Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan
|
|
- Barnabás Deák
- 9 évvel ezelőtt
- Látták:
Átírás
1 Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték el, és mágnestűket, iránytűket készítettek. Az iránytű a 12. században terjedt el Európában. Mágneses alapjelenségek A mágnest ha eltörjük, akkor is két pólusa marad. Elnevezése: Északi (amelyik a Föld Északi sarka felé áll be), és Déli a másik pólusa. Két mágnes pólusai vonzzák vagy taszítják egymást a következőképpen: Azonos pólusok taszítják, a különbözőek vonzzák egymást. A mágnes bármelyik pólusa vonzza a vasat. A vonzáshoz, taszításhoz nem szükséges érintkezniük, mert a mágnes körül mágneses tér alakul ki és ez hat a másik mágnesre, vagy vasdarabra. Elnevezés: tengelyen forgó kis mágnestű: iránytű A mágnes közelében levő (mágneses térben levő) vas átmenetileg mágnessé válik és a többi vasat vonzza.
2 Elektromágnes A feltekercselt vezeték; tekercs, amelyben áram folyik, rúdmágnesként viselkedik, olyan mágneses tere lesz, mint a rúdmágnesnek. Elnevezése: elektromágnes A mágneses tér erősségének mérése Mivel ha egy kis tekercsben (mérőkeret) áram folyik, az mágnesként viselkedik, ezért ha mágneses térbe tesszük, akkor elfordul mint egy kis iránytű. A forgás erősségét a rá ható forgatónyomaték mutatja.
3 Mágneses tér erőssége: Mágneses indukció (B) A mérőkerettel mérhető a mágneses tér erőssége. Elnevezése: mágneses indukció, jele B, mértékegysége T (Tesla) Kiszámítása: ahol az M a mágneses térben levő mérőkeretre ható forgatónyomaték, N a mérőkeret menetszáma, A a keresztmetszete, I a keretben folyó áram. A mágneses tér jellemzése indukcióvonalakkal A mágneses teret indukcióvonalakkal jellemezhetjük. Hasonlóan az elektromos térerősségvonalakhoz, itt is sűrűbbek a vonalak, ahol a mező erőssége nagyobb. Ha a teret egy mágnes hozza létre, akkor a vonalak a teret létrehozó mágnes Északi pólusától a Déli felé haladnak, és a vonal minden pontjában a B iránya a vonalérintőjének irányába mutat. Az indukcióvonalak a mágneses térben beálló vasreszelékek irányát mutatják.
4 Egy felületen áthaladó mágneses indukcióvonalak száma a Mágneses fluxus. Jele: Ψ (fi görög betű) Ψ=B A A a B indukcióra merőleges felület nagysága. Mértékegysége: Wb (Weber, = V s) Elektromágnes (tekercs, amelyben áram folyik) belsejében kialakuló mágneses tér, a mágneses indukció nagysága: ahol N a tekercs menetszáma, l a hossza, I a tekercsben folyó áramerősség, μ0 egy állandó szám: a légüres tér (vagy a levegő) mágneses permeabilitása. Ha a tekercsben van valamilyen anyag, pl. vas (vasmag), akkor a B értéke μ-szorosára növekszik. Ez a szám az anyagra jellemző állandó, a tekercsben levő anyag permeabilitása. Egyenes vezető körül kialakuló mágneses tér Ha az egyenes vezetőben áram folyik, akkor körülötte körkörös mágneses tér alakul ki.
5 Példák az elektromágnes alkalmazásaira: Mágneses emelődaru: Bekapcsolva mágneses lesz és vonzza a vasat, amit fel tud emelni, kikapcsolva leteszi. Távkapcsoló relé Az egyik áramkör bekapcsolásakor az abban levő elektromágnes magához húzza a másik áramkör kapcsolóját és ezzel bekapcsolja a másik áramkört. Arra használják, hogy a nagy áramú (ezért veszélyes) 2. áramkört egy kis áramú (veszélytelen) áramkör bekapcsolásával lehessen távolról bekapcsolni. Automata biztosíték Ha abban az áramkörben, amiben a biztosíték van, veszélyesen megnő az áram, akkor az elektromágneses biztosítékban levő tekercsnek megnő a mágneses tere, ami magához húz egy kapcsolót, ami kikapcsolja az egész áramkört, így megakadályozza, hogy a megnőtt áram problémát okozzon.
6 Hangszóró, fülhallgató Az elektromágnes ugyanolyan frekvenciával mozgatja az előtte levő vaslemezt (vonzza a membránt), mint amilyen frekvenciájú áram érkezik rá. A hang vagy zene áramjelét alakítja át a membrán rezgésévé. A membrán a rezgését átadja a levegőnek, és ez a rezgés így hanghullámot hoz létre.
7 Elektromotor A tekercs egy mágneskeretben van. A tekercsre kapcsolt áram hatására megpróbál beállni a mágneskeret Észak-Déli pólusai irányába, és elfordul. Ekkor az áram irányát megfordítják így továbbfordul Dél-Északi irányba, és így tovább az áram hatására folyamatosan forog a mágneskeretben. Ezt a forgást áttételekkel át lehet adni bármilyen forgó szerkezetnek (pl. kerék, keverőlapát, stb. ) Így működik pl. az elektromos autó, fúrógép, körfűrész, turmixgép, mosógép, ventilátor, körhinta, fűnyíró, Mágneses térben levő töltésre ható erő A mágneses térben mozgó töltésre a mágneses tér erővel hat. Elnevezése: Lorentz erő Kiszámítása: F = B Q v ahol B a mágneses indukció (a mágneses tér erőssége), Q a töltés nagysága, v a sebessége Ez a erő merőleges a töltés sebességére és a B irányára is. Példák Lorentz erőre: A Föld mágneses tere miatt ez az erő téríti el a Napból és az űrből a Föld felé érkező életveszélyes töltött részecskéket, és azok nem jutnak a Föld felszínére.
8 Másik példa: Mágneses térbe lőtt izotópokat a töltésük alapján a mágneses tér másfelé téríti el, így az izotópok szétválaszthatók. Mágneses térben levő áramvezetőre ható erő A mágneses térben levő vezetékre, amelyben áram folyik, a mágneses tér erővel hat. (ugyanaz, mint a mozgó töltésre ható erő, mivel a vezetékben folyó áram sok mozgó töltést jelent). Elnevezése: Lorentz erő Kiszámítása: F = B I l ahol l a vezeték hossza, B a mágneses indukció (a mágneses tér erőssége), I a vezetékben folyó áramerősség Ez a erő merőleges a vezetőre és a B irányára is. Elektromágneses indukció Két fajtáját különböztetik meg: Nyugalmi indukció: Ha tekercsben megváltoztatjuk a mágneses teret (pl. mágnest mozgatunk benne, vagy körülötte, akkor a tekercsben feszültség keletkezik, indukálódik. Az indukált feszültség és áram iránya olyan, hogy akadályozza az őt létrehozó hatást, vagyis a mágneses tér változását.
9 A nyugalmi indukció esetén az indukált feszültség nagysága: Mozgási indukció: Ha egy vezeték mozog mágneses térben, akkor a vezetékben feszültség keletkezik, indukálódik. A létrejövő feszültség: U = B l v (l : a vezeték hossza) Vagy ha nem vezetéket, hanem tekercset mozgatunk, forgatunk egy mágneskeretben, akkor is feszültség keletkezik a tekercsben. Az indukált feszültség és áram iránya itt is olyan, hogy akadályozza az őt létrehozó hatást, vagyis a mágneses tér változását. (Ez tulajdonképpen ugyanaz, mint a nyugalmi indukció, mert az csak viszonyítási rendszer kérdése, hogy mi mozog mihez képest.) Az indukció gyakorlati felhasználása pl. a dinamikus mikrofon, indukciós főzőlap
10 Önindukció: Ha egy vezetékben, tekercsben megváltoztatják az áramot, akkor megváltozik benne a mágneses tér. Ha pedig megváltozik a mágneses tér a tekercsben, akkor abban feszültség keletkezik (indukció). Vagyis összességében a tekercs áramváltozása feszültséget indukál a tekercsben. Ez a feszültség olyan, hogy csökkentse az őt létrehozó áramot. A keletkező feszültség kiszámítása: ahol a ΔI az áramváltozás, Δt az áramváltozás időtartama, L pedig a tekercs adataitól függő, a tekercsre jellemző állandó: a tekercs önindukciós együtthatója. Mértékegysége: H (Henry) A tekercs mágneses energiája: Ahol I a tekercsben folyó áram. Generátor Az indukció legfontosabb gyakorlati alkalmazása az elektromos áram előállítása. Ezt végzi a generátor: Mágneses térben forgatott tekercsben váltakozó irányú feszültség keletkezik. Forgó mozgás felhasználásával lehet így elektromos feszültséget, áramot előállítani.
11 A keletkezett feszültség és áram iránya (+ és -) azonos periódusonként változik, mert a tekercs egyik oldala a mágnesnek hol az egyik (Északi) hol a másik (Déli) pólusa előtt fordul el. A generátor elődjét a dinamót Jedlik Ányos fedezte fel.
12 Váltakozó áram A generátor által előállított feszültség nagysága és iránya szinuszosan változik. A váltakozás egy periódusának időtartamát periódusidőnek nevezik, ennek reciproka a frekvencia, ami megadja, hogy 1 másodperc alatt hány periódus változik. A váltakozó feszültség feszültség-idő függvénye: U = U0 sin(ω t) ahol ω=2 π f körfrekvencia, U0 vagy Umax a feszültség maximális értéke. Effektív feszültségnek nevezik a váltakozó feszültségnek azt az értékét, aminek megegyezik a hatása, teljesítménye egy ugyanolyan nagyságú egyenfeszültséggel. Effektív feszültség számítása a maximális értékből:
13 A váltakozó feszültség, áram teljesítménye: P=Ueff Ieff Hálózati feszültség A Magyarországon használt hálózati feszültség is váltakozó feszültség, effektív értéke V, a frekvenciája 50 Hz. Transzformátor Sok elektromos eszköz működik kisebb feszültségen, mint a hálózati feszültség. Pl. mobiltelefon 3-5 V, számítógép 5 V, hifi, erősítő-keverő különböző áramkörei, borotva, fax, TV különböző áramkörei, elektromos hangszerek (pl. szintetizátor), Az ilyen feszültség előállításához a 230 V-os feszültséget le kell csökkenteni. Ezt végzi a transzformátor. Ilyen van a tápegységekben, adapterekben, töltőkben. Két tekercsből áll. Az első, amelyre rákapcsolják azt a feszültséget, amit át kell alakítani, az a primer tekercs. A primer tekercs belsejében a rákapcsolt váltakozó feszültség, áram hatására változó mágneses tér alakul ki (elektromágnes). E mellé helyezett másik tekercsben (elnevezése: szekunder tekercs) a mágneses tér változás hatására feszültség keletkezik (nyugalmi indukció).
14 A szekunder tekercsben keletkezett feszültség (U2 vagy Usz) és a primer tekercsre kapcsolt feszültség (U1 vagy Up) aránya beállítható a két tekercs menetszámának arányával (N2 vagy Nsz, N1 vagy Np): vagy U1/U2 = N1/N2 A transzformátor teljesítménye A transzformátor mindkét tekercsében az áram teljesítménye ugyanakkora. Képletben: P1 = P2 U1 I1 = U2 I2
15 Mivel az áram hővesztesége annál nagyobb, minél nagyobb az áramerősség, ezért a nagy távolságokra célszerű kis áramon vezetni az erőművekben előállított feszültséget. Kis áramhoz nagy feszültség tartozik a transzformátorban a fenti teljesítmény képlet szerint. Tehát az erőművekben a generátor által előállított feszültséget, áramot távvezetékeken nagy feszültségre (több ezer Volt) feltranszformálva vezetik és a települések előtt egy transzformátor állomás letranszformálja 230 V-ra. Erőművek A különböző erőművek különböző energiát felhasználva állítják elő a forgómozgást (turbinát forgatnak). A turbina forgómozgása forgatja a generátort, ami előállítja a váltakozó feszültséget, áramot. Az erőművek abban különböznek, hogy mi állítja elő a forgómozgást. Pl. Hőerőmű olaj vagy szén égetésével vizet forralnak, a keletkezett nagy nyomású gőz forgatja meg a turbinát. Atomerőmű Atommag energia felszabadulásából keletkezett hővel forralják a vizet, és a keletkezett gőz forgatja a turbinát.
16 Vízerőmű A víztározó gátján lezúduló víz forgatja meg a turbinát. Szélerőmű A szél forgatja a szélkereket, ami áttétellel forgatja a turbinát. Magyarázat: Turbina: a szerkezetbe beáramló nagy nyomású gőz, vagy beáramló víz, vagy elégetett nagy nyomású légnemű üzemanyag tudja megforgatni a turbina lapátkerekeit (hasonlóan a malomkerékhez).
Elektromágneses indukció, váltakozó áram
Elektromágneses indukció, váltakozó áram Elektromágneses indukció: (tankönyv 84.-89. oldal) Ha tekercsben megváltoztatjuk a mágneses teret (pl. mágnest mozgatunk benne, vagy körülötte), akkor a tekercsben
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása A feltekercselt vezeték; tekercs, amelyben áram folyik, rúdmágnesként viselkedik, olyan mágneses tere lesz, mint a rúdmágnesnek.
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika tárgy 5. sz. laboratóriumi gyakorlatához
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása
Áram mágneses hatása, elektromágnes, váltakozó áram előállítása, transzformálása A feltekercselt vezeték; tekercs, amelyben áram folyik, rúdmágnesként viselkedik, olyan mágneses tere lesz, mint a rúdmágnesnek.
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
Transzformátor vizsgálata
A kísérlet, mérés célkitűzései: A transzformátor működési elvének megértése, gyakorlati alkalmazás lehetőségeinek megismerése kísérletek útján. Eszközszükséglet: Tanulói transzformátor készlet digitális
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan
Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb
Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb rezgőmozgást végeznek, az anyag felmelegszik. A világító volfram-izzólámpa
Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás)
Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás) 2.7. DC motor bekapcsolása 2.08. DC motor forgásirány változtatása (jelfogós kapcsolás) 2.09. DC motor forgásirány változtatás (integrált
Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A vllamos forgógépek, mutatós műszerek működésének alapja Magnetosztatka mező: nyugvó állandó mágnesek és egyenáramok dőben állandó
Elektromágneses indukció, váltakozó áram
Elektromágneses indukció, váltakozó áram Elektromágneses indukció: Ha tekercsben megváltoztatjuk a mágneses teret (pl. mágnest mozgatunk benne, vagy körülötte), akkor a tekercsben feszültség keletkezik,
VILLAMOSSÁGTANI ALAPOK
Energetikai Gépek és Rendszerek Tanszék Azonosítási szám: A 04 dr. Zsebik Albin VILLAMOSSÁGTANI ALAPOK Oktatási segédanyag Kézirat Budapest, 003. január Villamosságtan_zsa.doc www.jomuti.lpm.hu Az alább
Tanulói munkafüzet. FIZIKA 10. évfolyam 2015.
Tanulói munkafüzet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János Szakképző Iskola és ban 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2.
mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés
MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt
Fizika II. feladatsor GEFIT012B, GEFIT120B
Fizika. feladatsor GEFT01B, GEFT10B 1. Az ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 ka erősségű áram folyik be. A föld fajlagos vezetőképessége γ = 0,01/Ω m, a = 10 cm, r
Egységes jelátalakítók
6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük
GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE
GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta
A mérések eredményeit az 1. számú táblázatban tüntettük fel.
Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A
3. Térvezérlésű tranzisztorok
1 3. Térvezérlésű tranzisztorok A térvezérlésű tranzisztorok (Field Effect Transistor = FET) működési elve alapjaiban eltér a bipoláris tranzisztoroktól. Az áramvezetés mértéke statikus feszültséggel befolyásolható.
14. Elektromágneses indukció KNÁbel kidolgozása
14. Elektromágneses indukció KNÁbel kidolgozása 1. Ismertesse a mozgási indukció jelenségét! Ha homogén mágneses térben az indukcióvonalakra merőlegesen elhelyezett vezetőt a mágneses indukcióvonalakra
Fizika 10. osztály. 4. Térfogati hőtágulás: Hőmérséklet változás hatására miatt bekövetkező térfogatváltozás.
Fizika 10. osztály Definíciók: 1. Celsius-féle hőmérsékleti skála: olyan hőmérsékleti skála, melyen a 0 C az olvadó jég hőmérséklete, a 100 C a forrásban lévő vízé és a kettő közötti rész egyenlő részekre
Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ
Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos
Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata
Egyszerű áramkörök vizsgálata
A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)
33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Földrajzi helymeghatározás
A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,
11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban
TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses
Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia
Szaktanári segédlet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2. Elektrosztatika... 4 3. Egyszerű áramkörök... 9 4. Ohm
Forgómozgás alapjai. Forgómozgás alapjai
Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános
A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.
E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés
Üzembehelyezıi leírás
Üzembehelyezıi leírás MADE IN ITALY TECHNIKAI ADATOK Falra szerelve Lefedettség 15 m, 90 Mikrohullámú frekvencia 10.525 GHz Jelfeldolgozás DSP(Digital Signal Processing) Érzékelési távolság 3-15 m Érzékelési
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]
1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban
M4.1. KISFESZÜLTSÉGŰ ÁRAMVÁLTÓ MŰSZAKI SPECIFIKÁCIÓ:
Tartalomjegyzék: M4.1. Kisfeszültségű áramváltó műszaki specifikáció:...1 M4.2. MAK típusú kisfeszültségű áramváltó típusok:...2 M4.1. KISFESZÜLTSÉGŰ ÁRAMVÁLTÓ MŰSZAKI SPECIFIKÁCIÓ: Az elszámolási mérési
11 kw/715 1/min. 160 kw/10000 1/min. Dr. Emőd István. Zöllner B-220 tip. örvényáramú fékpad 3-fázisú indítómotorral 2006.02.06.
11 kw/715 1/min 160 kw/10000 1/min Zöllner B-220 tip. örvényáramú fékpad 3-fázisú indítómotorral 1_2/1 hajtás fékezés U R g R t Φ Külső gerjesztésű egyenáramú mérlegdinamó (mellékáramkörű motor) Ward-Leonard
Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/
Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK
A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot
A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.
A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Elektrotechnika II. egyenirányítás, villamos kapcsolók és készülékek. összefoglaló 2003.
Elektrotechnika. egyenirányítás, villamos kapcsolók kzülékek összefoglaló. Dr. Kloknicer mre okl. eá. vill. mérnök vill. gép kzülék ágazat artalom. Bevezet. Egyenirányítás. fázisú egyenirányító kapcsolások.
Klórérzékelı vezérlı elektronika
Klórérzékelı vezérlı elektronika Leírás: A vezérlı elektronika fı feladata a mérés során alkalmazott klórgáz-érzékelı szonda mőködıképességének megırzése a kémiailag igen aktív gáz érzékelésekor, valamint
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 006. május 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 006. május 18. 1:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM
[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek
Autóipari beágyazott rendszerek. Fedélzeti elektromos rendszer
Autóipari beágyazott rendszerek Fedélzeti elektromos rendszer 1 Személygépjármű fedélzeti elektromos rendszerek 12V (néha 24V) névleges feszültség Energia előállítás Generátor Energia tárolás Akkumulátor
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő
Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Villamosgépek. összefoglaló kivonat az Elektrotechnika III. tantárgy el adásaiból 2002. Dr. Kloknicer Imre egy. adj., okl. eá. vill.
Villamosgépek összefoglaló kivonat az Elektrotechnika III. tantárgy el adásaiból 2002. Dr. Kloknicer Imre egy. adj., okl. eá. vill. mérnök 2 Tartalom 1. Bevezetés 2. Villamos forgógépek 2.1 Egyenáramú
Háromfázisú hálózat.
Háromfázisú hálózat. U végpontok U V W U 1 t R S T T U 3 t 1 X Y Z kezdőpontok A tekercsek, kezdő és végpontjaik jelölése Ha egymással 10 -ot bezáró R-S-T tekercsek között két pólusú állandó mágnest, vagy
A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.
Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 011. május 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 011. május 13. 8:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
VASÚTI PÁLYA DINAMIKÁJA
VASÚTI PÁLYA DINAMIKÁJA Dynamics of the railway track Liegner Nándor BME Út és Vasútépítési Tanszék A vasúti felépítmény szerkezeti elemeiben ébredő igénybevételek A Zimmermann Eisenmann elmélet alapján
A gyorsulás. A dinamika alaptörvényei. A körmozgás
1. gyorsulás Ismertesse a gyorsulás fogalmát! Milyen esetekben gyorsul egy test? Magyarázza meg, mit jelent a gravitációs gyorsulás kifejezés! Ki volt az a tudós, aki először írta le a gyorsuló mozgásra
Elektromechanika. 3. mérés. Háromfázisú transzformátor
Elektromechanika 3 mérés Háromfázisú transzformátor 1 Milyen feltételezésekkel élünk ideális transzformátor tárgyalásakor? 1 A primertekercs és a szekundertekercs ellenállása egyaránt zérus (R 1 = 0; R
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. május 1. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 1. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
AZ ALPHA2 a legutolsó és a leginnovatívabb tagja a Grunfos magas minőségű keringető szivattyú családjának.
Pozíció Darab Leírás Egyszeri ár -1 ALPHA2 32-4 18 Külön kérésre Cikkszám: 9547512 GRUNDFOS ALPHA2 Az A-energiaosztályú szivattyúk következő generációja Megjegyzés! A berendezés fényképe különböző. AZ
4.Modul 1. Lecke1, Villamos gépek fogalma, felosztása
4.Modul 1. Lecke1, Villamos gépek fogalma, felosztása 4.M 1.L. 1.1, Villamos gépek fogalma Azokat a villamos berendezéseket, amelyek mechanikai energiából villamos energiát, vagy villamos energiából mechanikai
Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet...
Fizika 12. osztály 1 Fizika 12. osztály Tartalom 1. Az egyenletesen változó körmozgás kinematikai vizsgálata.......................... 2 2. Helmholtz-féle tekercspár.....................................................
A vizsgafeladat ismertetése: Szakharcászat, páncéltörő rakétatechnikai eszköz üzembentartás, páncéltörő rakétatechnikai ismeret.
A vizsgafeladat ismertetése: Szakharcászat, páncéltörő rakétatechnikai eszköz üzembentartás, páncéltörő rakétatechnikai ismeret. Amennyiben a tétel kidolgozásához segédeszköz szükséges, annak használata
(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.
1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
A HANG MINT MECHANIKAI HULLÁM
A HANG MINT MECHANIKAI HULLÁM I. Célkitűzés: Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hang érzet összefüggéseinek bemutatása. Fourier-transzformáció alapjainak
5. Mérés Transzformátorok
5. Mérés Transzformátorok A transzformátor a váltakozó áramú villamos energia, feszültség, ill. áram értékeinek megváltoztatására (transzformálására) alkalmas villamos gép... Működési elv A villamos energia
Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)
Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...
Mőszaki menedzserek részére 1. témakör
Mőszaki menedzserek részére 1. témakör "Az energia anyagi rendszerek munkavégzı képességének mértéke. SI-mértékegysége a joule (J)" Teljesítmény: az energiaátvitel sebessége, pillanatnyi érték idıbeli
Lendület, lendületmegmaradás
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Robottechnika. Differenciális kinematika és dinamika. Magyar Attila
Robottechnika Differenciális kinematika és dinamika Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2009 október 8. Áttekintés
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
Baumann Mihály adjunktus PTE PMMK
Atmoszférikus égőjű kazánok kéményméretezése Baumann Mihály adjunktus PTE PMMK 1 MSZ EN 13384-1 Égéstermék-elvezető elvezető berendezések. Hő- és áramlástechnikai méretezési eljárás. Égéstermék-elvezető
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi
1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján
xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%
Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési
Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék
Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb
Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén?
Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén? Okos hálózatok, okos mérés konferencia Magyar Regula 2012 2012. március 21. Hartmann Bálint, Dr. Dán András Villamos Energetika
Villamos hálózatok - áramkörök
Villamos hálózatok - áramkörök Az elektromágneses térnek olyan egyszerűsített leírása, amely csak az erőtér néhány jellemző mennyisége közötti kapcsolatára vonatkozik Áram Töltések rendezett mozgása villamos
Elektrotechnika alapjai
Elektrotechnika alapjai 3 mérés Villamos alapmennyiségek mérése 1 Ismertesse a villamos mérőműszerek különböző csoportosításait! 1 Csoportosítás felépítés szerint: digitális mérőműszerek; analóg mérőműszerek:
HWDEV-02A GSM TERMOSZTÁT
HWDEV-02A GSM TERMOSZTÁT 2010 HASZNÁLATI ÚTMUTATÓ A termosztát egy beépített mobiltelefonnal rendelkezik. Ez fogadja az Ön hívását ha felhívja a termosztát telefonszámát. Érdemes ezt a telefonszámot felírni
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2006. október 2. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 2. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
higanytartalom kadmium ólom
Termék Alkáli elem, 1,5 V oldal 1. az 5-ből 1. Típusmegjelölés: IEC: LR14 JIS: AM-2 ANSI: C 2. Kémiai rendszer: elektrolit-cink-mangándioxid (higany- és kadmiummentes) 3. Méretek: Ø 24.9-26.2mm, magasság:
Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet
udapest Műszaki Főiskola ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika 4. előadás Összeállította: Langer ngrid őisk. adjunktus Háromázisú hálózatok gyakorlatban
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÁRAMLÁSTAN TANSZÉK TOMPA TESTEK ELLENÁLLÁSTÉNYEZŐJÉNEK VIZSGÁLATA MÉRÉSI SEGÉDLET. 2013/14. 1.
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÁRAMLÁSTAN TANSZÉK M1 TOMPA TESTEK ELLENÁLLÁSTÉNYEZŐJÉNEK VIZSGÁLATA MÉRÉSI SEGÉDLET 013/14. 1. félév 1. Elméleti összefoglaló A folyadékáramlásban lévő,
Lécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).
3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független
A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS
A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS 1., Merev testek általános statikája mértékegységek a mechanikában a számító- és szerkesztő eljárások parallel alkalmazása Statikai