Fizika 2 - Gyakorló feladatok
|
|
- Henrik Szalai
- 8 évvel ezelőtt
- Látták:
Átírás
1 2016. május 9. ε o = AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1, C m e =9, kg m p =1, kg h=6, Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza meg az E(r) térerősséget és ábrázolja! (2p) b. Határozza meg az U(r) potenciált és ábrázolja! (2p) c. Határozza meg az elektromos tér energiáját a gömbön belül! (1p) 2. Egy nagy, I 1 árammal átjárt, 1 hosszúságú, A 1 keresztmetszetű, N 1 menetszámú tekercs belsejében egy kisebb, rövidre zárt R ellenállású tekercset helyezünk el, amelynek sugara r 2, menetszáma N 2. a.) A megfelelő törvény alkalmazásával határozza meg a mágneses indukció nagyságát a nagy tekercsben! (1 pont) b.) Mennyi a nagyobbik tekercs mágneses dipólmomentuma? (1p) c.) A kisebb tekercs tengelye kezdetben párhuzamos a nagyobbik tekercs tengelyével. Ezt követően a kisebbik tekercset saját tengelyére merőlegesen 180 fokkal átfordítjuk. Mekkora töltés áramlik át ekkor a tekercsen? (3 pont) 3. Tekintsünk egy vákuumban terjedő elektromágneses síkhullámot, melynek EE terét SI egységekben az E x = 10 2 sinπ( z t), E y =0, E z =0 komponensek adják. a.) Határozzuk meg a hullám terjedési sebességét, frekvenciáját, hullámhosszát, periódusidejét, kezdőfázisát, az E tér amplitúdóját és polarizációját! (3,5p) b.) Írjuk fel a fenti elektromágneses hullám mágneses terét a mértékegység feltüntetésével! (1,5p) 4. 0,01 nm hullámhosszúságú röntgensugárzás kezdetben nyugvó elektronon Comptonszóródást szenved. A hullámhosszváltozás 2, nm. a.) Adja meg és számolja ki a Compton-hullámhossz kifejezését! (1 pont) b.) Számolja ki a fotonok szóródási szögét! (1 pont) c.) Adja meg a folyamatra érvényes megmaradási törvényeket! (2 pont) d.) Számolja ki a meglökött elektron által felvett energiát! (1 pont) +σ -σ +q l α z -q d 5. feladat x 5. Adott két, egymással párhuzamos, végtelen nagy kiterjedésű, egymástól d távolságra lévő lemez. Az egyes lemezek töltéssűrűsége: +σ, -σ, az ábra szerinti elrendezésben. a) Határozza meg a lemezektől származó elektromos térerősség vektort komponenseivel a lemezek között! (1,5p)
2 b) A lemezek között legyen az x tengellyel α szöget bezáró, egymástól l távolságra lévő +q és q töltésekből álló elektromos dipólus. Adja meg az elektromos dipólus vektort komponenseivel! (1,5p) c) Számítsa ki a dipólus potenciális energiáját! (2p) 6. A B=állandó homogén mágneses térre merőleges síkban egy R 0 sugarú körvezető helyezkedik el. A vezetőszál egyik bevezető szárát v 0 =állandó sebességgel húzni kezdjük úgy, hogy a vezető hurok mindvégig kör alakú maradjon. Mekkora a vezető hurokban indukálódó feszültség? (5p) 7. Egy vákuumban terjedő harmonikus elektromágneses hullám térerősségének y komponensét az EE yy = 10 VV cos(kkkk 2ππ mm tt) kifejezés írja le. s a) Írja fel a térerősség vektort komponenseivel! (0,5p) b) Mekkora a hullámszám vektor nagysága? (0,5p) c) Mekkora a B vektor komponenseinek nagysága? (1p) d) Fejezze ki a Poynting vektort! (2p) e) Mekkora az intenzitás? (1p) 8. Mi a valószínűsége, hogy az 1s állapotú hidrogén elektronjának a magtól való távolsága aa és aa + rr tartományba esik? (5p) aa = 0,0529 nm (a Bohr sugár), rr = aa/200. Az 1s állapot normált hullámfüggvénye: ΨΨ(rr) = (ππaa 3 ) 1/2 ee (rr/aa) és rr tartományon belül a ΨΨ értéke állandónak vehető, mivel rr aa. II. σ 1 y -q I. l α σ 2 +q x 9. feladat 9. Adott két, egymásra merőleges, végtelen nagy kiterjedésű, szigetelő lemez. Az egyes lemezek töltéssűrűsége az ábrának megfelelően σ 1 és σ 2. a) Határozza meg a lemezektől származó elektromos térerősség vektort komponenseivel a lemezek terében, az x-y sík I. és II. negyedében! (2p) b) Az I. negyedben legyen az x tengellyel α szöget bezáró, egymástól l távolságra lévő +q és q töltésekből álló elektromos dipólus. Adja meg az elektromos dipólus vektort komponenseivel! (1p) c) Számítsa ki a dipólus potenciális energiáját! (2p) 10. Az x-y síkban adott egy R sugarú, Q töltéssel rendelkező szigetelő gyűrű. A z tengellyel párhuzamos tengely körül az óra járásával ellentétes irányban forgassuk meg ω szögsebességgel! A gyűrű B(B 0,0,0) térben van. a) Mekkora áramerősséget hoznak létre a gyűrűvel forgó töltések? (1p) b) Mekkora és milyen irányú a köráram mágneses dipólmomentuma? (1p) c) Mekkora és milyen irányú forgatónyomaték hat? (2p) d) Mekkora a potenciális energiája definíció szerint? (1p)
3 11.Egy vákuumban terjedő harmonikus elektromágneses hullám mágneses indukciójának z 5 VVVV komponensét az BB zz = 2 10 sin(2ππ mm xx ωωωω) kifejezés írja le. m a) Írja fel a mágneses indukcióvektort komponenseivel! (0,5p) b) Mekkora a körfrekvencia nagysága? (0,5p) c) Mekkora a elektromos térerősség vektor komponenseinek nagysága? (1p) d) Fejezze ki a Poynting vektort! (2p) e) Mekkora az intenzitás? (1p) 12. Hidrogén atom elektronját az E 3 energiaszintre gerjesztettük. a) Adja meg és számolja ki a Bohr-féle kvantálás alkalmazásával az elektron impulzusmomentumát az E 3 energiaszinthez tartozó r 3 sugarú körpályán! (1 pont) b)írja fel a r 3 sugarú körpályán keringő elektron mozgásegyenletét és a pálya sugarát! (2 pont) c) Fentiek alapján számítsa ki az elektron de Broglie hullámhosszát! (2 pont) 13. Egy R sugarú gömbben ρ(r)=k r (0<r<R) állandó töltéssűrűség van, ε r =1. d. Határozza meg az E(r) térerősséget a gömbön kívül és belül és ábrázolja! (2p) e. Határozza meg az U(r) potenciált a gömbön kívül és belül és ábrázolja! (2p) Határozza meg az elektromos tér energiáját a gömbön belül! (1p) 14. Egy R sugarú hengeres vezetőn I 0 erősségű áram halad át; az áramsűrűség a vezető kereszt-metszetén egyenletes. a.) Fejezze ki az áramsűrűséget! (1p) b.) Fejezze ki a mágneses indukciót az r függvényében a vezetőn kívül és belül. Ábrázolja grafikonon! (3p) Fejezze ki a mágneses energiasűrűséget az r függvényében! (1p) mw-os lézernyaláb essen 1 mm 2 -es tükörfelületre. a.) Mekkora az elektromos térerősség és mágneses indukció amplitúdója? (3p) b.) Mekkora erő hat a tükörre, ha a nyaláb tökéletes visszaverődést szenved? (2p) 16. Mi a valószínűsége, hogy az 1s állapotú hidrogén elektronjának a magtól való távolsága a és a+δr tartományba esik? a= 0,0529nm (a Bohr sugár), rr = aa/10 Az 1s állapot normált hullámfüggvénye: ΨΨ = (ππaa 3 ) 1/2 ee rr/aa és rrtartományon belül a Ψértéke állandónak vehető, mivel rr aa (A számolásnál ez egy közelítést tesz lehetővé!). a.) Írja fel a valószínűség sűrűség definícióját! (1p) b.) Írja fel a megtalálási valószínűség definícióját! (1p) c.) A közelítés felhasználásával számolja ki az elektron megtalálási valószínűségét! (3p) Megjegyzés: további gyakorlás a rr = aa/100 esetre. 17. Egyenletes keresztmetszetű m tömegű és R sugarú korongot - amelyen Q töltés egyenletesen oszlik el - tengelye körül ω szögsebességgel forgatunk. a.) Fejezze ki a forgó töltött korong impulzusmomentumát! (1p) b.) Fejezze ki a korong felületi töltéssűrűségét (1p) c.) Számítsa ki az RR sugarú drr szélességű körgyűrűhöz tartozó áramelemet! (1p) d.) Számítsa ki a mágneses dipólmomentumot a teljes korongra! (1p) e)fejezze ki az impulzusmomentum és a dipólmomentum közti kapcsolatot (1p) 18. A 100MHz-es URH rádió által vett elektromágneses hullám elektromos térerősség komponensének amplitúdója V/m. Ez a hullám az 1 mm 2 -nyi felületű antennán tökéletesen elnyelődik.
4 a.) Mekkora az ehhez tartozó mágneses indukcióvektor amplitúdója? (1p) b.) Számítsuk ki a hullám intenzitását. (1p) c.) Fejezze ki a Poynting-vektor időfüggését az antenna felületén! (1p) d.) Hány foton elnyelődését jelenti ez másodpercenként? (1p) e.) Mekkora a sugárnyomás? (1p) 19. Egy m tömegű részecske pattog az L oldalél hosszúságú dobozban. A rendszert kvantumosnak tekintjük. a.) Mekkora a részecske de Broglie-hullámhossza az n kvantumszám függvényében? (1p) b.) Milyen energiájú állapotokat vehet fel a részecske? (2p) c.) Mekkora frekvenciájú foton szükséges ahhoz, hogy az n=1-es állapotból az n=2-es állapotba gerjesszük? (2p) 20. Adott két, azonos szimmetriatengellyel rendelkező L hosszúságú R 1 < R 2 sugarú σ 1, σ 2 >0 felületi töltéssűrűségű fémhenger. ε r =1. A végeken a szórt tértől tekintsünk el. a.) Határozza meg az E(r) térerősséget r<r 1, R 1 <r<r 2, R 2 <r esetén és ábrázolja grafikonon! (3p) b.) Mekkora a potenciálkülönbség a két henger között? (2p) 21. Adott egy B 0 =(B 0,0,0) irányú mágneses indukciójú térben egy lapos, N menetszámú, R sugarú tekercs, mely az xy síkban helyezkedik el és I áram folyik benne. a.) Adja meg vektori alakban kifejezve, hogy mekkora a tekercstől származó mágneses indukció tekercs síkjában a szimmetriatengelyen! (1p) b.) Vektori alakban fejezze ki a tekercs mágneses momentumát! (1p) c.) Vektori alakban fejezze ki a tekercsre ható forgatónyomatékot! (1p) d.) Tételezzük fel, hogy a hurok el tud fordulni. Mekkora munkát végez a tér, amíg a zérus forgatónyomatékú állapotba nem kerül a tekercs? (2p) 22. Egy d=1mm szélességű résen áthaladó kollimált fénynyaláb D=1cm méretű, nulladrendű foltot hagy L=2m távolságban lévő ernyőn. a.) Mekkora az elhajlás szöge? (1p) b.) Mekkora a fény hullámhossza? (2p) c.) Ezt a diffrakciós jelenséget milyen sebességre gyorsított proton nyalábbal lehetne elérni? (2p) 23. Adott két, koncentrikusan elhelyezkedő, vezető gömbhéj sugaraikrr 1, RR 2, a felületeiken lévő töltés QQ 1 és QQ 2 (RR 1 < RR 2 ). A két gömbhéj közötti tartományt εε dielektromos állandójú közeg tölti ki. a.) Határozza meg az EE(rr) térerősséget rr < RR 1, RR 1 < rr < RR 2, RR 2 < rr esetén és ábrázolja grafikonon! (3p) b.) Feltételezve, hogy ezt a rendszert kondenzátorként használjuk, határozza meg a kapacitását! (2p) 24. Adott az ábrán látható körívekből és sugárirányú egyenes szakaszokból álló hurok. b I a 45º P
5 a.) Számítsuk ki a mágneses indukcióvektort a kör íveinek P középpontjában! (2p) b.) Adja meg a hurok mágneses dipólmomentumának nagyságát és irányát! (1p) c.) A hurkot a lap síkjából kifelé mutató, arra merőleges irányú mágneses térbe helyezve fejezze ki a hurok potenciális energiáját! (1p) d.) Mekkora munkavégzéssel lehet átfordítani a hurkot? (1p) 25. Egy vákuumban, +x irányban terjedő harmonikus elektromágneses hullám térerősségének y komponensét az EE yy = 300 VV sin (kkkk 6ππ mm tt) kifejezés írja le. ss a. Mekkora a frekvencia? (1p) b. Mekkora a hullámhossz? (1p) c. Írja fel vektori alakban, hogy mekkora a B vektor! (1p) d. Mekkora az intenzitás? (1p) e. Mekkora az 1 mm 2 felületre 10-3 s időtartam alatt beérkező hullám impulzusa? (1p) 26. Hidrogén atom elektronját az E 2 energiaszintre gerjesztettük. a.) Adja meg és számolja ki a Bohr modell alapján az elektron impulzusmomentumát az E 2 energiaszinthez tartozó r 2 sugarú körpályán! (1p) b.) Írja fel a r 2 sugarú körpályán keringő elektron mozgásegyenletét és a pálya sugarát! (2p) c.) Fentiek alapján számítsa ki az elektron de Broglie hullámhosszát! (2p) 27. Egy R sugarú, igen hosszú hengerben a töltéssűrűség lineárisan növekszik a tengelytől mért távolság függvényében: ρ(r)=γr a) Tekintsünk az R sugarú henger belsejében egy r<r sugarú, L hosszúságú kisebb hengerfelületet, melynek tengelye egybeesik a nagy hengerével. Mennyi töltést zár be a r sugarú henger? (1) b) Mekkora az R sugarú henger egységnyi hosszára eső töltése? (1) c) Írjuk fel az R sugarú henger belsejében kialakuló elektromos térerősség nagyságát a henger tengelyétől mért r távolság függvényében! (1) 28. Egy hidrogén atommagot (protont) valamint egy deutérium atommagot (1 proton és 1 neutron) gyorsítunk U feszültségű kondenzátor lemezek közt. a) Hogy aránylik egymáshoz a két felgyorsított részecske sebessége? (1) b) A két felgyorsított részecskét ugyanabba a homogén B indukciójú mágneses térbe vezetjük be. Hogy aránylik egymáshoz a két részecske pályájának sugara? (2) 29. Adott egy hosszú egyenes vezető, amelyben időben egyenletesen növekvő áramot folyatunk I(t)=βt függvény szerint. a) Határozzuk meg a mágneses indukció nagyságát a vezetőtől mért r távolság és a t idő függvényében! (1) b) Az egyenes vezetővel egy síkban elhelyezünk egy négyzet alakú vezető keretet. A keret egyik éle párhuzamos az egyenes vezetővel, tőle a távolságra van. A keret élei ugyancsak a hosszúságúak. Határozzuk meg a keret által határolt terület mágneses indukció fluxusát az idő függvényében! (1) c) Határozzuk meg a keretben indukálódó feszültséget! (1)
6 30. Adott egy A felületű lemezekből álló síkkondenzátor, melyet Q 0 töltéssel töltünk fel, a lemezek távolsága d. a) Határozzuk meg a kondenzátor C kapacitását és U 0 feszültségét! (1) b) A kondenzátort kisütjük egy R ellenálláson keresztül. Ekkor a kondenzátor feszültsége az időben az U(t)=U 0 *exp[-t/(rc)] függvény szerint változik. Írjuk fel az ellenálláson átfolyó áramerősség I(t) időfüggvényét, valamint a lemezek közti térerősség E(t) időfüggvényét. (1) c) Határozzuk meg a lemezek közt kialakuló eltolási áram időfüggvényét, és mutassuk meg, hogy az eltolási áram nagysága minden időpillanatban megegyezik az ellenálláson átfolyó áramerősséggel! (1)
Fizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
Fizika 2 - Gyakorló feladatok
2016. június 13. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:
3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
Fizika 1 Elektrodinamika belépő kérdések
Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció
MÁGNESES TÉR, INDUKCIÓ
Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
(b) Mekkora töltés haladt át ezalatt a fémhurkon?
Elektrosztatika 1. Egy l hosszúságú rúdon egyenletesen oszlik el Q töltés. (a) Mekkora elektromos térerősséget kelt a rúd a saját iránya mentén, a végpontjától d távolságra? (b) Milyen kifejezéshez tart
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
Theory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
s levegő = 10 λ d sin α 10 = 10 λ (6.1.1)
6. gyakorlat 6.. Feladat: (HN 38B-) Kettős rést 6 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n,65) készült lemezt helyezünk
20. Állandó mágneses mezo, mozgási indukció, váltakozó áram. Alapfeladatok
20. Állandó mágneses mezo, mozgási indukció, váltakozó áram Mágneses mezo keltése 1. Alapfeladatok Jellemezze az áramjárta egyenes vezeto környezetében kialakult mágneses mezot! 2. Mitol függ egy tekercs
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.
izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Mágneses indukcióvektor begyakorló házi feladatok
Mágneses indukcióvektor begyakorló házi feladatok 1. Egy vezető keret (lapos tekercs) területe 10 cm 2 ; benne 8A erősségű áram folyik, a menetek száma 20. A keretre ható legnagyobb forgatónyomaték 0,005
2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
A mechanikai alaptörvények ismerete
A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára
Mondatkiegészítések június 6.
Mondatkiegészítések 2016. június 6. Az alábbi típusú mondatkiegészítések jelentik az elméleti feladatok egy részét. A tapasztalat szerint ezek megoldásához a tárgyi tudás mellett szükség van egyfajta rutinra.
ELEKTROMOSSÁG MÁGNESSÉG
ELEKTROMOSSÁG 1. Az eletromos térerősség zárt felületre vett fluxusa arányos a felület által bezárt össztöltéssel. 2. Elektrosztatikában az elektromos térerővonalak pozitív töltésből (vagy a végtelenből)
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Időben állandó mágneses mező jellemzése
Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér: forrásos
EHA kód:...2009-2010-1f. As,
MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza
2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!
1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk onzóerőt? a) A mágnesrúd északi pólusához asdarabot közelítünk. b) A mágnesrúd közepéhez asdarabot közelítünk. c) A mágnesrúd déli pólusához
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Fizika feladatok február 21.
Fizika feladatok 5. február. Ez a feladatgyűjtemény a villamosmérnök hallgatók korábbi jogos igényének megfelelve, nagy hiányt pótol. A kitűzött feladatok az I. féléves fizika tárgyának anyagához illeszkednek.
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése
6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az
Elektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
30A 5 Egy proton 0,5T fluxussűrűségű mágneses erőtérben 1,00 cm sugarú körpályán mozog. Mekkora a kinetikus energiája (ev egységekben kifejezve)?
30A 5 Egy proton 0,5T fluxussűrűségű mágneses erőtérben 1,00 cm sugarú körpályán mozog. Mekkora a kinetikus energiája (ev egységekben kifejezve)? B = 0,5 T r = 0,01 m E m = ½ mv 2 v 2 2E = 2E m / m v =
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
ELEKTROSZTATIKA. Ma igazán feltöltődhettek!
ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
Bevezető fizika (VBK) zh2 tesztkérdések
Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási
Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.
Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?
EGYENÁRAM 1. Mit utat eg az áraerısség? 2. Mitıl függ egy vezeték ellenállása? Ω 2 3. Mit jelent az, hogy a vas fajlagos ellenállása 0,04? 4. Írd le Oh törvényét! 5. Milyen félvezetı eszközöket isersz?