1. Legyen a fehér kiskocka értéke 100! Mely művelet eredményét mely kirakással közelítheted? Írd elé a betűjelét! Írd le a becsült eredményeket is!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Legyen a fehér kiskocka értéke 100! Mely művelet eredményét mely kirakással közelítheted? Írd elé a betűjelét! Írd le a becsült eredményeket is!"

Átírás

1 23. modul 3. évfolyam Mérőlap/.. Legyen a fehér kiskocka értéke 0! Mely művelet eredményét mely kirakással közelítheted? Írd elé a betűjelét! Írd le a becsült eredményeket is! A B C D Számolj pontosan! = = = = = = = = = =

2 23. modul 3. évfolyam Mérőlap/2. 3. Egzítsd ki! Az egyező színű nyilak ugyanazt jelentik! Tízesekre pontosan számold ki, hogy kinek kb. mennyi pénze marad a fizet után! * * *-gal jelöld azokat a kivonásokat, amelyeknél a százasokkal való közelít sokkal pontatlanabb lenne!

3 23. modul 3. évfolyam Mérőlap/3. 5. Két testvér felásta a kerít mellett húzódó 2 méter hosszú virágágyást. Melyikük hány métert áshatott? Egyik Másik Válaszd ki a két szöveges feladatnak megfelelő rajzokat! Írd le számtannyelven, oldd meg! Válaszolj a kérdre! a) Az egyik írószer boltba doboz festéket szállítottak, a másikba -nal kevesebbet. Hány doboz festéket vittek a két üzletbe összesen? b) A két írószer boltba doboz festéket szállítottak. Az egyikbe -nal kevesebbet, mint a másikba. Hány doboz festéket vittek a két üzletbe külön-külön?? I. III.? II. IV. a) b)

4 23. modul 3. évfolyam Mérőlap/4. 7. Egy füzet 78 Ft-ba kerül. Zsolt négy ilyen füzetet vásárolt. Körülbelül hány forintot kapott vissza az ezreséből? Számold ki százas tízes pontossággal is! Írd le számtannyelven, számolj! Válaszolj a kérdre! Ft-od van. Ki akarod rakni tízesekből, húszasokból, ötvenesekből, százasokból vagy ötösökből. Hány egyforma érmét kell felhasználnod, mennyi egyforintos kell még hozzá? Csak tízesek Csak húszasok Csak ötvenesek Csak százasok Csak ötösök tízes húszas ötvenes százas ötös egyes egyes egyes egyes egyes

5 23. modul 3. évfolyam Mérőlap megoldása/.. Legyen a fehér kiskocka értéke 0! Mely művelet eredményét mely kirakással közelítheted? Írd elé a betűjelét! Írd le a becsült eredményeket is! B A A D A C B A B C D C Tanulónként jegyezzük fel, hogy a 8 közül hány összeghez találta meg a megfelelő kirakást (a betűjel hány esetben helyes), hány összegnek állapította meg helyesen a százasokra kerekítsel számítható közelítő értékét! Az első teendő a közelítő összeg keresének értelmezéről ad képet. Amennyiben e téren van 2-nél több hiba, a továbbiakban célszerű ismét visszatérni a pénzzel színes rudakkal való megjelenít gyakorlására. Esetenként lépekre bonthatjuk a tennivalókat: külön-külön megállapíttatjuk a kerekített értékeket, ezeket megjeleníttetjük a választott modellel, aztán képeztetjük a százasok összegét, vonatkoztattatjuk az eredeti kérdre. A becslben elkövetett tévedek esetén utána kell járnunk, hogy vajon hibásan választott megjelenítről olvasott-e le hibás választ vele szinkronban, vagy esetleg éppen kevsé érezte pontosnak a közelítt a százasokra kerekítsel, s ezt módosította egy pontosabb becsl végzével. (Pl. a 6. összeget 950-nek becsülte.) Az előbbi esetben a fentihez hasonló egyéni vagy kis csoportos értelmezt gyakorlást célszerű terveznünk. Az utóbbi esetben viszont örülhetünk a hibának. 2. Számolj pontosan! = = = = = = = = = = A tíz feladatban nyújtott teljesítmény arra lehet jelz, hogy tovább kell-e gyakorolni a pontos számolást 0-ra végződő számok körében. Ez vonatkozhat esetleg az egz osztályra, vagy néhány gyerekre. Ha egy tanuló 2 összeadásban illetve 2 kivonásban hibázik, célszerű már betervezni gyakorlásnak. Több téveszt esetén fel kell figyelnünk a hibázás okára, egyéni munkában érdemes visszatérni a műveletek eszközökkel való végzére, a különféle eljárások újra értelmezére a tevékenységek segítségével, s az összefüggek megerősítére.

6 23. modul 3. évfolyam Mérőlap megoldása/2. 3. Egzítsd ki! Az egyező színű nyilak ugyanazt jelentik! A feladatban kétszerezeket, ötszörözeket végeznek a gyerekek kisebb, illetve 0-ra végződő nagyobb számok körében. Mindenkitől szeretnénk elvárni, hogy a felső három jobbra vezető sorozatot helyesen folytassák; tehát megtalálják mindegyik számot a 375, 750, 500, 3750 számokon kívül. Az itt aláfestsel kiemelt számok kiszámítása többletteljesítményként értékelhető az átlagos képességű tanulóktól. Aki azonban felismeri, hogy lefelé lépegetve éppen tízszerező sorozatokat kapott, annak valószínűleg ezek a számok sem fognak nagyobb gondot okozni. Gyengének ítélhetjük a teljesítményt, ha valaki öt többszörözt sem tudott helyesen elvégezni; célszerű külön gondoskodni a fejlesztről: akár a kettős számtáblázat segítségével továbbértelmezve erősítve az analógiákat, akár más eszközhasználattal segítve a kép megalkotását a szorzásokról. Meg kell győződnünk ezeknél a gyerekeknél a kisegyszeregy ismeretéről is. Hibátlan számításnak kell tekinteni egy-egy szám meghatározását akkor is, ha az eredeti sorozatba nem illik bele a szám, de az előző (e szerint hibás) számnak helyesen számolta a kétszeresét, illetve ötszörösét.

7 23. modul 3. évfolyam Mérőlap megoldása/3. 4. Tízesekre pontosan számold ki, hogy kinek kb. mennyi pénze marad a fizet után! * = = * = = 4 0 *-gal jelöld azokat a kivonásokat, amelyeknél a százasokkal való közelít sokkal pontatlanabb lenne! A mérünkben szereplő legösszetettebb feladat ez. Le kell olvasni a pénzekkel megjelenített összegeket, ezekkel ki kell egzíteni a leírt számfeladatokat. Értelmezni kell, hogy mit jelent: a tízesekre pontosan számolás. Fel kell idézni a kerekített értékekkel való lejegyz tanult módját, le kell írni a közelíthez felhasználható kivonást. Ennek eredményét vonatkoztatni kell az eredeti kérdre. Aki igényli a segítséget a teendők megválasztásához, attól ezt ne tagadjuk meg, de számon kell tartanunk, hogy vele további gyakorlásra lesz szükség. Fontos rzletezve feljegyezni az esetleges hibázásokat, hogy tudjuk, miben szorul további segítségre egy-egy tanuló: a kerekít, a lejegyz, a közelít értelmeze vagy a 0-ra végződő számokkal végzett kivonás okoz-e még gondot. A *-gal jelölt teendő: a két feladat kiválasztása többletteljesítményt jelent.

8 23. modul 3. évfolyam Mérőlap megoldása/4. 5. Két testvér felásta a kerít mellett húzódó 2 méter hosszú virágágyást. Melyikük hány métert áshatott? Egyik Másik A feladat megoldásának első összetevője a szöveg értelmeze. Itt az értelmezhez nem adunk rajzos segítséget, de a tanító felolvassa a feladatot, s ezzel járul hozzá a megért megkönnyítéhez. Szükség esetén adjon egyéni segítséget, de tartsa számon, hogy kiket kell majd külön gonddal fejleszteni a szövegek értelmezében. A táblázat használatában valószínűleg eljutottak a gyerekek az önállóságig; ismét figyeljünk fel arra, ha valaki e téren mutat bizonytalanságot. Minthogy teljes háromjegyű számok körében nem végzünk általában pontos számításokat, a számpárok megkeresében arra a tudásukra támaszkodhatnak a gyerekek, hogy ha egy összegnek az egyik tagja -gyel, -gyel csökken, akkor a másik tagnak ugyanannyival nőnie kell, hogy az összeg ne változzon. A 0-ra végződő három szám megtalálása mindenkitől elvárható, a nem kerek számok meghatározásában egy-egy hiba még nem tekintendő rossz teljesítménynek. Az utolsó három oszlop kitölte egyéni gondolkodásmódokra hívhatja fel a figyelmet: kinek van igénye a nehezebb esetek kitalálására, ki következtet további nehéz esetekre megtalált könnyű esetekről, vagy ki marad pl. csak 0-ra végződő számok körében.

9 23. modul 3. évfolyam Mérőlap megoldása/5. 6. Válaszd ki a két szöveges feladatnak megfelelő rajzokat! Írd le számtannyelven, oldd meg! Válaszolj a kérdre! a) Az egyik írószer boltba doboz festéket szállítottak, a másikba -nal kevesebbet. Hány doboz festéket vittek a két üzletbe összesen? b) A két írószer boltba doboz festéket szállítottak. Az egyikbe -nal kevesebbet, mint a másikba. Hány doboz festéket vittek a két üzletbe külön-külön?? I. III.? II. IV. a) II. kép = é s = Más megoldás: ( ) = A két boltba összesen 780 doboz festéket szállítottak. b) IV. kép = / 2 = 8 0 é s = Más megoldás: = / 2 = é s = 8 0 Az egyik üzletbe 240 doboz festéket vittek, a másikba 80 dobozt. A feladat értelmeze, a megfelelő ábra kiválasztása jelenti a legfőbb gondolkodási nehézséget. Az a) feladathoz egyaránt helyes a két, egymás folytatásaként leírható művelet a zárójeles, összetett műveletsor. A b) feladatot is leírja két nyitott mondat: + = = Egy ilyen egyenletrendszer megoldását azonban nem várjuk a gyerekektől, inkább az ismertetett számolási menetek valamelyikét fogják követni, hiszen a szöveget kifejező ábra alapján ez a legtermzetesebb. Lehet úgy is gondolkodni, hogy ha egyformán vittek volna a két üzletbe, akkor 2 2 doboz jutott volna az egyes boltokba. Ha az egyikből a másikba átvisznek valamennyit, akkor az egyik csökken, a másik ugyanennyivel nő, tehát az átszállított dobozok számának kétszerese lesz a különbség. Ha tehát az egyikbe -nal kevesebbet szállítottak, akkor ide 2 30 doboz jutott, a másikba Külön ellenőrizzük az ábra megválasztását, külön a követett számolási utat, ennek lejegyzét, külön értékeljük a kijelölt számolás helyességét!

10 23. modul 3. évfolyam Mérőlap megoldása/6. 7. Egy füzet 78 Ft-ba kerül. Zsolt négy ilyen füzetet vásárolt. Körülbelül hány forintot kapott vissza az ezreséből? Számold ki százas tízes pontossággal is! Írd le számtannyelven, számolj! ( ) ( ) vagy: ( ) ( ) vagy: = = Válaszolj a kérdre! Kb. 200 Ft-ot / kb. 280 Ft-ot kapott vissza. A feladatot önálló elolvasás önálló értelmez után kell megoldaniuk a gyerekeknek. Akikről tudja a tanító, hogy olvasott szövegmegérti gondjai vannak, azt a gyereket egyénileg segítse a félhangos felolvastatással, esetleg felolvasással. Bármelyik számfeladat, vagy nyitott mondat leírása egyaránt helyes. Külön értékeljük ezt külön a helyes kiszámítást. Fontos szempontja az értékelnek a válaszadás: hiszen ez mutatja meg, hogy valóban a kérdre kereste-e a választ.

11 23. modul 3. évfolyam Mérőlap megoldása/ Ft-od van. Ki akarod rakni tízesekből, húszasokból, ötvenesekből, százasokból vagy ötösökből. Hány egyforma érmét kell felhasználnod, mennyi egyforintos kell még hozzá? Csak tízesek Csak húszasok Csak ötvenesek Csak százasok Csak ötösök tízes 7 húszas 6 ötvenes 3 százas 69 ötös 7 egyes 7 egyes 47 egyes 47 egyes 2 egyes A maradékos osztásnak nem a szokásos lejegyzét várja el a feladat, hanem szemlélethez kötött értelmezét. Az osztók közti kapcsolat felismere alapján várhatjuk a tízesek, húszasok, ötvenesek, százasok, ötösök számának megállapítását. Ebben az utolsó kérdre nehéz válaszolni; jó teljesítménynek tekintsük, ha ez a válasz is helyes. Az egyesek számának megállapítása nem lenne nehéz, de maradékként talán szokatlan a 47; szintén lehet, hogy csak a jobb képességű tanulók adnak helyes választ. Az első két feladatrz helyes megoldását azonban mindenkitől szeretnénk elvárni.

12 23. modul 3. évfolyam Mérőlap feljegyzek/. Feljegyzek a gyerekek teljesítményéről (Tanulónként külön lapon). Helyesen megválasztott kirakások száma Helyes közelít a képválasztás szerint Hibás közelít a képválasztás szerint Helyes közelít a képválasztástól eltérően Helyes összeg Helyes különbség 3. A felső nyolc (jelöletlen) közül hibátlan (közéjük számítva az esetleg hibás előzményből helyes többszörözsel kapott számot is) Helyes leolvasás Helyes kerekít (közéjük számítva a hibás leolvasásból, de helyes kerekítből kapott számot is) Pontos számítás Helyes kerekített érték megállapítás Szöveg értelmeze Táblázat használata önállóan önállóan segítséggel segítséggel 0-ra végződő szám kiszámítása Teljes háromjegyű szám megkerese Saját számpár beírása 6. Megfelelő ábrát választott ki (a szöveg értelmeze) Jó műveletet írt Helyesen számolt Válasza a kérdre vonatkozott igen nem

13 23. modul 3. évfolyam Mérőlap feljegyzek/2. 7. Helyes számfeladatot írt Helyes pontos számítás Válasza a kérdre vonatkozott igen nem 0 igen nem 8. Helyesen osztott (tízesek, húszasok, százasok, ötösök száma) Pontos a maradék (egyesek szám)

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

Jelentéskészítő TEK-IK () Válaszadók száma = 610

Jelentéskészítő TEK-IK () Válaszadók száma = 610 Jelentéskészítő TEK-IK () Válaszadók száma = 0 Általános mutatók Szak értékelése - + átl.=. Felmérés eredmények Jelmagyarázat Kérdésszöveg Válaszok relatív gyakorisága Bal pólus Skála Átl. elt. Átlag Medián

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

MAGYAR NYELV a 4. évfolyamosok számára. MNy2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MAGYAR NYELV a 4. évfolyamosok számára. MNy2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 4. évfolyam MNy2 Javítási-értékelési útmutató MAGYAR NYELV a 4. évfolyamosok számára MNy2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

G Szabályfelismerés 2.2. 2. feladatcsomag

G Szabályfelismerés 2.2. 2. feladatcsomag ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály 3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Jelentés a kiértékelésről az előadóknak

Jelentés a kiértékelésről az előadóknak Debreceni Egyetem 00 Debrecen Egyetem tér. Debreceni Egyetem Tisztelt NK Úr! (személyes és bizalmas) Jelentés a kiértékelésről az előadóknak Tisztelt NK Úr! Ez az email tartalmazza a Népegészségügyi ellenõr

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, 2015. november 20.

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, 2015. november 20. Őcsényi Perczel Mór Általános Iskola székhelye: 7143 Őcsény, Perczel Mór utca 1. Tel: 74/496-782 e-mail: amk.ocseny@altisk-ocseny.sulinet.hu Ikt.sz.: /2015. OM: 036345 Ügyintéző: Ősze Józsefné Ügyintézés

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

Útmutató a vízumkérő lap kitöltéséhez

Útmutató a vízumkérő lap kitöltéséhez Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél

Részletesebben

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).

Részletesebben

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! 1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

Conjoint-analízis példa (egyszerűsített)

Conjoint-analízis példa (egyszerűsített) Conjoint-analízis példa (egyszerűsített) Az eljárás meghatározza, hogy a fogyasztók a vásárlás szempontjából lényeges terméktulajdonságoknak mekkora relatív fontosságot tulajdonítanak és megadja a tulajdonságok

Részletesebben

Fejlesztı neve: LÉNÁRT ANETT. Tanóra / modul címe: CÉGES REKLÁMBANNER KÉSZÍTÉSE PROJEKTMÓDSZERREL

Fejlesztı neve: LÉNÁRT ANETT. Tanóra / modul címe: CÉGES REKLÁMBANNER KÉSZÍTÉSE PROJEKTMÓDSZERREL Fejlesztı neve: LÉNÁRT ANETT Tanóra / modul címe: CÉGES REKLÁMBANNER KÉSZÍTÉSE PROJEKTMÓDSZERREL 1. Az óra tartalma A tanulási téma bemutatása; A téma és a módszer összekapcsolásának indoklása: Az órán

Részletesebben

Egyszerű áramkörök vizsgálata

Egyszerű áramkörök vizsgálata A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)

Részletesebben

MATEMATIKA HETI 3 ÓRA

MATEMATIKA HETI 3 ÓRA EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 27.3.. 12:28:21

Részletesebben

Hallgatói Elégedettségi Kérdőív

Hallgatói Elégedettségi Kérdőív Hallgatói Elégedettségi Kérdőív Kérjük, töltse ki az elméleti képzésre vonatkozó kérdőívünket és küldje vissza nekünk a facetofacejogsi@gmail.com e-mail címre. Köszönjük, hogy véleményével hozzájárul magasabb

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Egyre nagyobb profitot generálnak a mobiltelefonnal végzett vásárlások, és egyre többet hezitálunk vásárlás előtt

Egyre nagyobb profitot generálnak a mobiltelefonnal végzett vásárlások, és egyre többet hezitálunk vásárlás előtt Egyre nagyobb profitot generálnak a mobiltelefonnal végzett vásárlások, és egyre többet hezitálunk vásárlás előtt 2016 ban még nagyobb hangsúlyt kapnak az e kereskedelmeben az okostelefonok. 2015 ben még

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK 0611 ÉRETTSÉGI VIZSGA 2006. május 18. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Általános megjegyzések: Ha egy

Részletesebben

Feladatlap. I. forduló

Feladatlap. I. forduló Feladatlap a Ki Mit Tud a statisztika világáról szakmai versenyhez I. forduló 2010. szeptember 14. 1. feladat (12 pont) A vállalkozás beszerzéseinek adatai Mennyiség Egységár (Ft/db) (db) megoszlása (%)

Részletesebben

Előre is köszönjük munkádat és izgatottan várjuk válaszaidat! A Helleresek

Előre is köszönjük munkádat és izgatottan várjuk válaszaidat! A Helleresek A Heller Farkas Szakkollégium 2016-os felvételi kérdőívét tartod a kezedben, amely által megteheted az első lépést a Helleres úton. Az írásbeli kérdőív kitöltése után a felvételi következő lépése egy szóbeli

Részletesebben

- mit, hogyan, miért?

- mit, hogyan, miért? - mit, hogyan, miért? Dr. Bélavári Csilla VITUKI Nonprofit Kft., Minőségbiztosítási és Ellenőrzési Csoport c.belavari@vituki.hu 2011.02.10. 2010. évi záróértekezlet - VITUKI, MECS 1 I. Elfogadott érték

Részletesebben

Felvételi 2013 Felvételi tájékoztató 2013

Felvételi 2013 Felvételi tájékoztató 2013 Felvételi 2013 A döntést segítő kiadványok Felsőoktatási felvételi tájékoztató 2013. szeptemberben induló képzésekre honlap : www.felvi.hu Felvételi tájoló 2013. (Felvi-rangsorokkal) Képzési szintek A:

Részletesebben

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi 1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

Javítóvizsga témakörei matematika tantárgyból

Javítóvizsga témakörei matematika tantárgyból 9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő

Részletesebben

A táblázatkezelő felépítése

A táblázatkezelő felépítése A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az

Részletesebben

X.6. NYERŐ PIROS. A feladatsor jellemzői

X.6. NYERŐ PIROS. A feladatsor jellemzői X.6. NYERŐ PIROS Tárgy, téma A feladatsor jellemzői Valószínűségszámítás, valószínűségi játékok. Előzmények Valószínűség fogalma, igazságos játék fogalma (igazságos játékról beszélünk, ha a nyerési esélyek

Részletesebben

Kérdések és feladatok

Kérdések és feladatok Kérdések és feladatok 1. A mesében több szám is szerepel. Próbáld meg felidézni ezeket, majd töltsd ki a táblázatot! Ügyelj, hogy a páros és a páratlan számok külön oszlopba kerüljenek! Hány napos volt

Részletesebben

Shared IMAP beállítása magyar nyelvű webmailes felületen

Shared IMAP beállítása magyar nyelvű webmailes felületen Shared IMAP beállítása magyar nyelvű webmailes felületen A következő ismertető segítséget nyújt a szervezeti cím küldőként való beállításában a caesar Webmailes felületén. Ahhoz, hogy a Shared Imaphoz

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

ÖSSZEADÁS, KIVONÁS AZ EGY 0-RA VÉGZŐDŐ SZÁMOK KÖRÉBEN

ÖSSZEADÁS, KIVONÁS AZ EGY 0-RA VÉGZŐDŐ SZÁMOK KÖRÉBEN Matematika A 3. évfolyam ÖSSZEADÁS, KIVONÁS AZ EGY 0-RA VÉGZŐDŐ SZÁMOK KÖRÉBEN 16. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 16. modul összeadás, kivonás az egy 0-ra végződő számok körében

Részletesebben

E-ADÓ RENSZER HASZNÁLATI ÚTMUTATÓ

E-ADÓ RENSZER HASZNÁLATI ÚTMUTATÓ E-ADÓ RENSZER HASZNÁLATI ÚTMUTATÓ BEJELENTKEZÉS NÉLKÜL ELÉRHETŐ FUNKCIÓK 1. Adónaptár A bejelentkezést követően lehetőség van az eseményekről értesítést kérni! 2. Pótlékszámítás 3. Elektronikus űrlapok

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli

Részletesebben

A skatulya-elv alkalmazásai

A skatulya-elv alkalmazásai 1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

Puskás Tivadar Távközlési Technikum

Puskás Tivadar Távközlési Technikum 27 Puskás Tivadar Távközlési Technikum Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam szakközépiskola matematika Előállítás ideje: 28.3.6. 6:48:31 197 Budapest,

Részletesebben

Hidak építése a minőségügy és az egészségügy között

Hidak építése a minőségügy és az egészségügy között DEBRECENI EGÉSZSÉGÜGYI MINŐSÉGÜGYI NAPOK () 2016. május 26-28. Hidak építése a minőségügy és az egészségügy között A TOVÁBBKÉPZŐ TANFOLYAM KIADVÁNYA Debreceni Akadémiai Bizottság Székháza (Debrecen, Thomas

Részletesebben

Országos kompetenciamérés 2006

Országos kompetenciamérés 2006 Országos kompetenciamérés 2006 A SULINOVA Kht. jelentései alapján összeállította: Kovács Károly A tesztek alapvetı statisztikai jellemzıi, valamint a tesztfüzetek feladatai és azok jellemzıit bemutató

Részletesebben

KÍNAI NYELV JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÍNAI NYELV JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kínai nyelv emelt szint 1513 ÉRETTSÉGI VIZSGA 2016. május 24. KÍNAI NYELV EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA I. OLVASOTT SZÖVEG ÉRTÉSE

Részletesebben

Minta programterv a 1. házi feladathoz

Minta programterv a 1. házi feladathoz Programozás Minta programterv a 1. házi feladathoz Gregorics Tibor EHACODE.ELTE gt@inf.elte.hu 0.csoport 1. beadandó/0.feladat 1. 2011. december 28. Feladat Egy osztályba n diák jár, akik m darab tantárgyat

Részletesebben

EPER E-KATA integráció

EPER E-KATA integráció EPER E-KATA integráció 1. Összhang a Hivatalban A hivatalban használt szoftverek összekapcsolása, integrálása révén az egyes osztályok, nyilvántartások között egyezőség jön létre. Mit is jelent az integráció?

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

IKT FEJLESZTŐ MŰHELY KONTAKTUS Dél-dunántúli Regionális Közoktatási Hálózat Koordinációs Központ

IKT FEJLESZTŐ MŰHELY KONTAKTUS Dél-dunántúli Regionális Közoktatási Hálózat Koordinációs Központ Óratervezet: Kémia 7. osztály Témakör: Kémiai kötések Óra anyaga: Molekulák építése, térbeli modellezése Eszközök:, aktív tábla, projektor, számítógépek A tanóra részei Tanári tevékenység Tanulói tevékenység

Részletesebben

Nagy András. Számelméleti feladatgyűjtemény 2009.

Nagy András. Számelméleti feladatgyűjtemény 2009. Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb

Részletesebben

Kiskunmajsa Város Önkormányzatának partnertérképe

Kiskunmajsa Város Önkormányzatának partnertérképe Kiskunmajsa Város Önkormányzatának partnertérképe Kiskunmajsa Város Önkormányzatának potenciális partnerei Helyi vállalkozások Kiskunmajsa Város Önkormányzata számára a lehetséges vállalati partnerek feltérképezéséhez

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

6. osztály 10. gyakorló feladatsor Kompetencia alapú feladatok. Átlagos jegyára k. Nézőszám

6. osztály 10. gyakorló feladatsor Kompetencia alapú feladatok. Átlagos jegyára k. Nézőszám 6. osztály 10. gyakorló feladatsor Kompetencia alapú feladatok 1. Egy futballklub vezetősége szerette volna elérni, hogy minél több néző jöjjön ki a mérkőzésekre, és ezzel minél nagyobb bevételre tehessenek

Részletesebben

megfigyelőképesség, érzékelés, szám és jel számok sorrendje, számszomszédok páros, páratlan

megfigyelőképesség, érzékelés, szám és jel számok sorrendje, számszomszédok páros, páratlan Társadalmi Megújulás Operatív Program Kompetencia alapú oktatás, egyenlő hozzáférés - Innovatív intézményekben TÁMOP 3.1.4-08/2. - 2009-0094 " Oktatásfejlesztés Baja Város Önkormányzata által fenntartott

Részletesebben

ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK. 37. modul

ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK. 37. modul Matematika A 3. évfolyam ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK 37. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 37. modul ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ

Részletesebben

0642. MODUL SZÁMELMÉLET. A számok osztói, az oszthatósági szabályok KÉSZÍTETTE: PINTÉR KLÁRA

0642. MODUL SZÁMELMÉLET. A számok osztói, az oszthatósági szabályok KÉSZÍTETTE: PINTÉR KLÁRA 0642. MODUL SZÁMELMÉLET A számok osztói, az oszthatósági szabályok KÉSZÍTETTE: PINTÉR KLÁRA 0642. Számelmélet A számok osztói, az oszthatósági szabályok Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2007. jnuár 27. MATEMATIKA FELADATLAP 8. évfolymosok számár 2007. jnuár 27. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

Csoportosított adatok megjelenítése sorhalmaz függvények használatával

Csoportosított adatok megjelenítése sorhalmaz függvények használatával Csoportosított adatok megjelenítése sorhalmaz függvények használatával Célkitűzés A használható sorhalmaz függvények azonosítása A sorhalmaz függvények használatának leírása Adatok csoportosítása a GROUP

Részletesebben

De maradjunk azért a pénz bűvkörében, pontosabban a kereskedések világában.

De maradjunk azért a pénz bűvkörében, pontosabban a kereskedések világában. Számvető könyvecske Hogy most került sorra eme kincs bemutatása, részemről nem más, mint tisztelgés a 1848-as magyar forradalom és szabadságharc emléke előtt. Szerencsére a 166 év távlata ellenére léteznek

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

A személyiség teszttől a bónuszig Oracle HR Summit 2014.02.26 Budapest Music Center

A személyiség teszttől a bónuszig Oracle HR Summit 2014.02.26 Budapest Music Center A személyiség teszttől a bónuszig Oracle HR Summit 2014.02.26 Budapest Music Center Magyarosi Dóra Fehér Csaba 45 nap Átlagosan 45 nap szükséges egy új munkatárs megtalálásához és beléptetéséhez 3 M Ft

Részletesebben

EVALUAREA COMPETENȚELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014. Model de test. MATEMATICĂ Şcoli cu predare în limbile minorităților naționale

EVALUAREA COMPETENȚELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014. Model de test. MATEMATICĂ Şcoli cu predare în limbile minorităților naționale CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUAREA COMPETENȚELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014 Model de test MATEMATICĂ Şcoli cu predare în limbile minorităților naționale Județul / sectorul...

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

Teljes kétjegyű számhoz egyjegyű hozzáadása és elvétele tízesátlépés nélkül, analógiák építése, Szöveges feladatok

Teljes kétjegyű számhoz egyjegyű hozzáadása és elvétele tízesátlépés nélkül, analógiák építése, Szöveges feladatok Matematika A 2. évfolyam Teljes kétjegyű számhoz egyjegyű hozzáadása és elvétele tízesátlépés nélkül, analógiák építése, Szöveges feladatok 15. modul Készítette: Szabóné Vajna Kinga Harzáné Kälbli Éva

Részletesebben

Nyitott mondatok Bennfoglalás maradékkal

Nyitott mondatok Bennfoglalás maradékkal Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

JEGYZİKÖNYV RENDKÍVÜLI NYÍLT KISZOMBOR 2011. december 12.

JEGYZİKÖNYV RENDKÍVÜLI NYÍLT KISZOMBOR 2011. december 12. JEGYZİKÖNYV RENDKÍVÜLI NYÍLT KISZOMBOR 2011. december 12. JEGYZİKÖNYV Készült Kiszombor Nagyközség Önkormányzata Képviselı-testületének 2011. december 12. napján 15 órai kezdettel megtartott rendkívüli

Részletesebben

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ Társadalmi Megújulás Operatív Program Kompetencia alapú oktatás, egyenlő hozzáférés - Innovatív intézményekben TÁMOP 3.1.4-08/2. - 2009-0094 " Oktatásfejlesztés Baja Város Önkormányzata által fenntartott

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 5 ÉRETTSÉGI VIZSG 05. október. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIM Egyszerű, rövid

Részletesebben

xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%

xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78% Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési

Részletesebben

Programozás I. - 9. gyakorlat

Programozás I. - 9. gyakorlat Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu

Részletesebben

ÖNKÖLTSÉGSZÁMÍTÁSI SZABÁLYZAT

ÖNKÖLTSÉGSZÁMÍTÁSI SZABÁLYZAT ÖNKÖLTSÉGSZÁMÍTÁSI SZABÁLYZAT A szabályzat hatályos: 2010. január 1-tıl. I. ÖNKÖLTSÉGSZÁMÍTÁSI SZABÁLYZAT CÉLJA, TARTALMA Az államháztartás szervezetei beszámolási és könyvvezetési kötelezettségének sajátosságairól

Részletesebben

Kérdőívek. Szigetszentmiklós, 2015. június

Kérdőívek. Szigetszentmiklós, 2015. június Kérdőívek Szigetszentmiklós, 2015. június Kitöltötték 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 44% 39% 13% szülők diákok tanárok Szülői kérdőív: 13% 16 14 14 12 10 8 6 6 8 6 6 5 5 5 a b c ny 4 2 0 3

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Korszerű geodéziai adatfeldolgozás Kulcsár Attila

Korszerű geodéziai adatfeldolgozás Kulcsár Attila Korszerű geodéziai adatfeldolgozás Kulcsár Attila Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar Térinformatika Tanszék 8000 Székesfehérvár, Pirosalma -3 Tel/fax: (22) 348 27 E-mail: a.kulcsar@geo.info.hu.

Részletesebben

Hőszivattyú. Zöldparázs Kft

Hőszivattyú. Zöldparázs Kft Hőszivattyú Ez az előadás 2010.szeptember 20-án hangzott el. Mivel az internetes keresők hosszú időre megőrzik a dokumentumokat, vegye figyelembe, hogy az idő múlásával egyes technikai megoldások elavulttá

Részletesebben

QGIS tanfolyam (ver.2.0)

QGIS tanfolyam (ver.2.0) QGIS tanfolyam (ver.2.0) V. GPX fájl hozzáadása, Attribútum táblázat kitöltése, Vektorműveletek 2014. január-február Összeállította: Bércesné Mocskonyi Zsófia Duna-Ipoly Nemzeti Park Igazgatóság GPX fájl

Részletesebben

CSÁNY KÖZSÉG ÖNKORMÁNYZATÁNAK 12/2003.(XI.27.) RENDELETE A MAGÁNSZEMÉLYEK KOMMUNÁLIS ADÓJÁRÓL. Adókötelezettség 1.

CSÁNY KÖZSÉG ÖNKORMÁNYZATÁNAK 12/2003.(XI.27.) RENDELETE A MAGÁNSZEMÉLYEK KOMMUNÁLIS ADÓJÁRÓL. Adókötelezettség 1. CSÁNY KÖZSÉG ÖNKORMÁNYZATÁNAK 12/2003.(XI.27.) RENDELETE A MAGÁNSZEMÉLYEK KOMMUNÁLIS ADÓJÁRÓL Csány Községi Önkormányzat a helyi adókról szóló 1990. évi C. törvény (a továbbiakban: Htv.) 1. -ának (1) bekezdésében

Részletesebben

MIÉRT FONTOS A HELYES TESTTARTÁS?

MIÉRT FONTOS A HELYES TESTTARTÁS? MIÉRT FONTOS A HELYES TESTTARTÁS? A biomechanikailag helyes testtartás, tartáskorrekció ÉVFOLYAM: 3 6. TANÁRI SEGÉDLET TANÁRI SEGÉDLET A TÉMA FELDOLGOZÁSÁHOZ ÉVFOLYAM: 3-6. AZ ÓRA TÉMÁJA: A biomechanikailag

Részletesebben

Műszaki ábrázolás II. 3. Házi feladat. Hegesztett szerkezet

Műszaki ábrázolás II. 3. Házi feladat. Hegesztett szerkezet Hegesztett szerkezet Feladat: Hegesztett szerkezet rajzának elkészítése. Szükséges eszközök: A3-as fehér rajzlap az összeállítási és alkatrészrajzokhoz szerkesztési táblázat az anyagminőségek és a szabványos

Részletesebben

Szöveges feladatok a 100-as

Szöveges feladatok a 100-as Matematika A 2. évfolyam Szöveges feladatok a 100-as számkörben 21. modul Készítette: Szili Judit Szitányi Judit 2 matematika A 2. ÉVFOLYAM 21. modul Szöveges feladatok a 100-as számkörben MODULLEÍRÁS

Részletesebben

IKU WORLD KOCKA Játékszabály. IKU WORLD Gondolkodásfejlesztő Vállalkozás

IKU WORLD KOCKA Játékszabály. IKU WORLD Gondolkodásfejlesztő Vállalkozás NN IKU WORLD KOCKA Játékszabály MAGYAR OLASZ IKU WORLD Gondolkodásfejlesztő Vállalkozás IKU WORLD KOCKA Logikai társasjáték Egy új játék, melyet sokféleképpen lehet használni: kirakójáték, társasjáték,

Részletesebben

2016. JANUÁR 1-TŐL ÉRVÉNYES MÓDOSÍTÁSOK A DR. NONA INTERNATIONAL TÁRSASÁG MARKETING TERVÉBEN

2016. JANUÁR 1-TŐL ÉRVÉNYES MÓDOSÍTÁSOK A DR. NONA INTERNATIONAL TÁRSASÁG MARKETING TERVÉBEN 2016. JANUÁR 1-TŐL ÉRVÉNYES MÓDOSÍTÁSOK A DR. NONA INTERNATIONAL TÁRSASÁG MARKETING TERVÉBEN 1. 2016.01.01-től megszűnik: kezelési költség éves díj (800,- Ft) Konzultánsi bónusz Direktori bónusz 2. 2016.01.01-től

Részletesebben

IV.5. GARÁZS 1. A feladatsor jellemzői

IV.5. GARÁZS 1. A feladatsor jellemzői IV.5. GARÁZS 1. Tárgy, téma A feladatsor jellemzői Lineáris egyenlet, egyenletrendszer. Elsőfokú függvény. Többismeretlenes problémák megoldása egyenletrendszerek felírásával algebrai úton, illetve intuitív

Részletesebben

Scherlein Márta MATEMATIKA 1. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK

Scherlein Márta MATEMATIKA 1. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK Scherlein Márta MATEMATIKA 1. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tanmenetet három lehetséges óraszámhoz igazítva állítottuk össze. I.

Részletesebben

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Üresként jelölt CRF visszaállítása

Üresként jelölt CRF visszaállítása Üresként jelölt CRF visszaállítása Ha egy CRF vagy bizonyos mező(k) ki vannak szürkítve (üresként jelölve), akkor a megjelölés üresként eszközre kell kattintania, majd törölni a kiválasztott jelölőnégyzet

Részletesebben

A környezettan tantárgy intelligencia fejlesztő lehetőségei

A környezettan tantárgy intelligencia fejlesztő lehetőségei A környezettan tantárgy intelligencia fejlesztő lehetőségei Készítette: Pék Krisztina biológia környezettan szak Belső konzulens: Dr. Schróth Ágnes Külső konzulens: Dr. Széphalmi Ágnes A szakdolgozatom

Részletesebben

Lécgerenda. 1. ábra. 2. ábra

Lécgerenda. 1. ábra. 2. ábra Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Csecsemő- és gyermekápoló szakképesítés. 2402-06 Csecsemő és gyermek diagnosztika és terápia modul. 1.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Csecsemő- és gyermekápoló szakképesítés. 2402-06 Csecsemő és gyermek diagnosztika és terápia modul. 1. Emberi Erőforrások Minisztériuma Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes JAVÍTÁSI-ÉRTÉKELÉSI

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Ápolási asszisztens szakképesítés. 2370-06 Higiéné, munkavédelem modul. 1. vizsgafeladat. 2010. augusztus 09.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Ápolási asszisztens szakképesítés. 2370-06 Higiéné, munkavédelem modul. 1. vizsgafeladat. 2010. augusztus 09. Egészségügyi Minisztérium Szolgálati titok! Titkos! Érvényességi idı: az írásbeli vizsgatevékenység befejezésének idıpontjáig A minısítı neve: Vízvári László A minısítı beosztása: fıigazgató JAVÍTÁSI-ÉRTÉKELÉSI

Részletesebben

HENYIR felhasználói dokumentáció

HENYIR felhasználói dokumentáció HENYIR felhasználói dokumentáció A HENYIR alkalmazás segítségével az egészségügyi dolgozók foglalkoztatásával kapcsolatos adatokat tartalmazó űrlap beküldését lehet elvégezni. Az alkalmazás a www.antsz.hu

Részletesebben

DIAGNOSZTIKUS MÉRÉS A 100-AS SZÁMKÖRBEN. 8. modul

DIAGNOSZTIKUS MÉRÉS A 100-AS SZÁMKÖRBEN. 8. modul Matematika A 3. évfolyam DIAGNOSZTIKUS MÉRÉS A 100-AS SZÁMKÖRBEN 8. modul Készítette: konrád ágnes matematika A 3. ÉVFOLYAM 8. modul diagnosztikus mérés a 100-as számkörben MODULLEÍRÁS A modul célja Időkeret

Részletesebben