tulajdonságok Alapfogalmak Ohm törvény: j = E = 1/ j: áramsűrűség, : fajlagos vezetőképesség, E: térerősség : fajlagos ellenálás = n e µ n: töltéshordozók száma, e: töltés, µ: töltéshordozó mozgékonysága
RészletesebbenDR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET
MISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET 2003. 2.0. Diszkrét félvezetők és alkalmazásaik
RészletesebbenVezetési jelenségek, vezetőanyagok
Anyagszerkezettan és anyagvizsgálat 2015/16 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők
RészletesebbenVezető anyagok. Vezető anyagok. Villamos anyagok, villamos tulajdonságok. Fontosabb fémek vezetőképessége 15/11/2015
Villamos anyagok, villamos tulajdonságok Emlékeztető: Sávelmélet alapjai Femi-Dirac statisztika, Fermi energia Vegyérték sáv, vezetési sáv, tilos sáv Vezetőképesség értelmezés az elektronok hullámterjedése
RészletesebbenVillamos anyagok, villamos tulajdonságok
Villamos anyagok, villamos tulajdonságok Emlékeztető: Sávelmélet alapjai Femi-Dirac statisztika, Fermi energia Vegyérték sáv, vezetési sáv, tilos sáv Vezetőképesség értelmezés az elektronok hullámterjedése
RészletesebbenVezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék:
nyagtudomány 2014/15 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek ötvözetek elektrolitok
RészletesebbenSzigetelők Félvezetők Vezetők
Dr. Báder Imre: AZ ELEKTROMOS VEZETŐK Az anyagokat elektromos erőtérben tapasztalt viselkedésük alapján két alapvető csoportba soroljuk: szigetelők (vagy dielektrikumok) és vezetők (vagy konduktorok).
RészletesebbenBevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
RészletesebbenXI. előad. 2010. április 22. Definíci. Elektromos tulajdonságok: az anyagok elektromos tér hatására adott válasza
Bevezetés s az anyagtudományba nyba XI. előad adás 2010. április 22. Definíci ciók Elektromos tulajdonságok: az anyagok elektromos tér hatására adott válasza Az anyag válasza lehet: töltésmozgás (vezetés)
RészletesebbenSzilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
RészletesebbenFermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
RészletesebbenFÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),
RészletesebbenElektromos vezetési tulajdonságok
Elektromos vezetési tulajdonságok Vezetési jelenségek (transzportfolyamatok) fenomenologikus leírása Termodinamikai hajtóerő: kémiai potenciál különbség: Egyensúlyban lévő rendszer esetén: = U TS δ = δx
RészletesebbenMIKROELEKTRONIKA, VIEEA306
Budaesti Műszaki és Gazdaságtudomáyi Egyetem Elektroikus Eszközök Taszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alaok htt://www.eet.bme.hu/~oe/miel/hu/03-felvez-fiz.tx htt://www.eet.bme.hu Budaesti
Részletesebben5. Villamos tulajdonságok
5. Villamos tulajdonságok A következı fejezet még nem teljesen kész (szerkesztés, ábra-, egyenletszámozás) de tartalmilag alkalmas a tanulásra) 5.3.1. Villamos vezetés A villamos áram töltések elmozdulása.
RészletesebbenA FÉMES KÖTÉS ÉRTELMEZÉSE A SZABADELEKTRON MODELL ALAPJÁN
A FÉMES KÖTÉS ÉRTELMEZÉSE A SZABADELEKTRON MODELL ALAPJÁN Energia (W) és erőhatás (F) az anyagi rácsban Rácstípusok: ionrács, atomrács, molekularács. A részecskék azokat a helyeket foglalják el a rácsban,
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
RészletesebbenVezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Részletesebbendinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
Részletesebben1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
RészletesebbenFogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok
Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok Kiemelt témák: Elektromosságtan alapfogalmai Szilárdtestek energiasáv modelljei Félvezetők és alkalmazásaik Tankönyv fej.:
RészletesebbenVezetékek. Fizikai alapok
Vezetékek Fizikai alapok Elektromos áram A vezetékeket az elektromos áram ill. elektromos jelek vezetésére használják. Az elektromos áramot töltéshordozók (elektromos töltéssel rendelkező részecskék: elektronok,
RészletesebbenVezetési jelenségek, vezetőanyagok
Anyagtudomány 2018/19 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek szabad elektron
RészletesebbenSzilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek
Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)
RészletesebbenBME, Anyagtudomány és Technológia Tanszék. Trendek az anyagtudományban Vezetési jelenségek Dr. Mészáros István 2013.
BME, nyagtudomány és Technológia Tanszék Trendek az anyagtudományban Vezetési jelenségek Dr. Mészáros István 03. Elektromos vezetési tulajdonságok Vezetési jelenségek (transzportfolyamatok) fenomenologikus
RészletesebbenVillamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
RészletesebbenEgyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
RészletesebbenA kémiai és az elektrokémiai potenciál
Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása
RészletesebbenFogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek
Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai
RészletesebbenSpeciális passzív eszközök
Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és
RészletesebbenReális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC
Reális kristályok, rácshibák Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Valódi, reális kristályok Reális rács rendezetlenségeket, rácshibákat tartalmaz Az anyagok tulajdonságainak bizonyos csoportja
RészletesebbenA jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24.
Az atomoktól a csillagokig 2011. február 24. Pavelka Tibor, Tallián Miklós 2/24/2011 Szilícium: mindennapjaink alapvető anyaga A szilícium-alapú technológiák mindenütt jelen vannak Mikroelektronika Számítástechnika,
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenElektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
RészletesebbenElektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Részletesebben3. gyakorlat. Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében
3. gyakorlat Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében A gyakorlat során a hallgatók 2 mérési feladatot végeznek el: 1. A félvezetők vezetési- és valenciasávja között elhelyezkedő
RészletesebbenAmerican Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű)
Szilárdtestek Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű) csavart alakzatok (spirál, tórusz, stb.) egyatomos vastagságú sík, grafén (0001) Amorf (atomok geometriai rend nélkül)
RészletesebbenSzilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok
Részletesebben3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
RészletesebbenFogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
Részletesebben2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
RészletesebbenKerámiák. Csoportosítás. Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb.
Kerámiák Csoportosítás Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb. Mesterségesen előállított szilárd, nemfémes, szervetlen (műszaki)
RészletesebbenSzupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013.
BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Szupravezetés Előadásvázlat 2013. Mágneses tér mérő szenzorok (DC, AC) Erő ill. nyomaték mérésen alapuló eszközök Tekercs (induktív) Magnetorezisztív
RészletesebbenDiffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
Részletesebben9. Funkcionális kerámiák
9. Funkcionális kerámiák Menyhárd Alfréd, Szépvölgyi János BME Fizikai Kémia és Anyagtudományi Tanszék amenyhard@mail.bme.hu Iroda: H épület 1. emelet; Tel.: 463-3477 2014 Vázlat Funkcionalitás definíció
RészletesebbenA kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
RészletesebbenA kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
RészletesebbenElektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
RészletesebbenFOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
RészletesebbenAz elektronpályák feltöltődési sorrendje
3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában
RészletesebbenFogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
RészletesebbenXXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN
2007. február 6. 1 Pálinkás József: Fizika 2. XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN Bevezetés: Az előző fejezetekben megismertük, hogy a kvantumelmélet milyen jól leírja az atomok és a molekulák felépítését.
RészletesebbenFogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
RészletesebbenFogorvosi anyagtan fizikai alapjai 7.
Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és
RészletesebbenFogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
RészletesebbenBŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz
BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan
RészletesebbenAktuátorok korszerű anyagai. Készítette: Tomozi György
Aktuátorok korszerű anyagai Készítette: Tomozi György Technológiai fejlődés iránya Mikro nanotechnológia egyre kisebb aktuátorok egyre gyorsabb aktuátorok nem feltétlenül villamos, hanem egyéb csatolás
RészletesebbenIII. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok
RészletesebbenAz anyagok vezetési tulajdonságai (segédanyag a "Vezetési jelenségek" című gyakorlathoz)
udapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar nyagtudomány és Technológia Tanszék z anyagok vezetési tulajdonságai (segédanyag a "Vezetési jelenségek" című gyakorlathoz) evezetés fémek
RészletesebbenFizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
RészletesebbenNanoelektronikai eszközök III.
Nanoelektronikai eszközök III. Dr. Berta Miklós bertam@sze.hu 2017. november 23. 1 / 10 Kvantumkaszkád lézer Tekintsünk egy olyan, sok vékony rétegbõl kialakított rendszert, amelyre ha külsõ feszültséget
RészletesebbenTranszportfolyamatok. Alapfogalmak. Lokális mérlegegyenlet. Transzportfolyamatok 15/11/2015
Alapfogalmak Transzportfolyamatok Diffúzió, Hővezetés Viszkozitás Önként végbemenő folyamat: Egyensúlyi állapot irányába Intenzív paraméterek kiegyenlítődése (p, T, µ) Extenzív paraméterek áramlása (V,
RészletesebbenFázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
RészletesebbenElektronszínképek Ultraibolya- és látható spektroszkópia
Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)
RészletesebbenKötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
RészletesebbenSZIGETELŐK, FÉLVEZETŐK, VEZETŐK
SZIGETELŐK, FÉLVEZETŐK, VEZETŐK ITRISIC (TISZTA) FÉLVEZETŐK E EXTRÉM AGY TISZTASÁG (kb: 10 10 Si, v. Ge, 1 szennyező atom) HIBÁTLA KRISTÁLYSZERKEZET abszolút nulla hőmérsékleten T = 0K = elektron kevés
RészletesebbenA polimer elektronika
A polimer elektronika Tartalom Mi a polimer elektronika? Vezető szerves molekulák, polimerek; a vezetés mechanizmusa Anyagválaszték: vezetők, félvezetők, fénykibocsátók szigetelők, hordozók Technológiák
RészletesebbenFélvezetők és a digitális világ: anyagtudományi vonatkozások
Félvezetők és a digitális világ: anyagtudományi vonatkozások Horváth Zsolt József Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet 1., Bevezetés Félvezetők és a
RészletesebbenMérésadatgyűjtés, jelfeldolgozás.
Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások
RészletesebbenAz anyagszerkezet alapjai
Kérdések Az anyagszerkezet alapjai Az atomok felépítése Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
RészletesebbenFizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.
izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás
Részletesebben5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE
5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási
RészletesebbenMilyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Részletesebben13 Elektrokémia. Elektrokémia Dia 1 /52
13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:
RészletesebbenMagyarkuti András. Nanofizika szeminárium JC Március 29. 1
Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá
RészletesebbenDiffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Részletesebben6. Félvezető lézerek
6. Félvezető lézerek 2003-ben 612 millió félvezető lézert adtak el a világban (forrás: Laser Focus World, 2004. február). Összehasonlításképpen az eladott nem félvezető lézerek száma 2001-ben ~122 ezer
Részletesebben9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Részletesebben-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.
Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd
RészletesebbenPolimerek fizikai, mechanikai, termikus tulajdonságai
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES
RészletesebbenKémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
RészletesebbenBevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten
RészletesebbenIntegrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék
Integrált áramkörök/2 Rencz Márta Elektronikus Eszközök Tanszék Mai témák MOS áramkörök alkatrészkészlete Bipoláris áramkörök alkatrészkészlete 11/2/2007 2/27 MOS áramkörök alkatrészkészlete Tranzisztorok
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenAz anyagszerkezet alapjai. Az atomok felépítése
Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
RészletesebbenMikro- és nanotechnika I. - Laboratóriumi mérések
Mikro- és nanotechnika I. - Laboratóriumi mérések 1. Piezorezisztív nyomásérzékelő tulajdonságainak mérése. 2. Világító diódák spektrumának és optikai érzékelők tulajdonságainak mérése. 3. Hall effektus
RészletesebbenA napelemek fizikai alapjai
A napelemek fizikai alapjai Dr. Rácz Ervin Ph.D. egyetemi docens intézetigazgató-helyettes kari oktatási igazgató Óbudai Egyetem, Villamosenergetikai Intézet Budapest 1034, Bécsi u. 94. racz.ervin@kvk.uni-obuda.hu
RészletesebbenAbszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)
Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban
RészletesebbenÁltalános Kémia, 2008 tavasz
9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal
RészletesebbenElektronika Előadás. Mikroelektronikai félvezetők fizikai alapjai. PN átmenet, félvezető diódák. Diódatípusok, jellemzők, alkalmazások.
Elektronika 1 3. Előadás Mikroelektronikai félvezetők fizikai alapjai. PN átmenet, félvezető diódák. Diódatípusok, jellemzők, alkalmazások. Irodalom - Simonyi Károly: Elektronfizika, 1981 - Megyeri János:
RészletesebbenBevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok
Részletesebben-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
RészletesebbenG04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő
G04 előadás Napelem technológiák és jellemzőik Kristályos szilícium napelem keresztmetszete negatív elektróda n-típusú szennyezés pozitív elektróda p-n határfelület p-típusú szennyezés Napelem karakterisztika
RészletesebbenA lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
RészletesebbenDiffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
RészletesebbenSZIGETELŐANYAGOK VIZSGÁLATA
SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt
RészletesebbenÁtmenetifém-komplexek mágneses momentuma
Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú
Részletesebben