MATEMATIKA. 4.osztály
|
|
- Amanda Szekeresné
- 4 évvel ezelőtt
- Látták:
Átírás
1 MATEMATIKA 4.osztály
2 SZÁMOK EGYMILLIÓIG (számok olvasása, írása és összehasonlítása)
3 SZÁMOK SZÁZEZERIG 10 ezres = ezres = A legkisebb ötjegyű szám a 10000, a legnagyobb A rákövetkező száma a Megelőző rákövetkező számok:
4 Szorzás tízes egységekkel 10 3 = = = = 3000 Csak ezrest adok ki! Józsi 12 darab ezrest vett ki = Józsi András 45 darab ezrest vett ki = Teri 100 darab ezrest vett ki = András Teri
5 Józsi 44 darab százast vett ki = 4400 Csak százast adok ki! Katinak dinárra van szüksége. Hány százast ad ki a gép? 50x 100 = 5000 Terinek dinárra van szüksége. Hány százast ad ki a gép? Józsi Kati 400 x 100 = Teri
6 = = = = = = százezer kétszázezer hétszázezer egymillió legkisebb hatjegyű szám legkisebb hétjegyű szám
7 Mennyi hatjegyű szám van? x x , , , nap alatt dobban ennyiszer egy felnőtt szíve = oldalra 168 hatjegyű számot tudunk leírni. - Az összes szám leírásához: több, mint 43 füzet szükséges (a lapok mindkét oldalát használva).
8 A számok olvasása és írása KÖNNYÍTÉS: ötszázötvenezer - hatszázharminckettőezer
9 KÖNNYÍTÉS: hatszázharmincnégyezer százkilencvenhárom - ötszáznyolcvanhétezer - hetvenhat
10 Írjuk le számjegyekkel! száznegyvenezer hatszázötvennégyezer hétszáztizenkilencezer hatszázhárom háromszáznegyvenhatezer kilencszázötvennyolc
11 Hasonlítsuk össze a számokat!
12 Számoljunk egyesével től! Számoljunk egyesével tól!
13 = = egymillió legkisebb hétjegyű szám = Ha 25 ször körbejárnánk a Földet, az Egyenlítő mentén, akkor km t tennénk meg. KÖNNYÍTÉS:
14 KÖSZÖNÖM A FIGYELMET!
15
16 MATEMATIKA 4.osztály
17 SZÁMOK EGYMILLIÓIG (számok olvasása, írása és összehasonlítása) GYAKORLÁS
18 KÖNNYÍTÉS:
19 1. Olvassuk el és írjuk le a számokat szavakkal! háromszáznegyvenötezerhatszázhetven nyolcszáznyolcezer-hét kilencszázhúszezer-ötszáztíz hatszázezer-hatszáz
20 2. Gyakoroljuk a számok írását! Jelöljük meg a megközelítő helyüket a számegyenesen! hatszázezer százhuszonkétezer - háromszázhatvan kétszázhetvenhatezer - százhatvanhárom hétszáznegyvenötezer - kilencszázkettő nyolcszázhatvanezer - hetvenkilenc négyszázkilencvenkilencezer - három A fenti számok közül melyik a legnagyobb és melyik a legkisebb?
21 3. Számoljunk egyesével, kössük össze a hatjegyű számokhoz tartozó mezőket! Találjuk meg a kakukktojás mezőket!
22 4. Számoljunk ezresével! Számoljunk százasával! Számoljunk ezresével visszafelé!
23 5. Egészítsük ki! NÉMETORSZÁG SPANYOLORSZÁG OLASZORSZÁG FRANCIAORSZÁG PORTUGÁLIA HOLLANDIA EGYESÜLT KIRÁLYSÁG Németország területe, nagyobb mint Olaszországé. Spanyolország területe, kisebb mint Franciaországé. A legkisebb területű ország. Hollandia A legnagyobb területű ország. Franciaország
24 6. Melyik számról van szó? a) Hatjegyű, minden számjegye egyforma. b) Páros szám. c) A megelőző száma Ez a szám: a x a) b) A százasok és az egyesek száma páratlan. Ez a szám: a , , a) A legnagyobb hatjegyű szám megelőzője. Ez a szám: a , legnagyobb páros hatjegyű szám
25 ÖSSZEGZÉS: KÖNNYÍTÉS:
26 KÖSZÖNÖM A FIGYELMET!
27
28 MATEMATIKA 4.osztály
29 SZÁMCSOPORTOK
30 ISMÉTLŐ FELADATOK Ez egy ötjegyű szám Ez a szám: huszonötezerhatszázhetvennégy Ez a szám nagyobb, mint a Ez a szám rákövetkezője a:
31 Melyik számra gondolt Frigyes király? A gondolt szám nagyobb, mint A gondolt szám kisebb, mint Ez a szám páros. - Ez a szám nagyobb, mint A gondolt számban nagyobb az egyesek száma, mint a tizeseké.
32 SZÁMCSOPORTOK hétszáztizenháromezer - kilencszázharminc
33 A többjegyű számokat jobbról balra hármas tagolással számcsoportokra bonthatjuk. Minden számcsoportban (jobbról vizsgálva) van egyes, tízes és százas. Jelzések: egyes e, tízes T, százas SZ ezresek E, tízezres TE, százezres - SZE
34
35 hatezer - négyszázötvenhárom hetvenezer - harminchét ötszázkilencezer - hat
36 százhetvenötezer hatezer - - negyvennégy hatszáznégy hatszáznegyven Peti Zsuzsi Robi Eszti
37 Szóköz a számcsoportok között száznegyvennégyezer - harmincöt hatvanhatezer hatszázhatvanháromezer - kétszázharmincegy ötszázkétezer - kétszázötven százhetvenhatezer - négyszázöt
38 Összehasonlítás a számcsoportok segítségével
39 Összegzés SZÁMCSOPORTOK A többjegyű számokat jobbról balra hármas tagolással számcsoportokra bonthatjuk. Minden számcsoportban (jobbról vizsgálva) van egyes, tízes és százas. Jelzések: egyes e, tízes T, százas SZ ezresek E, tízezres TE, százezres - SZE
40 KÖSZÖNÖM A FIGYELMET!
1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki
Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes
91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg
Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek
Köszöntünk titeket a negyedik osztályban!
Köszöntünk titeket a negyedik osztályban! Ez a számolófüzet a tankönyv és feladatgyûjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematikaórán tanultakat. A következô
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ. Metodicko pedagogické centrum.
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát.
A számok kerekítése (Keress példákat pontos és közelítő értékek megadására!) Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát Közelítően, becsléssel adtuk
A TERMÉSZETES SZÁMOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
Köszöntünk titeket a harmadik osztályban!
Köszöntünk titeket a harmadik osztályban! Ez a számolófüzet a tankönyv és feladatgyűjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematika órán tanultakat. A következő
7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
2, a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész öt tized e) Egymillió - hét.
X 000 X00 X0 X X / /0 /00 / 000 Tízezres Ezres Százas Tízes Egyes Tize. vessző Tized Század Ezred Tízezred,, 0 7 a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész
JAVÍTÓKULCSOK Számfogalom
JAVÍTÓKULCSOK Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h) hétszázhúsz
4. évfolyam A feladatsor
Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
Kedves harmadik osztályosok!
Kedves harmadik osztályosok! Köszöntünk titeket a matematika birodalmában! 3. osztályban is folytatjuk a barangolást. Ismét új kalandok, új felfedezések és rejtvényes feladatok várnak rátok. tankönyv mellett
b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?
A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat
Matematika, 1 2. évfolyam
Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
4. modul 1. melléklet 4. évfolyam csoport. Kedves Zsuzsi!
4. modul 1. melléklet 4. évfolyam csoport Kedves Zsuzsi! Nagyon szép helyeken jártam az őszi szünetben, erről szeretnék mesélni Neked. Október 21-én Sopronba utaztunk a szüleimmel. 5 napot töltöttünk ebben
TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.
Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat
Matematika munkafüzet 3. osztályosoknak
Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a
JAVÍTÓKULCSOK I. Számfogalom
JAVÍTÓKULCSOK I. Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h)
Természetes számok. d) A kétjegyû páros és páratlan számok száma megegyezik. e) A tízes számrendszerben minden szám leírható tíz számjeggyel.
Természetes számok Természetes számok: 0; 1; 2; 3; A természetes számok halmazának jele: Tízes számrendszerben bármely természetes szám felírható tíz számjegy (0; 1; 2; 3, 4; 5; 6; 7; 8; 9) segítségével.
Óravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével.
Óravázlat Tantárgy: Matematika Osztály: BONI Széchenyi István Általános Iskola 1. e Tanít: Dr. Szudi Lászlóné Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel Kiemelt kompetenciák: Matematika
Írásbeli szorzás. a) b) c)
Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2
PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?
Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =
MATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...
Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
Mire, mennyit költöttünk? Az államháztartás bevételei és kiadásai 2003-2006-ban
Mire, mennyit költöttünk? Az államháztartás bevételei és kiadásai 2003-2006-ban Kiadások változása Az államháztartás kiadásainak változása (pénzforgalmi szemléletben milliárd Ft-ban) 8 500 8 700 9 500
48. modul 1. melléklet 2. évfolyam tanító
48. modul 1. melléklet 2. évfolyam tanító 39 + 41 40 + 40 100 19 90 9 28 + 33 81 30 80 29 90 10 30 + 31 57 + 16 26 + 47 27 + 33 6 6 12 2 12 3 24 + 12 12 + 30 7 6 8 7 56 / 8 7 4 35 70 14 14 + 14 48. modul
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros
MagyarOK 1.: munkalapok 2
1. Bemutatkozás munkalap Egészítse ki a szavakat! Maria Fernandes v _. Portugál vagyok. Portugáliában é _. Portói vagyok, de Lisszabonban é _. 54 (Ötvennégy) é _ vagyok. Spanyolul és portugálul b _. Most
Barangolás a nagyotmondók földjén Logika 3. feladatcsomag
Logika 2.3 Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Életkor: Fogalmak, eljárások: 12 16 logikai következtetés igaz, hamis állítások állítások tagadása alapműveletek alkalmazása helyi érték,
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
50. modul 1. melléklet 2. évfolyam tanítói fólia
50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport
Azon ügyfelek számára vonatkozó adatok, akik részére a Hivatal hatósági bizonyítványt állított ki
Amerikai Egyesült Államok Ausztrália Ausztria Belgium Brunei Ciprus Dánia Egyesült Arab Emírségek Egyesült Királyság Finnország Franciaország Görögország Hollandia Horvátország Irán Írország Izland Izrael
5. osztály. tört nem irreducibilis! ezért x y
1. feladat: 5. osztály Anna és Tamás egy 7x10 kisnégyzetből álló tábla csokoládén osztozik. Felváltva törnek vagy egy sort vagy egy oszlopot a táblából, amíg elfogy. Ha Anna vesz először, milyen stratégiája
MATEMATIKA 1-2. ÉVFOLYAM
A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet
Nyitott mondatok tanítása
Nyitott mondatok tanítása Sok gondot szokott okozni a nyitott mondatok megoldása, ehhez szeretnék segítséget nyújtani. Már elsı osztályban foglalkozunk a nyitott mondatokkal. Ezt én a következıképpen oldottam
A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat
Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat 4765 Csenger, Ady Endre u. 13-17.Tel.: 44/341-135, Tel./Fax.:341-806 www.csengeriskola.sulinet.hu E-mail:petofi-sandor@csengeriskola.sulinet.hu
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
ISMÉTLÉS. Megoldottad a gyakorlatokat? Folytasd!
MATEMATIKA ISMÉTLÉS Emlékezz vissza és oldd meg! Figyeld meg jól a mellékelt képen látható fát a baglyokkal, majd oldd meg a következő gyakorlatokat! 1. Írd le betűkkel a képen látható legnagyobb és legkisebb
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT a Színes matematika sorozat 4. osztályos elemeihez Tanító: Tóth Mária, Buruncz Nóra 2013/2014 tanév 00478/I Színes matematika.
Természetes számok. A számok alakja a tízes számrendszerben
Természetes számok A számok alakja a tízes számrendszerben 1.a) Írd be a helyiérték-táblázatba az alábbi számokat! 99 982 ötszázezer-ötven ötvenhárommillió-négyezer 8 830 020 négyszázezer-negyvenegy 63
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 2. évfolyam MÉRŐLAPOK 7. modul 6. melléklet 2. évfolyam 1. mérőlap tanuló/1. 1. Írd le a számokat egymás mellé! ; ; ; ; 2. Tedd a kapott számokat csökkenő sorrendbe!
A III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Fejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok a MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ standardleírás
Levelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: január 19. Feladatok
Postára adási határidő: 2017. január 19. Tollal dolgozz! Feladatok 1.) Az ábrán látható piramis természetes számokkal megszámozott kockákból áll. Az alsó szinten semelyik két kockának nincs ugyanolyan
Írásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb!
Írásbeli összeadás Háromjegyű számok összeadása 1. Végezd el az összeadásokat! 254 + 200 = 162 + 310 = 235 + 240 = 351 + 124 = 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! 213 Ft 164 Ft 222 Ft
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK
Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.
MATEMATIKA 1-2. ÉVFOLYAM
A Nemzeti Alaptantervhez Illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 Új generációs taneszközök, alsó tagozat, 4. modul MATEMATIKA 1-2. ÉVFOLYAM
PYTAGORIÁDA Az iskolai forduló feladatai 34. évfolyam 2012/2013-as tanév KATEGÓRIA P3
KATEGÓRIA P3 1. A mesebeli Barnabás bogárnak 28 lába van. Írjátok le, hogy összesen hány lába van Barnabás hat testvérének! 2. Írjátok le az összeadás eredményét: 5 + 15 + 25 + 35 = 3. A 2 és a 3 számok
Gyakorló feladatsor matematika javítóvizsgára évfolyam.docx
1) Öt barát, András, Bea, Cili, Dani, Endre versenyt fut egymással. Hányféle beérkezési sorrend lehetséges, ha nincs holtverseny? 2) Hat barát, András, Bea, Cili, Dani, Endre, Fruzsina versenyt úsznak
FOLYTATÁS A TÚLOLDALON!
ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;
Az EU kohéziós politikájának 25 éve ( ) Dr. Nagy Henrietta egyetemi docens, dékánhelyettes SZIE GTK RGVI
Az EU kohéziós politikájának 25 éve (1988-2013) Dr. Nagy Henrietta egyetemi docens, dékánhelyettes SZIE GTK RGVI A kohéziós politika jelentősége Olyan európai közjavakat nyújt, amit a piac nem képes megadni
46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY
6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 5. évfolyam eszközök tanárok részére 1. félév A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti
HOGYAN TOVÁBB IRÁNYVÁLTÁS A FOGLALKOZTATÁSPOLITIKÁBAN
HOGYAN TOVÁBB IRÁNYVÁLTÁS A FOGLALKOZTATÁSPOLITIKÁBAN DR. CZOMBA SÁNDOR államtitkár Nemzetgazdasági Minisztérium 90 80 70 60 50 40 30 20 10 0 76,3 74,1 72,9 71,4 71,0 Forrás: Eurostat TARTÓS LEMARADÁS
8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?
8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2017 MATEMATICĂ
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2017 MATEMATICĂ Test 2 Judeţul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2017 Pagina
1. A TERMÉSZETES SZÁMOK A TÍZES SZÁMRENDSZER
1. A TERMÉSZETES SZÁMOK Ebben a fejezetben átismételjük mindazt, amit az alsó tagozatban a természetes számokról és a velük végzett műveletekről tanultunk. Közben kibővítjük ismereteinket, magasabb számkörbe
Nem az a kérdés, hogy mit nézel, Kedves negyedik osztályos tanuló!
Nem az a kérdés, hogy mit nézel, Kedves negyedik osztályos tanuló! hanem az, hogy mit látsz (Thoreau) Örülünk, hogy ismét találkozunk. Ebben a tanévben már az 10000-es számkörben folytatjuk a kalandozást
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
A magyar biztosítási piac helyzete. Pandurics Ane9 MABISZ Konferencia 2015. október 14.
A magyar biztosítási piac helyzete Pandurics Ane9 MABISZ Konferencia 2015. október 14. A biztosítási piac 2015 első félévében ismét nő9. 2013 és 2014 után 2015 lehet a 3. jó év 2 Ügyfelek száma: ca. 160
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
A romániai pedagógusképzési és -továbbképzési rendszer aktuális változásai (E. szekció: A szak- és felnőttképzés aktuális jogi változásai)
MELLEARN Szeged, 2013. április 18-19. A romániai pedagógusképzési és -továbbképzési rendszer aktuális változásai (E. szekció: A szak- és felnőttképzés aktuális jogi változásai) Stark Gabriella Mária Babeş-Bolyai
1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1
TÁJÉKOZÓDÁS A SAKKTÁBLÁN Egy híres sakkozó nevét kapod, ha jó úton jársz. Írd át színessel a név betûit! P O V G P O L G J Á R D U J T U T D I I T 2. Moziba mentek a bábok. Nézz körül a nézôtéren, és válaszolj
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam FÓLIÁk tanítók részére 1. félév 1. modul 1. melléklet 4. évfolyam tanítói fólia és tanuló Kérdőív Töltsd ki a kérdőívet! Ha nem tudod valamelyik
Bevezetés a programozásba I.
Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.
Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése
Matematika munkafüzet 3. osztályosoknak
Matematika munkafüzet 3. osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted I. kötetét tartod a kezedben,
MATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
Összegek összege, Bűvös négyzet, Bűvös háromszög és egyebek
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2017/2018.
Csapat neve:.. APRÓTALPÚAK EURÓPÁBAN 1. forduló 1. feladat Elérhető pontszám: 20 pont
Csapat neve:.. APRÓTALPÚAK EURÓPÁBAN 1. forduló 1. feladat Elérhető pontszám: 20 pont FELADAT: Válasszátok ki a helyes megoldást! Minden helyes megoldás 1 pontot ér. 1. Melyik EU-tagországban alapították
A 5-ös szorzó- és bennfoglalótábla
A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd
X. PANGEA Matematika Verseny I. forduló 3. évfolyam. 1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye?
1. Melyik az az alakzat az alábbiak közül, amelyiknek nincs tükörtengelye? A) B) C) D) 2. A szorzat egyik számjegye hiányzik. Mennyi lehet az a számjegy? 27 33 33 27 = 3 0 A) 0 B) 3 C) 6 D) 9 3. Tapsifüles
MATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
Vezetéknév:... Utónév:... Osztály:... Iskola:... Mate gyűjtemény EDITURA PARALELA 45
Vezetéknév:... Utónév:... Osztály:... Iskola:...... Mate 2000+ gyűjtemény Jelen kiadvány érvényben levő anterv alapján készült, amely a Nemzeti Oktatási Minisztérium 3418/19.03.2013-as határozatszámmal
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam FÓLIÁk tánítók részére. félév 9. modul. melléklet. évfolyam tanítói fólia 9. modul 4. melléklet. évfolyam tanítói fólia 1-szer -szer 3-szer 4-szer
Magyarország versenyképessége az IKT szektorban A tudás mint befektetés. Ilosvai Péter, IT Services Hungary
Magyarország versenyképessége az IKT szektorban A tudás mint befektetés Ilosvai Péter, IT Services Hungary IT Services Hungary, a legnagyobb IT szolgáltató központ Magyarországon Tevékenységünk: Nemzetközi
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)
MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért
TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE
TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE . Az alábbi ábrákon a beszínezett rész -et ér. Mennyit ér a rajz be nem színezett része? Mennyit ér a teljes rajz? a) b) c) d) e) f). Állítsd növekvő sorrendbe
2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).
1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,
Gyakorló feladatsor matematika javítóvizsgára évfolyam.docx
1) Egy bankba ot helyezek el évre megtakarítás céljából. Mennyi pénzem lesz a év leteltekor, ha az éves kamat? 2) Egy autó értéke 7 évvel ezelőtt volt. Mennyi most az értéke, ha végig évi os értékcsökkenéssel
Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
MATEMATIKAI KOMPETENCIATERÜLET C
MATEMATIKAI KOMPETENCIATERÜLET C Matematika 5. évfolyam tanulói ESZKÖZÖK Matematika C 5. évfolyam 1. modul 1. melléklet/1. Matematika C 5. évfolyam 1. modul 1. melléklet/2. Matematika C 5. évfolyam 1.
4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
7 a) Két szám összegének 100-asra kerekített értéke 800. Mennyi lehet a számok 100-asra kerekített értékének az összege? b) Két szám különbségének
1. A term szetes sz mok Sz mk rb v t s, sz mok r sa, sz megyenes 1 Írd helyiérték-táblázatba a következő számokat! a) 2 219 812; b) 622 478; c) 7 586 720; d) 4 552 271; e) 6 955 789; f) 9 219 721; g) 5