Miskolci Egyetem Gépészmérnöki és Informatikai Kar. Villamosmérnöki BSc. szak Ipari automatizálás és kommunikáció szakirány

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Miskolci Egyetem Gépészmérnöki és Informatikai Kar. Villamosmérnöki BSc. szak Ipari automatizálás és kommunikáció szakirány"

Átírás

1 Miskolci Egyetem Gépészmérnöki és Informatikai Kar Villamosmérnöki BSc. szak Ipari automatizálás és kommunikáció szakirány Jelfogók működésének regisztrálása a D55 típusú biztosítóberendezés egységeiben Szakdolgozat Készítette: Podhajeczky Péter Neptun kód: UWYSTP Miskolc, 2014

2 Tartalomjegyzék Bevezetés A jelfogós biztosítóberendezés Biztonsági jelfogó Az XJ típusú biztonsági jelfogó felépítése Az XJ típusú biztonsági jelfogó érintkezői Jelfogóegységek Hibák A mérőeszközök Múlt (és jelen) A jelen Az új mérőkészülék A zavar áramkör Az új készülék felépítése Az áramkör megtervezése A bemeneti áramkör kialakítása Mikrovezérlő kiválasztása LCD kijelző kiválasztása Energiaellátás Hőellenállás kiszámítása A kapcsolási rajz A nyomtatott áramkör tervezése és elkészítése A vezérlő program A fejlesztői környezet A program megírásának lépései

3 6.3. A készülék beüzemelése A készülék működésének lépései Továbbfejlesztési lehetőségek Összefoglalás Summary Irodalomjegyzék Mellékletek Ábrajegyzék Táblázatok Képletek Bemeneti csatornák kapcsolási rajza A mikrovezérlős áramkör és a tápellátás kapcsolási rajza A kapcsolási rajz szerkesztő program által létrehozott alkatrészlista: A nyomtatott áramkör forrasztási és beültetési oldala: A vezérlő program mérési ciklusának folyamatábrája A vezérlő program

4 Bevezetés Az élet számos területén szükség van adott folyamatok működésének automatizálására, befolyásolására. Így van ez a vasúti biztosítóberendezéseknél is, ahol szigorú biztonsági feltételeknek kell megfelelni. Azonban figyelembe kell venni, hogy a technikai eszközök időnként elromlanak. A kifejezetten technikai jellegű folyamatok esetében ezt a jogszabályok is figyelembe veszik. Persze a biztonsági kialakításuk ezeknek a rendszereknek olyan, hogy kizárják a balesetveszélyes helyzeteket. Azonban a technikai eszközök folyamatos tökéletesítésének ellenére hibák, üzemzavarok bármikor előfordulhatnak. Ezeket a hibákat sok esetben utólag nehéz rekonstruálni a kiváltó okok megismeréséhez. A vasúti biztosítóberendezéseknél alkalmazott nagyszámú jelfogók, jelfogóegységek működésük során szintén magukban hordozzák ezeket a hibalehetőségeket. A bekövetkező hibák okait a legtöbb esetben nem lehet megállapítani. A rejtett, vagy időszakosan visszatérő hibák komoly gondot jelentenek a kiváltó okok megismerésében, és a problémák elhárításában. Ezért szükséges egy olyan jelfogó működés rögzítő eszköz megtervezése, mely a jelfogók működési állapotát regisztrálja, és ezen adatok kiértékelésével a hibák feltárhatóak legyenek. Dolgozatomban a vasúti biztosítóberendezéseknél alkalmazott jelfogók, elsősorban a széles körben használt XJ típusú jelfogók működésének rögzítésére szolgáló készülék tervezését és megvalósításának lehetőségeit mutatom be. Célom hogy az új készülék egyszerű, gyors és könnyen használható legyen. Bízom benne, hogy dolgozatom jó kiindulópontja lehet egy későbbi, már továbbfejlesztett mérőeszköznek is. 4

5 1. A jelfogós biztosítóberendezés A vasúti közlekedés kezdetétől szükségessé váltak olyan berendezések alkalmazása melyek gépi úton kizárják, megakadályozzák az emberi figyelmetlenségekből adódó veszélyes helyzeteket. A kezdeti mechanikus, majd elektrodinamikus berendezéseket az elektrotechnika fejlődése elavulttá tette. Az 50-es évek közepén a svájci Integra cég licence alapján tisztán jelfogófüggéses berendezéseket kezdtek el alkalmazni, ahol minden elem (váltók, jelzők) állítása villamos úton történik, és minden függőség jelfogók vagy jelfogócsoportok működésével hozható létre. E berendezéseket nevezték szabadkapcsolású Integra berendezéseknek. A későbbiekben, a jelfogófüggéses berendezések nagyarányú elterjedése miatt fejlesztették ki 1955-ben a Dominó 55 (rövidítve D55) biztosítóberendezést, amely már bizonyos előre gyártott alapelemekből épült fel. Így lehetővé vált egyfajta gyártás-tipizálás, csökkent a helyszíni, az állomás kialakításától függő szerelési munka és az egyedi tervezés. A Dominó 55 típusú állomási biztosítóberendezés olyan fixprogrammal ellátott, egyközpontos vezérlőberendezés, melynél az ember-gép kapcsolatot nyomógombos kezelőkészülék teszi lehetővé. A bonyolult kapcsolástechnikával és a nagybiztonságú alkatrészek felhasználásával érhető el hogy egyetlen hiba nem okozhat üzemveszélyes állapotot. Az 1. ábrán a D55 típusú biztosítóberendezés funkcionális felépítése látható. A rendelkező készülék egy adott állomás vágányhálózatát jelenti, mely gyakorlatilag az ember gép kapcsolatot a szükséges nyomógombokkal, valamint visszajelentő lámpákkal valósítja meg. A jelfogós vezérlő berendezés feladata, hogy a kábelhálózaton keresztül, a szigetelt sínes áramkörök foglaltsági visszajelzései alapján állítsa a jelzőket és a váltókat. Olyan állomásokon ahol nagyobb számú tolató mozgást is végeznek, helyi kapcsoló telepítésére is lehetőség van.[1] 5

6 1. ábra: A D55 típusú biztosítóberendezés funkcionális felépítése 1.1. Biztonsági jelfogó A biztonság alapja az ismert biztonsági tulajdonságú jelfogó, és az ellenőrzött kapcsolástechnika. Feladata: egy vezérlő áramkör révén ettől galvanikusan független vezérelt áramköröket működtetni (szakítani vagy zárni). Ezért a vasúti biztosítóberendezések legfontosabb szerelvényei a jelfogók. A biztonsági jelfogók legfontosabb tulajdonságai [3]: kényszervezetett, kettős megszakítású vagy nem hegedő érintkezők, feltapadás elleni védelemmel rendelkezik, alapállását gravitációval (és kiegészítő rugóval éri el). A kényszervezetést az érintkezők egymás közötti merev kapcsolattal érik el, amelynek célja, hogy: - Akár egyetlen munkaérintkező zárása esetén a nyugalmi érintkezők egyike sem záródjon. - Akár egyetlen nyugalmi érintkező zárása esetén a munkaérintkezők egyike sem záródjon. Más szóval, a kényszervezetett jelfogókon garantálható, hogy a nyugalmi és a munkaérintkezők nem zárhatnak egy időben. 6

7 A biztonsági jelfogók fajtái: 1. osztályú jelfogó (N típusú): Árammentes állapotban elejtése garantálható. Vagyis az érintkezők anyagának a megválasztásával (pl.: szén-ezüst érintkezők) lehet garantálni, hogy semmilyen körülmények között nem hegednek össze az érintkezők. Ezért, gravitációs elvű a visszatérítés. 2. osztályú jelfogó (C típusú): Árammentes állapotban elejtése nem garantálható. Vagyis nem biztosítható, hogy az érintkezők nem hegednek össze. A visszatérítés gravitációs vagy rugós elvű. Továbbá a jelfogó elejtését ellenőrizni kell Az XJ típusú biztonsági jelfogó felépítése A D-55 típusú biztosítóberendezésekben többnyire 2. osztályú XJ biztonsági jelfogókat alkalmaznak, 1. osztályú jelfogókat csak a vonat érzékelésnél. KDR és miniatűr jelfogók is előfordulnak, de ezek csak visszajelentési és időzítési feladatokat szolgálnak, nem látnak el biztonsági funkciókat. Gerjesztésüket tekintve egyenáramúak, de hídkapcsolású egyenirányítóval váltakozó árammal is működtethető. Robusztus kivitelük miatt csak viszonylag lassú működésre képesek. Az XJ jelfogó felépítése részletesen: 1. Mágnesház 2. A mágnesházat lezáró cinköntvény 3. Vezetőléc 4. Hatszögletű excentrikus határoló 5. Lengőkar 6. Érintkező pogácsa 7. Cséve 8. Érintkezőhíd 9. Érintkezőtörzs 10. Érintkező tömb 11. Horgony 12. Horgonykar 13. Légréstartó lemez 14. Érintkezőléc 15. Csévecsatlakozás 2. ábra: Az XJ jelfogó felépítése 7

8 A jelfogó főbb tulajdonságai [2]: Függőleges működésű, súlyerő-visszatérítéses elvű jelfogó (az alaplemez legfeljebb 10 %-ot térhet el a függőlegestől), Az érintkezők kényszerkapcsolatban vannak egymással, A kettős megszakítású színezüst érintkezők berilliumbronz rugón vannak elhelyezve, az érintkezőtörzsek anyaga alpakka, A jelfogó csévék igény szerint cserélhetők, 1-3 tekercses kivitelben. A cséve tartós teljesítményfelvétele 4-8 W lehet (több tekercsnél a terhelt tekercsek összeadódnak) Környezeti hőmérséklet: C Vezérlő feszültsége: V egyenáram Vizsgálati feszültsége: 2000 Veff 50 Hz Szigetelési ellenállás: 1000 MΩ 17 gyengeáramú, vagy 9 erősáramú érintkezővel szerelhető A gyengeáramú érintkező terhelhetősége: 4 A (30 VDC), 2 A 110 VDC Az erősáramú érintkező terhelhetősége: 10 A (30 VDC), 4 A 220 VAC (cosφ=1) Garantált élettartam kapcsolás, támasznál kapcsolás Az érintkezők átmeneti ellenállása új állapotban 0,02-0,05 A jelfogó meghúzási ideje ms. Elejtési idő ms A húzott jelfogó 5 ms megszakításra még nem szakítja munkaérintkezőit Gyengeáramú érintkezők repülési ideje: meghúzásnál ms, elengedésnél 10 ms, Prellezés max 10 ms (2-7 pergés). Támaszjelfogó átváltási ideje ms 8

9 3. ábra: Érintkezők átváltási ideje Az érintkezők átváltásai (3. ábra) között eltelt idők jelentősen eltérnek attól függően, hogy épp elejtési vagy meghúzási folyamat történt. Alkalmaznak még különleges kialakítású jelfogókat is, ezek az alábbiak: Támaszjelfogó, Egyoldalas (féltámasz) jelfogó, Támasz jelfogó függetlenített érintkezőkkel felszerelve, Ikerjelfogó, Nagyérzékenységű jelfogó, Reteszmágnes (zárómágnes), Erősáramú jelfogó, Kevert érintkezős jelfogó Az XJ típusú biztonsági jelfogó érintkezői Minden jelfogó típus, a nagyérzékenységű jelfogó kivételével, 3-17 érintkezőt tartalmazhat, úgy hogy egyfajta szabályként alul a nyugalmi (ejtve záró) érintkezőpárok, felül pedig a munka (húzva záró) érintkezőpárok helyezkednek el. Az XJ jelfogók érintkezőinek számozása [3]: - Az első szám a jelfogó mezőszáma. - A második szám az érintkező sorszáma, alulról számolva. 9

10 - A harmadik szám az érintkező szorító oldalát jelzi, így 1 ha bal oldali, 2 ha jobb oldali. 4. ábra: Az érintkezők számozása Ezek a jelfogók nemcsak felépítésükben, hanem rajzjeleikben is különböznek társaiktól 5. ábra: Az XJ jelfogó általános rajzjelei A fenti ábrán látható egy 5. mezőszámú jelfogó csévéjének és az érintkezőinek általános jelölése. A jelfogó alapállapotát jelző nyíl iránya mutatja meg hogy üzem közben húzott vagy ejtett állapotban található a jelfogó. Ha ejtett állapotban van, akkor lefelé, ha húzott állapotban, akkor felfelé mutat. Az érintkező elrendezésből (4/3) megtudható hogy összesen 7 db érintkezője van, ebből 4 db húzva záró, azaz munkaérintkező (felső szám) és 3 db ejtve záró, azaz nyugalmi érintkező (alsó szám). A csévekivezetések esetében a 10

11 számpárok közül a kisebbik szám általában a cséve kezdetét, a nagyobb szám pedig mindig a cséve végét jelöli 1.2. Jelfogóegységek Az egymással szoros kapcsolatban levő jelfogókat jelfogóegységekbe szerelik, és a köztük levő villamos kapcsolatot az egységen belüli huzalozással valósítják meg. A D-55 típusú biztosítóberendezésnél csak a teljes áramkör 80-90%-a került a jelfogóegységekbe, a többi jelfogót úgynevezett szabadkapcsolásban továbbra is egyedileg kerül felhasználásra. A tipizált jelfogóegységek dugaszolható kivitelének köszönhetően, lehetővé vált a sorozatgyártás, nagymértékben egyszerűsödött a szerelés, gyorsul a hibabehatárolás és javítás. Minden jelfogóegység, két sorban összesen maximum 12 darab XJ típusú jelfogót tartalmaz, a felső sorban legfeljebb 7 érintős jelfogó szerelhető. A jelfogók és más alkatrészek azonosítása az egységen belül elfoglalt úgynevezett mezőhely számmával történik. Az egység 8 darab 12 pólusú (összesen 96) tuchel csatlakozón keresztül csatlakozik a biztosítóberendezés többi áramkörével. [3] 6. ábra: Jelfogóegység 11

12 2. Hibák Működési hibák bármikor előfordulhatnak, de ha megismerjük a kiváltó okokat, és megfelelő lépéseket teszünk ezek megszüntetésére, akkor számuk lényegesen csökkenthető. A vasúti biztosítóberendezésekben alkalmazott jelfogók nem megfelelő működéséből adódó hibák feltárása sokszor nehezen megoldható. Az esetek nagy részében, a hibakeresés több vizsgálati fázis után vezet eredményre. Jellemző probléma a sokszor időszakosan visszatérő hibák feltárása, hiszen a szemrevételezéssel, méréssel, vizsgálatokkal nem észlelt hibák, bármikor újra előjöhetnek. A jelfogók sok érintkezője közül, ha akár egy is nem megfelelően zár, vagy több érintkezőnek az együttes ellenállása bizonyos szint felett van akkor a jelfogók meghúzása nem garantálható, így a berendezés üzemképtelenné válik. Továbbá a nem látható apró repedések, kopások nem biztosítják a megfelelő mechanikai kontaktusokat, mely szintén a berendezés hibájához vezet. A jelfogókkal szemben elvárt követelmények: mechanikai alaktartás, biztonságos elektromos érintkezés, hosszú élettartam, kis átmeneti ellenállás, ellenálló képesség külső hatások ellen. Ezek a követelmények nagy részben kielégíthetőek, például megfelelő anyagú érintkezők alkalmazásával (keménység), öntisztító működéssel, légmentesen zárt helyen tárolással (külső hatások ellen), továbbá rendszeres időközönkénti felülvizsgálatokkal. Azonban ahogy a tapasztalat mutatja, pont ezeknek a tulajdonságoknak a romlása adja a hibák nagy százalékát. A legtöbb esetben az alábbi, időszakosan előforduló hibák okozzák a meghibásodásokat: érintkezők nem megfelelő zárása (pl. szennyezés) nagy átmeneti ellenállás "hidegforrasztás" 12

13 közbenső jelfogók mechanikai állapota (pl.: repedések, törések, szorulás, szakadt cséve) A jelfogó érintkezőinek nem megfelelő záródását okozhatja a pogácsa elhasználódása, mely az életkoruktól is nagymértékben függ. Az átmeneti ellenállás a jelfogó új állapotában 0,02-0,05. Ez az érték az idő múlásával csak romlani fog. Kiváltó oka lehet, akár az érintkező felületén kialakuló vékony oxidos réteg, ami néhány kapcsolás után fel- vagy áttörik, akár a poros, szennyezett érintkező, illetve a felületen létrejövő apró repedések [4]. A jelfogó egységek kialakítása zárt, mégis a porosodás elkerülhetetlen velejárója a működésnek. Az érintkezők kapcsolási megbízhatósága csökken a terhelések, és a kapcsolások számának növekedésével. Így az átmeneti ellenállás romlása miatt fellépő hő következtében az érintkezők felmelegszenek, és annál jobban, minél nagyobb az érintkezőkön átfolyó áram és minél nagyobb az érintkezési ellenállás. A következő ábrán egy beégett pogácsájú érintkező látható. 7. ábra: Beégett érintkezők Az érintkezők szennyezése kapcsán megemlíthető, hogy kialakításuk révén öntisztítóak. Maga az érintkező pogácsa nyerges kialakítású, az érintkezőhíd pedig hengeres felületű. Ez a forma biztosítja mindkettő biztos felfekvését. Az érintkezőrugó kiemelésekor az érintkező pogácsa és az érintkezőhíd érintkezési pontja elcsúszik, ezáltal az érintkező öntisztítása is megvalósul. Tehát a kontaktuson esetleg felgyülemlett szennyeződés a 13

14 működéskor lecsiszolódik. De mindez még nem zárja ki így sem a szennyeződésből (por, korom) adódó kontakthibákat. Hiszen nagyon kicsi érintkező terhelés esetén az érintkezők hiányzó öntisztulása elősegíti az érintkezés megbízhatóságának csökkenését. 1.-Érintkezőhíd 2.-Érintkező pogácsa 3.-Érintkező rugó 8. ábra: A jelfogó érintkezői A biztonsági jelfogók csévéi egy, két vagy három egymástól független tekercset tartalmaznak, amely egy jelfogónak több egymástól független helyről történő vezérlését teszi lehetővé. A cséve szakadást előidéző okok többek közt lehetnek akár anyagfáradásból eredő, vagy éppen a jelfogó működése során létrejövő rezgések okozta törések is. Ilyen, szakadás jellegű meghibásodás esetén a horgony elejt, és a jelfogó működésképtelen lesz. A következő ábrákon gyakran előforduló mechanikai hibák láthatóak: 9. ábra: Kitört mágnesházat lezáró cinköntvény 10. ábra: Elkopott vezetőléc 14

15 11. ábra: Horgonykar keresztirányú elkopása 12. ábra: Érintkezőléc kopása Figyelembe véve, hogy egyes jelfogók évesek, a tapasztalt hibák sajnos nem meglepőek. Az érthetőség szempontjából meg kell említenem a vasútnál alkalmazott Hiba és Zavar pontos jelentését. [5] Hiba : A vasúti sorompó berendezés közvetlen balesetveszélyt nem jelentő meghibásodása. Vagyis a fénysorompó berendezés működésében előforduló kisebb, nem üzemveszélyes meghibásodás. Hiba állapot okai lehetnek pl.: A fényjelzők izzóinak meghibásodása (a villogó fehér- vagy a két, felváltva villogó piros fényt szolgáltató izzó valamelyikének meghibásodása), csapórúd hiba, a sorompó berendezés helyi hálózati táplálásának megszűnése. Zavar : A vasúti sorompó berendezés közvetlen balesetveszélyt jelentő meghibásodása. Ebben az esetben a fénysorompók sötétek, ami üzemveszélyes helyzet, mivel az útátjáró felé közlekedő vonatot a közúti járművezetők számára nem jelzik. Zavar állapot okai lehetnek pl. A fénysorompó mindkét piros fényt szolgáltató izzójának kiégése, lényeges áramköri meghibásodás, bekapcsoló és oldó szigeteltsínek meghibásodása. 15

16 2.1. A mérőeszközök Múlt (és jelen) Még a 90-es évek végén került alkalmazásba a Sort2 megnevezésű működés regisztráló műszer, mely kifejezetten a jelfogós biztosítóberendezések hibakeresésére lett kifejlesztve. 13. ábra: Sort2a jelfogó regisztráló műszer Robosztus kivitele és kissé nehézkes működtetése ellenére mind a mai napig használatban van. Jellemzően a kornak megfelelő alkatrészekkel felépített, ami mára elavult technikának számit. Kialakítása révén alkalmas vonali és állomási berendezésekben használt jelfogók vizsgálatára is. Főbb paraméterei: 16 bemeneti csatorna Tápellátás: 230V, 50Hz/24V AC/DC adapter, vagy 18-55V névleges értékű egyenfeszültségről RS232-es inteface 16

17 A jelen Talán utat mutat a jövő felé a Műszer Automatika Kft. által fejlesztett eszköz, az ER-2 eseményrögzítő rendszer, mely a jelfogós berendezések működési adatainak rögzítésére, az adatok tárolására, megjelenítésére, a kiértékelés támogatására szolgál. Ez már sokkal komplexebb eszköz, mint a Sort2, és mai kornak megfelelő működési adottságokkal rendelkezik. Használatával a sorompó berendezés minden jelfogójának (húzott vagy ejtett) állapota megfigyelésre, rögzítésre kerül. Idegen berendezésből pedig jelenleg feszültségfüggetlen érintkezőket, vagy csévefeszültséget tudnak fogadni. 14. ábra: ER-2 eseményrögzítő ( Az ER-2 eseményrögzítő rendszer célja [6]: jelfogós berendezések működési adatainak rögzítése az adatok átmeneti tárolása az adatok helyből vagy távolról történő letöltése, az adatok archiválása az adatok, megjelenítése, a kiértékelés támogatása. Főbb tulajdonságai: több mint 600 csatorna folyamatos megfigyelése a rögzített adatokat 1 hónapra visszamenőleg tárolja 17

18 GSM adatátvitel soros adatátvitel beépített modem az adatokhoz több felügyeleti munkaállomás is hozzáférhet 15. ábra: ER-2 adatkapcsolati kialakítás A fenti ábrán az ER-2 eseményrögzítő rendszer adatkapcsolati vázlata látható. A rendszer előnye, hogy az adatokhoz egymástól függetlenül több felügyeleti munkaállomás is hozzáférhet. Ezeken a munkaállomásokon (számítógépeken) az adatok archiválhatók, megjeleníthetők, kiértékelhetők. Maga a működés, vagyis a tényleges jelfogó állapot érzékelés LED ek segítségével történik. Minden LED-hez tartozik egy fototranzisztor mely érzékeli a LED-ek fényét és egy processzor segítségével összegyűjti az információkat, majd továbbítja az eseményrögzítő felé. Az alábbi képen a LED-es állapotérzékelés kialakítása látható. 18

19 16. ábra: Jelfogó állapotok ellenőrzése LED-ek segítségével ( Az eseményrögzítő gép feladata az olvasópanelek által szolgáltatott adatok összegyűjtése, ideiglenes tárolásra előkészítése, ideiglenes tárolása valamint a felettes szintek (helyi illetve távoli adatlekérdezés) adatokkal történő kiszolgálása. 17. ábra: Az eseményrögzítő és az olvasópanelek bekötése Jelenleg a miskolci Igazgatóság területén csak a Gyöngyös melletti AS 110 jelű sorompó berendezésben található ilyen eseményrögzítő eszköz. Üzembe helyezésének jelentős költségei nem teszik lehetővé valamennyi sorompó berendezésben való alkalmazását. 19

20 3. Az új mérőkészülék Elsődlegesen olyan szempontokat kellett figyelembe vennem, mint, hogy mit fogok mérni, hol fogok mérni és mennyi mérőpontra lesz szükségem minimálisan. Mint ahogy korábban is említettem, egy sorompó berendezés működése számtalan áramkörből épül fel. Egy-egy jelfogó részt vesz több különálló kapcsolásban is. Persze a tökéletes regisztrálás az lenne, ha minden jelfogó húzott vagy ejtett állapotát regisztrálnánk, de ennek kivitelezése jelen esetben felesleges, hiszen csak bizonyos áramköröket, áramköri részeket vizsgálunk. A jelfogók tényleges működését (húzott vagy ejtett állapotát) kell rögzítenem. Lényegében nincs szükség arra, hogy a jelfogó csévefeszültségét is vizsgáljam, hiszen attól még, hogy megkapta a működéséhez szükséges 24V egyenáramot, a tényleges húzott vagy ejtett állapot még nem biztos, hogy be is következett. Tehát a vizsgálat célja, hogy valóban megtörtént-e ez az átkapcsolás a jelfogón. Az adatok tárolását tekintve pár másodpercnyi adat elegendő a jelfogók működésének rekonstruálására. Ahhoz, hogy egy jelfogó kapcsolását érzékelni tudjam, szükségem van egy szabad érintkező párjára, ami üzemszerűen nem vesz részt egy adott áramkörben. Ez fontos tényező, hiszen egy munkaérintkezőt nem használhatnék erre a feladatra, mivel ezek az érintkezők már foglaltak, vagyis 24V- os feszültséggel vannak terhelve. Tehát, ha erre a szabad érintkező párra továbbítok egy meghatározott értékű stabil feszültséget, akkor a jelfogó helyes működése során szakítja, illetve zárja ezt a vonalat. Így már érzékelhető a jelfogó tényleges kapcsolása, vagyis visszajelzést kapok a működéséről. Ezt a meghatározott értékű feszültséget pedig kezelhető szintre kell alakítanom, amit akár egy mikrovezérlő is képes fogadni, így az adatok tárolását is el tudja végezni. 20

21 Jelfogó Bejövő feszültség érzékelése/átalakítása Adatok feldolgozása/tárolása 18. ábra: Jelfogó érzékelési folyamat Az érzékeléshez azért van szükség stabil feszültségre, mert az akkumulátorok kapocsfeszültsége a hőmérséklet ingadozások során eltérő értékűek lehetnek. Az alábbi táblázat ezeket a feszültség változásokat mutatja, melyek gyári adatok [7]. 1. táblázat: A kimenő feszültségek változása a hőmérséklet függvényében Hőmerseklet ( c ) Kimenő feszültség (V) ,6 26,5 Eltérés (V) + - 0,2 0,2 0,0 0,5 0,5 0,5 0,5 0,5 Az áramkörökben részt vevő jelfogók számát tekintve, 8 mérési pont elegendő egy-egy áramkör vizsgálatához. Kezelés szempontjából szükségem lesz még egy kijelző eszközre, amin majd a tárolt adatokat utólagosan megtekinthetem. Erre egy normál két soros LCD kijelző megfelelő lehet A zavar áramkör Ami lényeges, és a mérés szempontjából is fontos elem, az a zavarjelző jelfogó állapotának figyelése. Hiszen ezen jelfogó állapotváltozásának hatására kell, hogy a mérési ciklus leálljon. Magának a zavarjelző áramkörnek a feladata a sorompó berendezés állapotának állandó vizsgálata és ellenőrzése. Ha ez az áramkör a berendezés működésében olyan meghibásodást tapasztal, ami üzemveszélyes helyzetet teremthetne, a működést ellenőrző R1 és R2 zavarjelző jelfogók elejtésük után érintkezőikkel a sötét jelzési képet vezérlik ki a közúti jelzőkre. 21

22 19. ábra: A zavar áramkör elvi- blokkvázlat szerinti felépítése Maga az áramkör felépítése eléggé összetett és sokrétű. A zavarjelző jelfogók alapállásban, egy tartóáramkörben saját érintkezőiken keresztül húzott állapotban vannak. Elengedésük után, az áramellátásban részt vevő érintkezőik bizonyos fogyasztók tápellátását megszakítják és így a működésképtelenséget jelző sötét jelzési kép jelenik meg a fényjelzőn.[8] Ilyen zavar jelző jelfogóktól függő áramkör pl.: Beszámláló áramkör Pontszerű vonatérzékelésnél a közelítési szakaszban lévő vonatok számát a berendezésnek meg kell tudni állapítani. A beszámláló áramkörrel a vonatok mennyisége és helyzete a közelítési szakaszban megállapítható. 22

23 Vezér áramkör Feladata, hogy a közelítési szakaszban a már beszámlált vonat hatására a közút önműködő lezárása, valamint a lezárás megszüntetése. Fény áramkör Feladata, a vezérmágnes érintkezővel meghatározott jelzési parancs végrehajtása és a fények állandó ellenőrzése. Sorompómotor áramkör Csapórudak lezárása és felnyitása. hibajelző jelfogó tartóáramköre. Ezen áramkörök alapállásban a zavarjelző jelfogóktól függő gyűjtősínről kapnak táplálást. Tehát lényegében az új regisztráló készülék jelfogó állapot rögzítésének addig kellene tartania, amíg ennél a zavarjelző jelfogónál állapotváltozás nem történik. Ha ez bekövetkezett, akkor az adatrögzítés leáll, a tárolt jelfogó állapotok pedig utólag megtekinthetők, és a vizsgált áramkörben részt vevő jelfogók kapcsolási sorrendisége rekonstruálható. Így az egyes jelfogók működési problémáiból adódó hibák kiszűrhetőek. Mivel csak közvetlenül a zavar állapot előtt bekövetkezett eseményekre (jelfogó működésekre) van szükség, így pár másodpercnyi adat tárolása elegendő a későbbi kiértékelés szempontjából. 23

24 3.2. Az új készülék felépítése 1. bemenet bemenet bemenet 8. Zavarjelző jelfogó Jelfogó egységek Regisztráló készülék 20. ábra: A mérési pontok vázlatos felépítése Az új készülék áramkörének kialakításánál a következő elvárásokat kellett figyelembe vennem: A vizsgálni kívánt berendezés 8 különböző pontjáról érkező feszültségállapotot, változásokat érzékelni tudja, A bemeneti állapotokat tárolni tudja, a tárolta adatok azonnali megtekinthetősége egy kijelző modulon, a bemenetek állapotai később, a feldolgozás során rekonstruálhatók legyenek, könnyű és egyszerű használat. Az elkészítendő készülék az alábbi részegységeket tartalmazza: Bemeneti áramkör, itt csatlakozik a készülék közvetlenül a jelfogó szabad érintkezőjére és kapja meg az érzékeléshez szükséges feszültséget. 24

25 Mikrovezérlő, a mérési folyamat automatikus végrehajtására, adatok tárolása. LCD kijelző, a mérés aktuális állapotának kijelzése, a tárolt adatok megtekintése. 2 db nyomógomb, a mérés indítása, valamint a tárolt adatok léptetése. Tápegység a készülék tápellátása mind a jelfogó érzékelés, valamint a mikrovezérlő és LCD kijelző részére. A készülék blokkvázlata a következő ábrán látható: Nyomógomb LED LCD kijelző Mikrokontroller Bemeneti csatlakozó sáv Tápegység 21. ábra: Az új készülék blokkvázlata 25

26 4. Az áramkör megtervezése Ebben a fejezetben szót ejtenék a feladat megvalósításához szükséges egységek tervezéséről. Bemutatásra kerül az egyes alkatrészek kiválasztásának szempontjai, valamint a kapcsolási rajz tervezésének lépései, komplexitása A bemeneti áramkör kialakítása Ahogy korábban is említettem, 8 csatlakozási pontra lesz szükségem az érzékeléshez. A bejövő jelek érzékelését, illetve kezelhető szintre alakítását a mikrovezérlő részére, optocsatolókkal oldom meg. Erre a feladatra a 4N25 típusú optocsatolót választottam. Fontosabb paraméterei: bemeneti áram: max 60 ma bemeneti feszültség: max 3V nyitó feszültség: 1,2 V kimeneti feszültség: max. 30V kimeneti áram: max. 150mA DIP6 tokozás 22. ábra: 4n25 optocsatoló A jelfogó felől érkező jel, ebben az esetben a 12V-os feszültségszint tönkretenné az optocsatolót. Így egy előtét ellenállást kell alkalmaznom. Ennek számítása: 26

27 Bejövő feszültség: 12V Optocsatoló nyitófeszültsége: 1,2V Optocsatoló nyitóárama: 20mA Az képlettel (1) meghatározom a szükséges ellenállás értéket: Tehát 510 -os előtét ellenállásokat fogok alkalmazni. A jelfogó érzékelés kialakítása: 23. ábra: Egy bementi csatorna kialakítása A fenti ábra egy mérőpont csatlakozását ábrázolja. Tehát ha egy szabad érintkező pár egyik végére meghatározott értékű stabil feszültséget (legyen ez most 12V egyenfeszültség) továbbítok, az érintkező pár másik kivezetését pedig földpontra kötöm, akkor a jelfogó a kapcsolását követően, az optocsatoló kimeneti pontján már érzékelhető, hogy ez az átkapcsolás megtörtént, a jelfogó működik. Az R2-es ellenállás szerepe, hogy az optocsatoló kimenetét a pozitív tápfeszültségre húzza fel. A D01 jelű dióda az optocsatoló védelmére szolgál. 27

28 Mivel analóg optocstolóról van szó, a kimenetét egy felhúzó ellenállással a mikrovezérlő számára kezelhető jelszintre alakíthatjuk. Így a működés során, ha az optocsatolóban levő tranzisztor nyitott állapotban van (vezet), tehát a kimenetét földre húzza, akkor logikai 0 jelenik meg a kimeneten. Ha pedig zárt állapotú (nem vezet), tehát a kimenetet a pozitív tápfeszültségre húzza fel, akkor logikai 1 a kimeneti jelszint. Ezt a jelszintet pedig a mikrovezérlő már kezelni tudja Mikrovezérlő kiválasztása A mikrovezérlő kiválasztásánál figyelembe vett főbb szempontok: -Nagyszámú port: -8 csatorna fogadásához, -LCD kijelző vezérléshez, -valamint a led meghajtásához és a nyomógombok beolvasásához. -elegendő memória az adatok feldolgozására, tárolására Továbbá a könnyű beszerezhetőség és az alacsony ár sem mellékes. Jelen esetben egy 40 lábbal rendelkező mikrovezérlő lenne megfelelő a nagyszámú csatorna, illetve a csatlakozó egységek miatt, továbbá a későbbi fejleszthetőséget is figyelembe véve. Mindezeket szem előtt tartva, a Microchip cég által fejlesztett igen népszerű PIC mikrovezérlők közül válogattam. Mind a PIC16 és PIC18 termékcsaládban már találhatóak nagyszámú I/O portal és többféle támogatással rendelkező mikrovezérlők. A PIC18 as sorozat tudásában is jelentősen fejlettebb elődeinél. Akár I/O lábat, több 8/16 bites számláló/időzítőt, fejlettebb A/D átalakítót, PWM modult is tartalmaz. Megtalálhatók akár a CAN, USB, Ethernet kommunikációkhoz szükséges modulok is. A választás végül ebből a sorozatból a PIC18F4520- ra esett. 28

29 24. ábra: A PIC18F4520 lábkiosztása Legfontosabb paraméterei [9]: Program memóriamérete: 32 kb Programmemória típusa: Flash RAM mérete: 1536 bájt Tüskék száma: 40, ebből 36 db I/O kivezetés Maximális frekvencia: 40MHz Jellemző tápfeszültség: 4,2 5,5 V Maximális működési hőmérséklet: +85 C Min. működési hőmérséklet: -40 C Maximális frekvencia: 40MHz Data EEPROM: 256 bájt A nagy lábszámú mikrovezérlőnek köszönhetően könnyedén kioszthatóak a feladatok a portok között. Egy-egy láb többféle funkciót is képes ellátni. A lábak meghatározott feladatát a vezérlő program elején kell majd inicializálnom. 29

30 2. táblázat: A mikrovezérlő portjainak kiosztása Áramköri funkció Jelölése A port iránya Mikrovezérlő port Jelfogó érintkező érzékelés CS1 bemenet porta,0 Jelfogó érintkező érzékelés CS2 bemenet porta,1 Jelfogó érintkező érzékelés CS3 bemenet porta,2 Jelfogó érintkező érzékelés CS4 bemenet porta,3 Jelfogó érintkező érzékelés CS5 bemenet porta,4 Jelfogó érintkező érzékelés CS6 bemenet porta,5 Jelfogó érintkező érzékelés CS7 bemenet portd,0 Jelfogó érintkező érzékelés CS8 bemenet portd,1 LCD vezérlő busz RS kimenet portc,0 LCD vezérlő busz RW kimenet portc,1 LCD vezérlő busz E kimenet portc,2 LCD adat busz D4-D7 be/kimenet portd,4 portd,7 Nyomógomb (indítás, léptetés) G1 bemenet porte,1 LED állapotjelzés LED kimenet porte,0 Kristály (órajel) OSC1-OSC2 bemenet porta,6 porta,7 ICSP* MCLR bemenet porte,3 (MCLR) ICSP* PGD-PGC bemenet portb,6 - portb,7 *Az ICSP: In-Circuit Serial Programming, azaz az áramkörön belüli programozás rövidítése LCD kijelző kiválasztása A mérési adatok kijelzéséhez egy két soros 16 karakteres kijelző modult használtam fel. A 16 karakter elég a megjelenítendő adatokat tekintve, hiszen a kijelző felső sorában a csatornák számát szeretném kiíratni, az alsó sorában pedig a csatornákhoz tartozó állapotok kerülnek. Továbbá az alsó sorban egy számláló is kijelzésre kerül, ami a léptetések számára lesz fontos. A kiválasztott típus a SCM1602, amely HD44780 vezérlővel van ellátva, mint minden ilyen típusú LCD kijelző. Nagyon elterjedt, könnyen beszerezhető és egyszerű a használata. A 14 kivezetésből 3 a tápcsatlakozás, 3 a vezérlő és 8 az adatvonal. 30

31 25. ábra: Az SCM1602 lábkiosztása 3. táblázat: LCD kivezetések és azok funkciói Jelölés VSS VDD VEE RS RW E D0 D1 D2 D3 D4 D5 D6 D7 Funkció Test Pozitív tápfeszültség Kontraszt szabályzó Regiszter választó (parancs/adat) Olvasás/Írás (adatáramlás választás) Engedélyező jel Adatvonal 0.bit Adatvonal 1.bit Adatvonal 2.bit Adatvonal 3.bit Adatvonal 4.bit Adatvonal 5.bit Adatvonal 6.bit Adatvonal 7.bit 4.4. Energiaellátás A kiválasztott alkatrészek, eszközök ismeretében a tápegység már könnyen méretezhető. A mikrovezérlő és az LCD modul +5V-os tápfeszültséget igényelnek. Az optocsatolók a megfelelő előtét ellenállásokon keresztül a +12V-os tápfeszültségről működnek. Az összes fogyasztásuk a 4. táblázatban kerül részletezésre. Figyelembe kell venni, hogy a vasúti biztosítóberendezések áramellátásáról biztosítható legyen a működéshez szükséges feszültség. Minden biztosítóberendezésben található 230V-os hálózati csatlakozó, így a táplálás történhetne 230V, 50Hz/24V AC/DC adapter alkalmazásával is. Viszont figyelembe véve az esetleges hálózati feszültség kimaradásokat, így ezt a lehetőséget elvetettem. Az áramkör stabil, folyamatos működéséhez a 31

32 tápfeszültséget a sorompó szekrényekben elhelyezett 2db 12V-os akkumulátorról fogom biztosítani. Mivel minden alkatrészt a későbbiekben a rendszertáp feszültségéhez kell majd illeszteni a készülék működéséhez szükséges feszültség szinteket különböző módokon állítom elő. Jelen esetben két egyszerűbb feszültség stabilizátoros megoldást alkalmazok a 12V, illetve az 5V előállításához. 4. táblázat: A fogyasztás összesítése Fogyasztó megnevezése Fogyasztása [ma] Mikrovezérlő 25 LCD 1,5 LED 20 Optocsatoló (8 db) 20 x 8 = 160 Összesen: 206,5 Gyűjtés az alkatrészek adatlapjai alapján. Tehát minimum 210 ma terhelhetőségű tápra lesz szükségem, de 300mA-re méretezem a tápegységet. Az analóg feszültségszabályozók egyszerűek de nagy hátrányuk hogy a feszültségkülönbözetet hő formájában leadják a környezetűkbe és ezért melegednek. A felesleges villamos teljesítményt hő teljesítménnyé alakítják át, amelyet valamilyen módon át kell adni a környezetnek. Ilyen esetekben hűtőborda alkalmazása szükséges, amelyet méretezni kell. A kiszámításhoz először is szükségem van a félvezetők fogyasztására Az 5V-os feszültségszabályzóra eső fogyasztás: Ube= 12V Uki= 5V Udrop= Ube-Uki= 12V 5V= 7V Mivel az 5V-os tápfeszültségről működik a mikrovezérlő, az LCD és a LED, az összes áramuk: 46,5mA 50mA 32

33 Így a teljesítmény: (2) P=U*I= 7V*50mA= 350mW. Ebben az esetben elhanyagolható a hűtőborda alkalmazása. A 12V-os feszültségszabályzóra eső fogyasztás: Ube= 27V Uki= 12V Udrop= Ube-Uki= 27V 12V= 15V I= 300mA P=U*I= 15V*250mA= 4,5W Itt már jelentősebb fogyasztás tapasztalható Hőellenállás kiszámítása. Ahhoz, hogy pontosan méretezni tudjuk a hűtőbordát, szükségünk van pár hőtani számításra. Ennek szemléltetése az alábbiakban következik. 26. ábra: Hőtani modell 33

34 θj = p-n átmenet hőmérséklete θc = tok hőmérséklete θa = környezet hőmérséklete Rth G= saját belsőhőellenállás Rth K= hűtőborda hőellenállása P = hőteljesítmény Amire nekem szükségem van, az az RthK értéke, vagyis a tranzisztor és környezete közötti hőellenállás. Ezt az alábbi képlettel számítom ki: (3) így θj = 125 C (maximális érték, adatlapból) θa = 25 C (adatlapból) P= 4,5W Rth G = 5C /W (adatlapból) Rth K =((125C - 25C )/4,5W)-5C /W = 17,2 C /W Tehát a szükséges hűtőborda hőellenállása: 17,2 C /W Az érték alapján egy adott gyártó adatlapján már könnyen kiválaszthatjuk a megfelelő hűtőborda méretet. 34

35 5. A kapcsolási rajz A tervezéshez és a kapcsolási rajz elkészítéséhez a Labcenter Electronics cég által fejlesztett Proteus 7.4-es verziójú programcsomagját használtam, amellyel már korábban is pozitív tapasztalatokra tettem szert. A programcsomag az ISIS (Intelligent Schematic Input System) kapcsolási rajz szerkesztő modul, és az ARES (Advanced Routing & Editing System) nyomtatott áramkör tervezőmodulokból áll. Az alkalmazás felhasználóbarát kezelőfelületet biztosít a kapcsolási rajz, valamint az alkatrészekhez tartozó saját könyvtárak létrehozása és kezelése kapcsán. A programban található PROTEUS VSM modellkönyvtár lehetővé teszi a mikrokontrollerek modellezését, a betöltött programjuk futtatását és tesztelését. Ez a modellkönyvtár tartalmazza többek között a népszerűbb processzor családokat, mint például, PIC, AVR, 8051, stb. Az alkalmazott mikrovezérlők szimulációja során futtatható assembleren kívül még C, vagy BASIC fordítóval készült program is. A Proteus újabb verzióiban már megtalálható akár az MSP430 mikrovezérlő is. Az áramkörtervezőn belül a prospice szimulátor tartalmazza az analóg és digitális alkatrészeket, valamint lehetőséget biztosít azok animálására. Az egybe integrált kapcsolási rajz szerkesztő és a szimulátor moduloknak köszönhetően egy elvi rajz alapján már ki is próbálható az áramkör. A beépített alkatrészkönyvtár több ezer alkatrészt tartalmaz, így könnyen kiválaszthatjuk a nekünk megfelelőt. Ha mégse sikerülne megtalálni a megfelelőt, vagy épp a paraméterekben (tokozás, lábforma, stb.) nem egyeznek a nekünk szükségessel, akkor akár magunk is létrehozhatjuk, megrajzolhatjuk. Végül a megfelelően elkészített kapcsolási rajzból már könnyen elkészíthető az ARES programmodul segítségével a nyomtatott áramköri rajz. 35

36 27. ábra: ISIS kapcsolási rajz szerkesztő modul, az elkészült kapcsolási rajzzal A tervezés során új alkatrész létrehozására nem volt szükség, mert valamennyi felhasználandó elem megtalálható volt a programban. Opcionálisan elhelyeztem egy kristály-oszcillátort, külső órajel generálásához, ha esetleg szükség lenne rá. Továbbá a hozzá tartozó két 33pF-os kondenzátort. A mikrovezérlő MCLR (Master Clear) lábára egy későbbi nyomógomb bekötésének is lehetőséget biztosítottam. Továbbá a mikrovezérlő felprogramozásához szükséges ICSP csatlakozónak is szükség volt egy 5 vezetékes port kialakítása. A kész kapcsolási rajzok a felhasznált alkatrészek listájával együtt, az 1. számú mellékletben találhatóak A nyomtatott áramkör tervezése és elkészítése Az ISIS kapcsolási rajz szerkesztő modulból, a "Tools/Netlist to ARES" menüpont segítségével már rögtön át is léphetek az ARES nyomtatott áramkör tervező modulba. A tervező program nagy előnye, hogy egy gombnyomásra létrehozza a kötéslistát, amely 36

37 tartalmazza az áramkörben található alkatrészek listáját és a közöttük fennálló kapcsolatokat, összeköttetéseket. Továbbá akár 16 rétegen is lehet tervezni az alsó és felső rétegeken kívül. Az alkatrészek elhelyezésénél lehetőség van automatikus elrendezésre és huzalozásra, bár ebben az esetben is érdemes kézzel kijavítani a huzalozást. Mivel nem nagy áramkörről van szó, elég egy rétegen terveznem. Az esetleges átkötések pedig megoldhatók a felső (Top) rétegen. 28. ábra: Az ARES nyomtatott áramkör tervező, az elkészült áramkörrel Az alsó réteg (forrasztási oldal) és a felső réteg (beültetési elrendezés) a 2. számú mellékletben tekinthető meg. A nyomtatott áramköri panel elkészítéséhez a fotótechnikai eljárást alkalmaztam, még ha kissé körülményesebb is mintha vasalással készíteném. Az eljárás lényege, hogy a megtervezett vezeték mintázatot fekete-fehér lézer nyomtatóval, egy átlátszó (írásvetítő) fóliára kinyomtatom. Itt ügyelni kell, hogy a nyomat a lehető legjobb minőségben kerüljön 37

38 a fóliára az esetleges hibák elkerülése miatt. Csak lézer nyomtatóhoz alkalmazható fóliát szabad használni, a magas hőmérséklet miatt. A következő lépésben alaposan megtisztítom a már korábban méretre vágott nyomtatott áramköri lemezt, hogy ne maradjon rajta semmilyen szennyeződés. Majd ezt a megtisztított, megszárított lemezt Positiv 20 fényérzékeny lakkal lefújom, ügyelve arra, hogy egyenletesen szétterüljön a felületen. Itt fontos megemlíteni, hogy mivel fényérzékeny lakkról van szó, a helységet be kell sötétíteni. Az önszáradási folyamat megközelítőleg 20 óra, így erre az időre egy lezárt dobozban fénymentes helyre tettem. A száradás után következik, hogy a nyomtatott áramköri lemez fényérzékeny felületére helyezem a kinyomtatott fóliát, amire egy üveglapot helyezek. Az üveglapra azért is van szükség, hogy a fóliát leszorítsa, továbbá, hogy az UV fényt átengedje. A megvilágításhoz elegendő egy 80 W-os UV lámpa, amivel nagyjából 15 percig kell világítanunk a panelt. Ha ez is megvan, jöhet az előhívás. Maga az előhívó folyadék összetétele 7g nátrium-hidroxid és 1 liter ioncserélt víz. A nyák panelt belehelyezzük ebbe az előhívó folyadékba (lakkréteggel felfelé), és néhány másodperc elteltével az áramkör mintázata már jól láthatóvá válik. Ezután következik a maratás. A marató folyadék összetétele: 3 egység víz, 2 egység 25%-os sósav és 1 egység 35%-os hidrogénperoxid. Az előhívott nyák lemezt szintén lakkréteggel felfelé belehelyezzük ebbe a folyadékba, majd lassú, de folyamatos mozgatással, ami nagyjából pár percig tart, áramoltatjuk ezt a folyadékot. Ha ez is megtörtént, jöhet az öblítés és szárítás. A kész panel a beültetett alkatrészekkel a 2. számú mellékletben tekinthető meg. 38

39 6. A vezérlő program A programot, a változókat (jelfogónként a csatlakozások) és a tárolt adatokat (jelfogók húzott/ejtett állapotát) tartalmazó tömböt, az összetett adatstruktúra miatt célszerűbb és áttekinthetőbb C programnyelven megírni. A program megírásához szükséges a mikrovezérlő portjainak a kiosztása, ami 3. táblázatban látható A fejlesztői környezet A programot a Microchip cég által fejlesztett és kifejezetten a PIC mikrovezérlők számára készült MPLAP IDE (Integrated Development Environment) fejlesztői környezetben készítettem, mely többek között tartalmazza a szövegszerkesztőt a program megírásához, az assemblert a megírt program lefordításához, és még szimulációra is lehetőséget ad. Továbbá maga a program ingyenesen hozzáférhető a cég honlapján (magánszemélyeknek). Maga a program beégetése egy ICD2 (In Circuit Debugger) égetővel történt a mikrovezérlőbe, ICSP (In-Circuit Serial Programming) csatlakozón keresztül, ami így lehetővé tette, hogy a mikrovezérlőt ne kelljen kiemelnem az áramkörből. 29. ábra: MPLAB fejlesztői környezet 39

40 Az MPLAB előnyei közé tartozik még, hogy a programból adhatjuk ki az égetési parancsot. Mivel az ICD2 t is a Microchip cég fejlesztette ki az MPLAB fejlesztői környezethez, így minden PIC mikrovezérlő típust kezelni tud A program megírásának lépései Első lépésként a nyomógombhoz és az állapotjelző ledhez létrehoztam egy nevet, mellyel a programban később hivatkozhatok. Ez a lednél a led, a nyomógombnál a g1 #define led PORTEbits.RE0 #define g1 PORTEbits.RE1 Mivel a jelfogó érzékelésnél sok azonos típusú adatot szeretnék eltárolni, a legegyszerűbb megoldás a tömbök használata. A tömbök segítségével egy memóriablokkban egymás után sok egyforma típusú értéket tárolhatok, az elemekhez pedig a tömb indexelésével férhetek hozzá. Szükségem van 7 darab 35 változót tartalmazó tömbre, mivel itt lesznek tárolva a jelfogó állapotok. Továbbá még segéd változókat is létrehozok. A tömb mérete persze növelhető, jelenleg ez a 35 változónak fenntartott hely, 70 ms-os mintavétel mellett, közel két és fél másodpercnyi időt képes tárolni. A tömb elemei unsigned char típusúak, és méretük 1byte. Így egy tömb mérete a memóriában 35 byte, összesen pedig 245 byte-ot foglal le a 7 tömb. unsigned char _1[35],_2[35],_3[35],_4[35],_5[35],_6[35],_7[35],i,j,k,c,stop; Következő lépésben beállítom a be- és kimeneteket, valamint azok alapállapotát, illetve az egyes port lábak alapállapotát. Mindezt egy Setup nevű függvényben, amire a főprogramban hivatkozhatok. A porta valamennyi lábát bementre állítom, hiszen ide csatlakozik a jelfogó érzékelés 6 csatornája, valamint a kristály két kivezetése. A portb PGD-PGC lábai bemenetek, a többi kimenet. A portc kimenet, mert itt csak az LCD modul vezérlő jelei kerültek bekötésre. A portd első két lábára a megmaradt két jelfogó érzékelés került, amik bemenetek, a többi kimenet. Végül a porte lábait állítom be, ahol a két nyomógomb található. void setup (void) TRISA = 0b ; //bemenet 40

41 TRISB = 0b ; TRISC = 0b ; TRISD = 0b ; TRISE = 0b ; //PGC,PGD bemenet //kimenet //kimenet, kivéve a két jelfogó érzékelés //kimenet, kivéve a két nyomógomb LATA = 0xFF; //kezdeti értékek megadása LATB = 0b ; LATC = 0; LATD = 0b ; LATE = 0b ; ADCON0 = 0; // A/D átalakítók kikapcsolása ADCON1 = 0b ; //ADCON1 regiszter alsó 4 bitjének digitálisra állítása HLVDCON = 0; OSCCON = 0xFF; // A modul kikapcsolása // Órajel beállítása 16 MHz-re Egy utasításciklus (= 4 órajelciklus) hossza függ az órajel frekvenciájától, vagyis: t utasítás = 4 / f órajel Így a 16 MHz-re beállított órajelnél 1 utasításciklus hossza: 250 ns. A késleltetések beállítása pedig a 7 csatorna beolvasásához: Delay10KTCYx(14); //35ms A főprogram elején, a megírt Setup függvény meghívása után a tömbök értékeit 0-ra állítom, hogy üres állapotban kerüljenek be az adatok. Az LCD modult pedig 4 bites módra váltom. void main( void ) setup(); for (i = 0; i == 34; i++) // tömbök feltöltése 0 értékre 41

42 _1[i]=0; _2[i]=0; _3[i]=0; _4[i]=0; _5[i]=0; _6[i]=0; _7[i]=0; OpenXLCD( FOUR_BIT & LINES_5X7 ); // 4 bites módra váltás Maga a csatornánkénti beolvasás, vagyis egy tömb feltöltése a következő függvénnyel valósult meg: if (PORTAbits.RA0 == 0) _1[i]=1; putrsxlcd("1"); else _1[i]=0; putrsxlcd("0"); Tehát, ha a porta 0-s lábának értéke 0, vagyis az adott jelfogó érintkezője zárt állapotban van, akkor a kijelzőn 1 -es érték jelenik meg. Így a tömbbe is 1 -es érték fog kerülni. Ellenkező esetben pedig 0 érték lesz eltárolva. Erre a fordítottságra a felhúzó ellenállások miatt volt szükség, mert az optocsatoló kimenete nyitott állapotban 0, zárt állapotban 1. A további 6 tömb feltöltése is ugyanígy zajlik le. A tömbök feltöltése addig tart, amíg a zavarjelző jelfogó állapota meg nem változik. Ezután kerülnek kiírásra lépésenként az adatok a tömbökből. if (_1[i] == 1) putrsxlcd("1"); else putrsxlcd("0"); A teljes programot a 4. számú mellékletben csatolom. 42

43 6.3. A készülék beüzemelése A dolgozat elkészültéig a készülék ténylegesen, a sorompószekrényekben nem került kipróbálásra. Elsősorban még további tesztüzemre van szükség, továbbá a hiányzó műszerdoboz miatt. A működést, és a jelfogó érzékelést egy egységvizsgáló állványon teszteltem le. A készülék tápcsatlakozójára 24V-ot adtam az áramkörnek, a kívánt két feszültség szint (+12V és +5V) a két feszültségszabályzó kimenetén mérhető volt. A jelfogók csatlakoztatása után az egységvizsgáló állványt is üzembe helyeztem, ami egy meghatározott áramkör kapcsolási sorrendjét szimulálta. Ezután indítottam el a mérést. Az LCD kijelzőn az adott csatornára kötött jelfogók állapota (húzott/ejtett) megjelent. Mivel a zavar jelfogó állapotváltozására áll le a mérés, jelen esetben ezt a kivezetést elegendő volt földponthoz érintenem. A mérés a várakozásoknak megfelelően le is állt. Az utolsó mért jelfogó állapotok a kijelzőn maradtak. A nyomógomb léptetésével pedig a tárolt állapotok a kijelzőn megjelentek A készülék működésének lépései A készülék bekapcsolását követően az LCD kijelző felső sorában megjelenik a 8 figyelt csatorna jelzése, valamint a MÉRÉS felirat jelzi, hogy készen áll a mérés indítására. 30. ábra: A készülék bekapcsolását követő kezdő felirat 43

44 A nyomógomb megnyomására a mérés elindul. A vörös LED folyamatos villogása jelzi, hogy mérési folyamat zajlik, illetve a kijelző alsó sorában az éppen aktuális jelfogó állapotok láthatóak. Ez a folyamat mindaddig tart, amíg a zavarjelző jelfogó állapota meg nem változik. Ha ez bekövetkezik, a mérés leáll. Ha a mérés leállt, a kijelző alsó sorában a tárolt adatok megjelennek. A nyomógomb megnyomásával pedig a jelfogónkénti 35 állapot léptethető egyesével. Így információt adva azok működéséről. 31. ábra: A mérés leállása után megjelenő jelfogó állapotok 44

45 7. Továbbfejlesztési lehetőségek Jelen dolgozat számos továbblépési lehetőséget biztosít akár a kezelő program, akár az áramkör felépítését tekintve. A kezelő program szempontjából lényeges lehet a felhasználóbarátabb kialakítás, mely például egy menürendszer megtervezését is magában foglalhatná. Persze elsősorban az áramkör átalakítása lehet lényeges szempont, akár a csatornák számának növelésével, vagy pedig a kialakításuk változtatásával. A csatornák számának növelésével az alkatrészlista is növekedni fog, így a nyomtatott áramköri panel mérete is, de a már megismert fotótechnikai nyomtatott áramkör készítéssel ezek a méretek is bizonyos határok közt tarthatóak. Az alkatrészek számának csökkentése megvalósítható lehet például, ha a jelenlegi 4n25 típusú optocsatolót egy viszonylag újabb típusra cserélném, ami már digitális kimenettel rendelkezik, így a mikrovezérlős csatlakozásnál már nincs szükség felhúzó ellenállásokra. Egy VO2630 típusú optocsatoló például több szempontból is megfelelő lehet, hiszen két csatornás be/kimenettel rendelkezik, és a kimenete is digitális, valamint a méretét tekintve is kevesebb helyet igényel. A tápellátás szempontjából a 12V-os analóg feszültségszabályzó, a magas teljesítményfelvétele miatt helyettesíthető akár egy kapcsolóüzemű DC-DC konverterrel is. De persze mindez főleg már anyagi kérdés. 45

46 Összefoglalás A szakdolgozatom elején ismertettem a vasúti biztosítóberendezéseknél széles körben alkalmazott XJ típusú biztonsági jelfogót. Feltártam a jelfogóknál leggyakrabban előforduló hibákat. Ebben nagy segítségemre volt az egység- és sorompójavító csoportok, valamint a vidéki, műszaki felügyeletet ellátó kollégák szakmai, gyakorlati ismerete. Megfogalmaztam azokat az alapvető tulajdonságokat, amiket egy új állapotrögzítő eszköznek tartalmaznia kell. Itt lényeges szempont volt az egyszerű kezelhetőség valamint, hogy a hibák akár már a helyszínen feltárhatóak legyenek. Az áramkör kialakításánál kénytelen voltam anyagi szempontokat is figyelembe venni, mivel mindenképpen szerettem volna egy teszt panelt elkészíteni. Így például lemondtam a lényegesen költségesebb digitális optocsatolók alkalmazásáról. de a jelenleg használt analóg optocsatolók is megfelelőek a működés szempontjából. A tervezés során még behatóbban megismerkedtem a Proteus áramkör és nyomtatott áramkör tervező programcsomaggal, melyben alkalmam volt új alkatrész létrehozására is. De utólag ezt az eszközt nem használtam fel, mert a cég honlapjáról letölthető volt a nyomtatott áramköri tervhez szükséges tokozás. A kivitelezés során megismertem a fotótechnikai nyomtatott áramkör készítés technikáját, ami lényegesen pontosabb eredményt ad, mint a vasalásos eljárás. Bonyolultabb és kicsit költségesebb, de az eredmény is szebb. Az alkatrészek beültetése után végül a teszteléshez szükséges vezérlő program megírása következett. Dolgozatomat kezdőlépésnek tekintem egy jövőbeni új adatrögzítő készülék megtervezésére és kivitelezésére, mely akár a jelfogók munkaérintkezőit (feszültség alatt levő) is regisztrálni képes. 46

DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók

DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók DOC N : DT1361-1393-62 DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók Felhasználói leírás DT1361, DT1362, DT1363, DT1364, DT1371, DT1372, DT1373, DT1381, DT1382, DT1384, DT1393 típusokhoz Gyártó:

Részletesebben

MICROCHIP PIC DEMO PANEL

MICROCHIP PIC DEMO PANEL 1 MICROCHIP PIC DEMO PANEL A cél: egy olyan, Microchip PIC mikrokontrollerrel felépített kísérleti panel készítése, ami alkalmas a PIC-ekkel való ismerkedéshez, de akár mint vezérlı panel is használható

Részletesebben

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA 4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.

Részletesebben

GPT 9800 sorozatú nagyfeszültségű szigetelésvizsgálók

GPT 9800 sorozatú nagyfeszültségű szigetelésvizsgálók GPT 9800 sorozatú nagyfeszültségű szigetelésvizsgálók Főbb jellemzők 200 VA AC vizsgáló teljesítmény 240X64 mm-es jég kék pont mátrix LCD Kézi/Auto üzemmód Funkció gombok a gyors választáshoz Nagy intenzitású

Részletesebben

M Ű S Z A K I L E Í R Á M210-CZR HAGYOMÁNYOS HUROKILLESZTŐ MODUL

M Ű S Z A K I L E Í R Á M210-CZR HAGYOMÁNYOS HUROKILLESZTŐ MODUL M Ű S Z A K I L E Í R Á S M10CZR HAGYOMÁNYOS HUROKILLESZTŐ MODUL LEÍRÁS Az M10ECZR illesztő modulok használatával hagyományos, kétvezetékes érzékelők jelzőhurkait lehet címzett módon a Notifier intelligens

Részletesebben

S7021 ADATGYŰJTŐ. 2-csatornás adatgyűjtő számláló és bináris bemenettel. Kezelési leírás

S7021 ADATGYŰJTŐ. 2-csatornás adatgyűjtő számláló és bináris bemenettel. Kezelési leírás S7021 ADATGYŰJTŐ 2-csatornás adatgyűjtő számláló és bináris bemenettel Kezelési leírás Nem hivatalos fordítás! Minden esetleges eltérés esetén az eredeti, angol nyelvű dokumentum szövege tekintendő irányadónak:

Részletesebben

Önhűtött, motortól független frekvenciaátalakító. PumpDrive 2 Eco. Üzemeltetési/összeszerelési útmutató

Önhűtött, motortól független frekvenciaátalakító. PumpDrive 2 Eco. Üzemeltetési/összeszerelési útmutató Önhűtött, motortól független frekvenciaátalakító PumpDrive 2 Eco Üzemeltetési/összeszerelési útmutató Impresszum Üzemeltetési/összeszerelési útmutató PumpDrive 2 Eco Eredeti üzemeltetési útmutató Minden

Részletesebben

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS 1. RÉSZ: SZAGGATÓ BERENDEZÉS ÉS JÁRMŰVEZÉRLŐ EGYSÉG, VALAMINT HAJTÁSLÁNCHOZ KAPCSOLÓDÓ EGYÉB ELEKTROMOS ESZKÖZÖK BESZERZÉSE SORSZÁM AJÁNLATKÉRŐI KÓDSZÁM TERMÉK MEGNEVEZÉSE*

Részletesebben

TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS TRANSZFORMÁTOROK. Alkalmazási terület

TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS TRANSZFORMÁTOROK. Alkalmazási terület TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS VEZÉRLŐ KÉSZÜLÉK TRANSZFORMÁTOROK BEKAPCSOLÁSI ÁRAMLÖKÉSÉNEK CSÖKKENTÉSÉRE Alkalmazási terület A TRIMx-EP készülék feladata a transzformátorok bekapcsolási áramlökésének

Részletesebben

RAPTOR - primer áramnyomató rendszer

RAPTOR - primer áramnyomató rendszer Sokfunkciós készülék A RAPTOR egy fejlett vizsgálórendszer, melyet pontosan azoknak a primer oldali vizsgálatoknak az elvégzésére fejlesztettek ki, melyek az alállomások üzembehelyezése és karbantartása

Részletesebben

Programozható logikai vezérlõk

Programozható logikai vezérlõk BUDAPESTI MÛSZAKI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR KÖZLEKEDÉSAUTOMATIKAI TANSZÉK Programozható logikai vezérlõk Segédlet az Irányítástechnika I. c. tárgyhoz Összeállította: Szabó Géza egyetemi tanársegéd

Részletesebben

M-Bus Master MultiPort 250D/L

M-Bus Master MultiPort 250D/L MultiPort 250D/L Távoli kiolvasás M-Bus rendszerrel Akár 250 mérő csatlakoztatható egy hez, de a kaszkádosítással 1250 mérőből álló hálózat építhető ki Támogatja az elsődleges/másodlagos/kiterjesztett

Részletesebben

Kezelési útmutató. Eaton ENV1000L/H, Eaton ENV1400H, Eaton ENV2000H. www.eaton.com/nvups

Kezelési útmutató. Eaton ENV1000L/H, Eaton ENV1400H, Eaton ENV2000H. www.eaton.com/nvups Kezelési útmutató Eaton ENV1000L/H, Eaton ENV1400H, Eaton ENV2000H www.eaton.com/nvups A rendszer ismertetése Előlap Hálózati üzemmód -- Zölden világít Áthidalás üzemmód -- Zölden villog Hibajelző Üzemi

Részletesebben

VEZETÉKNÉLKÜLI RENDSZERVEZÉRLŐ ACU-100

VEZETÉKNÉLKÜLI RENDSZERVEZÉRLŐ ACU-100 Kétirányú vezetéknélküli rendszer abax VEZETÉKNÉLKÜLI RENDSZERVEZÉRLŐ ACU-100 Program verzió 4.03 Felhasználói kézikönyv 1471 acu100_hu 02/14 FONTOS A vezérlő elektrosztatikus kisülésre érzékeny alkatrészeket

Részletesebben

DGSZV-EP DIGITÁLIS GALVANIKUS SZAKASZVÉDELEM. Alkalmazási terület

DGSZV-EP DIGITÁLIS GALVANIKUS SZAKASZVÉDELEM. Alkalmazási terület DGSZV-EP DIGITÁLIS GALVANIKUS SZAKASZVÉDELEM A DGSZV-EP típusú digitális galvanikus szakaszvédelem a PROTECTA kft. EuroProt márkanevű készülékcsaládjának tagja. Ez az ismertető a készüléktípus specifikus

Részletesebben

SmartLink-G SmartLink-GP GSM hívó. Telepítői leírás

SmartLink-G SmartLink-GP GSM hívó. Telepítői leírás SmartLink-G SmartLink-GP GSM hívó Telepítői leírás Tartalomjegyzék TARTALOMJEGYZÉK... 2 1 BEMUTATÁS... 4 1.1 ALKALMAZÁS... 4 1.2 ALKALMAZÁSI PÉLDÁK... 5 2 ÁLTALÁNOS INFORMÁCIÓK... 7 2.1 MELLÉKELT DOKUMENTÁCIÓK...

Részletesebben

ABAX Kétirányú Vezeték Nélküli Rendszer

ABAX Kétirányú Vezeték Nélküli Rendszer Intelligens biztonsági megoldások ABAX Kétirányú Vezeték Nélküli Rendszer Az ABAX rendszer vezeték nélküli bővítőnek lett tervezve, bármilyen vezetékes riasztó központhoz. A SATEL mérnökeinek egyedülálló

Részletesebben

DIGITÁLIS ADATTÁRAK (MEMÓRIÁK)

DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) DIGITÁLIS ADATTÁRAK (MEMÓRIÁK) A digitális berendezések a feladatuk ellátása közben rendszerint nagy mennyiségű adatot dolgoznak fel. Feldolgozás előtt és után rendszerint tárolni kell az adatokat ritka

Részletesebben

Telepítési utasítás ORU-30

Telepítési utasítás ORU-30 TART TECH KFT. 9611 Csénye, Sport u. 26. Tel.: 95/310-221 Fax: 95/310-222 Mobil: 30/9973-852 E-mail: tarttech@mail.globonet.hu Telepítési utasítás ORU-30 típusú univerzális 10 lépcsős vezérlőegységhez

Részletesebben

GC1C / GC2C Zár, kapu és sorompó vezérlő. Használati utasítás Magyar

GC1C / GC2C Zár, kapu és sorompó vezérlő. Használati utasítás Magyar GC1C / GC2C Zár, kapu és sorompó vezérlő Használati utasítás Magyar 1 Biztonsági figyelmeztetések Olvassa el figyelmesen a használati utasítást az eszköz telepítése előtt és őrizze meg! Áramütésveszély!

Részletesebben

City 11 ANALÓG VEZÉRLŐ EGYSÉG LENGŐ KAPUKHOZ

City 11 ANALÓG VEZÉRLŐ EGYSÉG LENGŐ KAPUKHOZ V2 S.p.A. Corso Principi di Piemonte, 65/67 12035 RACCONIGI (CN) ITALY Telefon: +39 01 72 81 24 11 - fax +39 01 72 84 050 info@v2home.com - www.v2home.com IL n. 353 Kiadás dátuma 2011/06/20 City 11 ANALÓG

Részletesebben

Robotkocsi mikrovezérlővel

Robotkocsi mikrovezérlővel B é k é s c s a b a i K ö z p o n t i S z a k k é p z ő I s k o l a é s K o l l é g i u m Trefort Ágoston Műszaki Tagiskolája 5600 Békéscsaba, Puskin tér 1. Pf. 62 www.taszi.hu XVII. ORSZÁGOS ELEKTRONIKAI

Részletesebben

DUALCOM SIA IP TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ. V1.23.2532 és újabb modulverziókhoz. Dokumentum verzió: 1.7 2015.12.03

DUALCOM SIA IP TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ. V1.23.2532 és újabb modulverziókhoz. Dokumentum verzió: 1.7 2015.12.03 DUALCOM SIA IP TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ V1.23.2532 és újabb modulverziókhoz Dokumentum verzió: 1.7 2015.12.03 Tartalomjegyzék 1 Alkalmazási terület... 3 2 Funkciók... 3 3 Modul áttekintés...

Részletesebben

OMRON DIGITÁLIS IDÕRELÉK H5CX

OMRON DIGITÁLIS IDÕRELÉK H5CX OMRON DIGITÁLIS IDÕRELÉK H5CX H5CX Multifunkciós digitális idõrelé Jól látható, háttérmegvilágításos, inverz LCD-kijelzõ Programozható ellenõrzõjel szín a kimenet változásának vizuális figyelmeztetésére

Részletesebben

AUTOATTENDANT Rendszer Kézikönyv

AUTOATTENDANT Rendszer Kézikönyv AUTOATTENDANT Rendszer Kézikönyv www.matrixtelecom.hu AutoAttendant Rendszer Kézikönyv 1 Információk a dokumentációról Ez egy általános dokumentáció, mely több, különböző típusú modell részletes leírását

Részletesebben

A megfelelő IP védelem biztosításával, alkalmasak a kültéri alkalmazások kialakítására.

A megfelelő IP védelem biztosításával, alkalmasak a kültéri alkalmazások kialakítására. AA-RC1A v2.3 Technikai adatok: Tápfeszültség: 12-24V Digitális / Logikai kimenetek: 8 darab open-collector kimenet, közvetlenül relé meghajtására alkalmasak, 500mA terhelhetőségűek Digitális bemenetek:

Részletesebben

11. Tétel Ismertesse, mutassa be a kisfeszültségű mechanikus vezérlésű kapcsolókészülékeket!

11. Tétel Ismertesse, mutassa be a kisfeszültségű mechanikus vezérlésű kapcsolókészülékeket! 11. Tétel Ismertesse, mutassa be a kisfeszültségű mechanikus vezérlésű kapcsolókészülékeket! A kapcsolókészülékek kiválasztása A készülékek kiválasztásánál figyelembe kell venni a légköri és klimatikus

Részletesebben

2 - ELEKTROMOS BEKÖTÉSEK

2 - ELEKTROMOS BEKÖTÉSEK 4. oldal 2 - ELEKTROMOS BEKÖTÉSEK 2A A VEZETÉKEK KERESZTMETSZETE - A vezérlőegység áramellátását (a külső biztosítódobozának csatlakozókapcsán) egy legalább 3x1,5 mm 2 -es vezetékkel kell megoldani. Amennyiben

Részletesebben

LOGSYS LOGSYS ECP2 FPGA KÁRTYA FELHASZNÁLÓI ÚTMUTATÓ. 2012. szeptember 18. Verzió 1.0. http://logsys.mit.bme.hu

LOGSYS LOGSYS ECP2 FPGA KÁRTYA FELHASZNÁLÓI ÚTMUTATÓ. 2012. szeptember 18. Verzió 1.0. http://logsys.mit.bme.hu LOGSYS ECP2 FPGA KÁRTYA FELHASZNÁLÓI ÚTMUTATÓ 2012. szeptember 18. Verzió 1.0 http://logsys.mit.bme.hu Tartalomjegyzék 1 Bevezetés... 1 2 Memóriák... 3 2.1 Aszinkron SRAM... 3 2.2 SPI buszos soros FLASH

Részletesebben

SYS700-R ROUTER modul DDC rendszerelemek, DIALOG-III család

SYS700-R ROUTER modul DDC rendszerelemek, DIALOG-III család DDC rendszerelemek, DIALOG-III család -- 009. március KIVITEL ALKALMAZÁS A SYS00-R a Dialog-III készülékcsalád ROUTER készüléke, amely kifejezetten épületgépészeti automatika kommunikációs feladatok ellátására

Részletesebben

55-ös sorozat - Miniatűr ipari relék 7-10 A

55-ös sorozat - Miniatűr ipari relék 7-10 A Miniatűr ipari relék dugaszolható vagy NYÁK csatlakozással AC vagy DC kivitelû tekercsek Védettségi mód: az 55.12, 55.13, 55.14 típusoknál bemártó tisztításra alkalmas (RT III) kivitel is kapható A 85-ös

Részletesebben

3 Tápegységek. 3.1 Lineáris tápegységek. 3.1.1 Felépítés

3 Tápegységek. 3.1 Lineáris tápegységek. 3.1.1 Felépítés 3 Tápegységek A tápegységeket széles körben alkalmazzák analóg és digitális berendezések táplálására. Szerkezetileg ezek az áramkörök AC-DC vagy DC-DC átalakítók. A kimenet tehát mindig egyenáramú, a bemenet

Részletesebben

Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Mérő- és vezérlőberendezés megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. július 18. A mérőberendezés felhasználási

Részletesebben

A típusszámok felépítése

A típusszámok felépítése Háromfázisú feszültségrelé K8AB-PW Ideális választás háromfázisú tápellátások figyelésére ipari berendezéseknél és készülékeknél. 3 vagy 4 vezetékes tápellátások túlfeszültségének és feszültségesésének

Részletesebben

H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087

H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087 MŰSZER AUTOMATIKA KFT H-2040 Budaörs, Komáromi u 22 Pf 296 Telefon: +36 23 365280, Fax: +36 23 365087 Telephely: H-2030 Érd, Alsó u10 Pf56Telefon: +36 23 365152 Fax: +36 23 365837 wwwmuszerautomatikahu

Részletesebben

Jármû-elektronika ELEKTRONIKAI-INFORMATIKAI SZAKFOLYÓIRAT. 2003. november. 890 Ft. XII. évfolyam 7. szám

Jármû-elektronika ELEKTRONIKAI-INFORMATIKAI SZAKFOLYÓIRAT. 2003. november. 890 Ft. XII. évfolyam 7. szám XII. évfolyam 7. szám ELEKTRONIKAI-INFORMATIKAI SZAKFOLYÓIRAT 890 Ft 2003. november Jármû-elektronika Gyorsulásszenzorok az autóiparban (2. rész) SZEGEDI ANDRÁS Az elôzô részben bemutatásra került az autóiparban

Részletesebben

M Ű S Z A K I L E Í R Á. M210E-CZ Hagyományos hurokillesztő modul BEVEZETÉS

M Ű S Z A K I L E Í R Á. M210E-CZ Hagyományos hurokillesztő modul BEVEZETÉS M Ű S Z A K I L E Í R Á S M210E-CZ Hagyományos hurokillesztő modul BEVEZETÉS Az M210E-CZ illesztő modulok használatával hagyományos, két-vezetékes érzékelők jelzőhurkait lehet címzett módon a Notifier

Részletesebben

DT920 Fordulatszámmérő

DT920 Fordulatszámmérő DOC N : DT920 No EEx-62 DT920 Fordulatszámmérő Felhasználói leírás Gyártó: DATCON Ipari Elektronikai Kft 1148 Budapest, Fogarasi út 5 27 ép Tel: 460-1000, Fax: 460-1001 2 Tartalomjegyzék 1 Rendeltetés4

Részletesebben

Mikrohullámú rádiófrekvenciás azonosítórendszer V690

Mikrohullámú rádiófrekvenciás azonosítórendszer V690 Mikrohullámú rádiófrekvenciás azonosítórendszer V690 Rádiófrekvenciás azonosító rendszer mikrohullámú kommunikációhoz 600 Kb/s sebességen 5 méterig Mikrohullámú kommunikáció 5 méterig a 2450 MHz-es sávban

Részletesebben

SW4CP Hálózati teljesítménykapcsoló. Használati utasítás Magyar

SW4CP Hálózati teljesítménykapcsoló. Használati utasítás Magyar SW4CP Hálózati teljesítménykapcsoló Használati utasítás Magyar 1 Biztonsági figyelmeztetések Olvassa el figyelmesen a használati utasítást az eszköz telepítése előtt és őrizze meg! Áramütésveszély! Az

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760K Digitális Gépjármű Diagnosztikai Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. Előlap és kezelőszervek... 3 4. Műszaki jellemzők... 4 5.

Részletesebben

E7-DTSZ konfigurációs leírás

E7-DTSZ konfigurációs leírás Dokumentum azonosító: PP-13-20354 Budapest, 2014.március Verzió információ Verzió Dátum Változtatás Szerkesztő Előzetes 2011.11.24. Petri 2.0 2014.01.22. 2. ábra módosítása: Az E7-DTSZ alap konfiguráció

Részletesebben

Hardver leírás Klasszikus kontroller v.3.2.2

Hardver leírás Klasszikus kontroller v.3.2.2 StP Beléptető Rendszer Hardver leírás Klasszikus kontroller v.3.2.2 s TARTALOMJEGYZÉK 1. ALKÖZPONTOK KÖZÖTTI KOMMUNIKÁCIÓ (INTERNET)... 3 2. RS485... 3 3. OLVASÓ- ÉS KÁRTYATÍPUSOK, OLVASÓ KEZELÉS, EGY

Részletesebben

3. Bemenet típusa T: Hőelem/platina-ellenállású hőérzékelő (többfunkciós bemenet)

3. Bemenet típusa T: Hőelem/platina-ellenállású hőérzékelő (többfunkciós bemenet) Hőmérsékletszabályozók ECSV DIP-kapcsoló segítségével egyszerűen beállítható, könnyen használható szolgáltatásokkal rendelkező, DIN 8 x 8 mm-es méretű hőmérsékletszabályozók Egyszerű beállítás DIP- és

Részletesebben

AVR-Duino Eth Shield / AVR-Duino EthMAX Shield

AVR-Duino Eth Shield / AVR-Duino EthMAX Shield AVR-Duino Eth Shield / AVR-Duino EthMAX Shield AVR-Duino alappanel-kiegészítő az Ethernet-alapok megismeréséhez Felhasználói dokumentáció TavIR-AVR 2011. május 30. 1 / 11 Felhasználás AVR-Duino Eth Shield

Részletesebben

Vigilec Mono. Egyfázisú szivattyú vezérlő és védelmi doboz. I. A csavarok eltávolítása után csúsztassuk felfelé az előlapot a felső állásba (A ábra)

Vigilec Mono. Egyfázisú szivattyú vezérlő és védelmi doboz. I. A csavarok eltávolítása után csúsztassuk felfelé az előlapot a felső állásba (A ábra) Vigilec Mono Egyfázisú szivattyú vezérlő és védelmi doboz TECHNOCONSULT Kft. 2092 Budakeszi, Szürkebarát u. 1. T: (23) 457-110 www.technoconsult.hu info@technoconsult.hu Leírás Indító relé egyfázisú felszíni

Részletesebben

BIZTONSÁGTECHNIKAI ÚTMUTATÓ A BETÖRÉSES LOPÁS-RABLÁSBIZTOSÍTÁSI KOCKÁZATOK KEZELÉSÉRE. B.1.10. Fejezet. Kapacitív mezőváltozás érzékelők követelmények

BIZTONSÁGTECHNIKAI ÚTMUTATÓ A BETÖRÉSES LOPÁS-RABLÁSBIZTOSÍTÁSI KOCKÁZATOK KEZELÉSÉRE. B.1.10. Fejezet. Kapacitív mezőváltozás érzékelők követelmények BIZTONSÁGTECHNIKAI ÚTMUTATÓ A BETÖRÉSES LOPÁS-RABLÁSBIZTOSÍTÁSI KOCKÁZATOK KEZELÉSÉRE (AJÁNLÁS) B.1.10. Fejezet Kapacitív mezőváltozás érzékelők követelmények kiadás A dokumentum megnevezése kiadva visszavonva

Részletesebben

Digitális bemenetek: 2 darab 0-5V jelszintű digitális bemenet Pl. nyitásérzékelők, risztóközpontok, mozgásérzékelők, átjelzők, stb.

Digitális bemenetek: 2 darab 0-5V jelszintű digitális bemenet Pl. nyitásérzékelők, risztóközpontok, mozgásérzékelők, átjelzők, stb. Termék Ismertető Műszaki Információk Használati utasítás Technikai adatok: Tápfeszültség: 12-24V Digitális / Logikai kimenetek: 8 darab open-collector kimenet, közvetlenül relé meghajtására alkalmasak,

Részletesebben

Szójegyzék/műszaki lexikon

Szójegyzék/műszaki lexikon Tartalom Szójegyzék/műszaki lexikon Szójegyzék/műszaki lexikon Tápegységek Áttekintés.2 Szabványok és tanúsítványok.4 Szójegyzék.6.1 Tápegységek áttekintés Tápegységek - áttekintés A hálózati tápegységek

Részletesebben

GESTRA Steam Systems NRS 1 7. Magyar. Kezelési utasítás 818658 02. NRS 1 7 Szintkapcsoló

GESTRA Steam Systems NRS 1 7. Magyar. Kezelési utasítás 818658 02. NRS 1 7 Szintkapcsoló GESTRA Steam Systems NRS 1 7 HU Magyar Kezelési utasítás 818658 02 NRS 1 7 Szintkapcsoló 1 Tartalom Fontos tudnivalók oldal Rendeltetésszerű használat...4 Biztonsági előírások...4 Veszélyek...4 ATEX (Atmospère

Részletesebben

Az EuroProt készülékcsalád

Az EuroProt készülékcsalád EuroProt rendszerismertető Az EuroProt készülékcsalád A Protecta Elektronikai Kft. EuroProt készülékcsaládja azzal a céllal készült, hogy tagjai a villamosenergia rendszer valamennyi védelmi és automatika

Részletesebben

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok 5 Egyéb alkalmazások A teljesítményelektronikai berendezések két fõ csoportját a tápegységek és a motorhajtások alkotják. Ezekkel azonban nem merülnek ki az alkalmazási lehetõségek. A továbbiakban a fennmaradt

Részletesebben

MULTICAL 402 Használati utasítása

MULTICAL 402 Használati utasítása MULTICAL 402 Használati utasítása www.kamstrup.com MULTICAL 402 Energia mérés A MULTICAL 402 a következőképpen működik: Az áramlásmérő rögzíti, hogy hány m 3 (köbméter) távfűtött melegvíz folyik át a fűtőrendszeren.

Részletesebben

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra). 3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független

Részletesebben

3-215-703-11(1) Sztereóerõsítõ. Kezelési útmutató XM-ZR602. 2007 Sony Corporation Printed in Czech Republic (EU)

3-215-703-11(1) Sztereóerõsítõ. Kezelési útmutató XM-ZR602. 2007 Sony Corporation Printed in Czech Republic (EU) 3-215-703-11(1) Sztereóerõsítõ Kezelési útmutató XM-ZR602 2007 Sony Corporation Printed in Czech Republic (EU) Fõbb jellemzõk 110 W legnagyobb teljesítmény csatornánként (4 Ω-on). Ez a készülék mono erősítőként

Részletesebben

1. Teljesítmény 2. Kimeneti feszültség 3. Felépítés 4. Buszvezeték-csatlakozók 060: 60 W. Csatlakozós érintkezőtípus. (Lásd az 1. megjegyzést.

1. Teljesítmény 2. Kimeneti feszültség 3. Felépítés 4. Buszvezeték-csatlakozók 060: 60 W. Csatlakozós érintkezőtípus. (Lásd az 1. megjegyzést. Kapcsolóüzemű tápegység S8TS Moduláris, DIN-sínre szerelhető, kapcsolóüzemű tápegység 60 és 240 W közötti teljesítmény egyetlen tápegységtípussal (24 V-os típusok). A könnyen összeépíthető, különböző feszültségű

Részletesebben

FAAC 531 EM. Az 531 EM automata mozgató belső használatra és garázskapuk működtetésére lett tervezve és gyártva. Minden másfajta használat helytelen.

FAAC 531 EM. Az 531 EM automata mozgató belső használatra és garázskapuk működtetésére lett tervezve és gyártva. Minden másfajta használat helytelen. FAAC 531 EM Az 531 EM automata garázsmotor szekcionált vagy billenő kapuk mozgatására használandó. A készülék egy egybeéptített elektromechanikus motorból, vezérlőegységből és egy lámpából áll, ami a plafonra

Részletesebben

Műszaki leírás. SoliDBank601-AN-C4 SoliDBank601-E-AN-C4 hangrögzítő berendezés. ML_BE_SB601-AN 4. kiadás. doc. rev.: 1159

Műszaki leírás. SoliDBank601-AN-C4 SoliDBank601-E-AN-C4 hangrögzítő berendezés. ML_BE_SB601-AN 4. kiadás. doc. rev.: 1159 Műszaki leírás SoliDBank601-AN-C4 SoliDBank601-E-AN-C4 hangrögzítő berendezés ML_BE_SB601-AN 4. kiadás doc. rev.: 1159 Tartalomjegyzék 1. Általános és biztonsági tudnivalók... 3 1.1. Fontos biztonsági

Részletesebben

Powador 12.0 TL3 - INT 14.0 TL3 - INT 18.0 TL3 - INT 20.0 TL3 - INT. Kezelési útmutató. A német eredeti változat fordítása

Powador 12.0 TL3 - INT 14.0 TL3 - INT 18.0 TL3 - INT 20.0 TL3 - INT. Kezelési útmutató. A német eredeti változat fordítása Powador. TL - INT 4. TL - INT 8. TL - INT. TL - INT Kezelési útmutató A német eredeti változat fordítása Kezelési útmutató szerelők és üzemeltetők számára Tartalomjegyzék Általános tudnivalók... 4. A

Részletesebben

VERTESZ Fázisazonosító Felhasználói Leírás

VERTESZ Fázisazonosító Felhasználói Leírás VERTESZ Felhasználói Leírás felhasználói leírás Tartalomjegyzék 1.ÁLTALÁNOS LEÍRÁS... 3 1.1.A készüléken található jelölések jelentése...3 1.2.Biztonsági figyelmeztetés... 3 1.3.A készülékek rendeltetése...

Részletesebben

4-20 zónáig bővíthető riasztóközpont

4-20 zónáig bővíthető riasztóközpont 4-20 zónáig bővíthető riasztóközpont A központ főbb alkótóelemei: Rádiós nyitásérzékelő Passzív infra mozgásérzékelő Kombinált mozgásérzékelő Belétir sziréna, Kültéri sziréna Zónabővítő modul(ok) Rádiós

Részletesebben

DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató

DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató Galvanikus leválasztó / tápegység Kezelési útmutató Tartalomjegyzék 1. Kezelési útmutató...4 1.1. Rendeltetése... 4 1.2. Célcsoport... 4 1.3. Az alkalmazott szimbólumok... 4 2. Biztonsági útmutató...5

Részletesebben

Gi.Bi.Di. gyártmányú, F12 Rally típusú mikroprocesszoros vezérlés 12 V DC motorokhoz

Gi.Bi.Di. gyártmányú, F12 Rally típusú mikroprocesszoros vezérlés 12 V DC motorokhoz 1 Gi.Bi.Di. gyártmányú, F12 Rally típusú mikroprocesszoros vezérlés 12 V DC motorokhoz ÁLTALÁNOS ÓVINTÉZKEDÉSEK Ezen óvintézkedések a termék szerves és alapvető részét képezik, amelyet a felhasználó rendelkezésére

Részletesebben

Biztonsági Időzítő Óra ÜZEMELTETÉSI LEÍRÁS

Biztonsági Időzítő Óra ÜZEMELTETÉSI LEÍRÁS típusú Biztonsági Időzítő Óra.0 verzió Budapest, 008. szeptember. Tartalomjegyzék. ÁLTALÁNOS ISMERTETÉS.... MŰSZAKI ADATOK... 4. IDŐZÍTŐ TÍPUSOK... 4 4. AZ IDŐZÍTŐ ELVI MŰKÖDÉSE ÉS FELÉPÍTÉSE... 8 4. AZ

Részletesebben

Beléptető rendszer. Felhasználói kézikönyv

Beléptető rendszer. Felhasználói kézikönyv Beléptető rendszer Felhasználói kézikönyv Technikai adatlap Tartalomjegyzék TCP/IP rendszer működése TCP/IP egy ajtó / két irányú beléptető központ TCP/IP két ajtó / két irányú beléptető központ TCP/IP

Részletesebben

Telepítési Útmutató. KS4F Tolókapu szett

Telepítési Útmutató. KS4F Tolókapu szett 1. oldal Telepítési Útmutató 2. oldal BEVEZETÉS Köszönjük, hogy az általunk forgalmazott, Beninca KS 4 tolókapu szettet választotta. A Beninca cég kínálatában található összes termék 20 éves gyártási tapasztalat,

Részletesebben

FILCOM. Visszamosatást vezérlő egység

FILCOM. Visszamosatást vezérlő egység FILCOM Visszamosatást vezérlő egység Tartalom 1.0 Bevezetés...2 2.0 Műszaki jellemzők...2 3.0 Kijelző panel...2 3.1 LED...3 3.2 Kijelző...3 4.0 A vezérlő egység hardver konfigurálása...3 4.1 Váltóáramú

Részletesebben

A típusszámok felépítése

A típusszámok felépítése Egyfázisú feszültségrelé K8AB-VW Ideális választás a feszültség figyelésére ipari berendezéseknél és készülékeknél. és feszültségesés egyidejű figyelése. Független beállítások és kimenetek a feszültségcsökkenés

Részletesebben

NMT (D) MAX (C) Beépítési és kezelési kézikönyv. változat a 7340108.v6 dokumentum alapján. 1 / 15 Tel.: 1/236-07-26 Fax: 1/236-07-27 www.huray.

NMT (D) MAX (C) Beépítési és kezelési kézikönyv. változat a 7340108.v6 dokumentum alapján. 1 / 15 Tel.: 1/236-07-26 Fax: 1/236-07-27 www.huray. NMT (D) MAX (C) HU Beépítési és kezelési kézikönyv változat a 7340108.v6 dokumentum alapján 1 / 15 Tel.: 1/236-07-26 Fax: 1/236-07-27 www.huray.hu A termék megfelel a következő EU szabványoknak EU direktíva

Részletesebben

RF-973 Kétirányú, 4+4 csatornás, nagy hatótávolságú átjelző rádió HASZNÁLATI ÚTMUTATÓ

RF-973 Kétirányú, 4+4 csatornás, nagy hatótávolságú átjelző rádió HASZNÁLATI ÚTMUTATÓ RF-973 Kétirányú, 4+4 csatornás, nagy hatótávolságú átjelző HASZNÁLATI ÚTMUTATÓ Az RF-973-as az egyirányú 4 csatornás RF-970 (adó) RF-971 (vevő) átjelző páros újabb, kétirányú átjelzést lehetővé tevő,

Részletesebben

ProCOM GPRS ADAPTER TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ. v1.00.0096 és újabb modul verziókhoz Dokumentumverzió: 1.41 2013.08.09

ProCOM GPRS ADAPTER TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ. v1.00.0096 és újabb modul verziókhoz Dokumentumverzió: 1.41 2013.08.09 ProCOM GPRS ADAPTER TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ v1.00.0096 és újabb modul verziókhoz Dokumentumverzió: 1.41 2013.08.09 Tartalomjegyzék 1 A ProCOM GPRS Adapter alapvető funkciói... 3 1.1 Funkciók

Részletesebben

AZT 3/0 AUTONÓM ZÁRLATI TARTALÉKVÉDELEM AZT

AZT 3/0 AUTONÓM ZÁRLATI TARTALÉKVÉDELEM AZT AZT 3/0 AUTONÓM ZÁRLATI TARTALÉKVÉDELEM Az AZT 3/0 típusú elektronikus autonóm zárlati tartalékvédelem különleges, ám igen fontos feladatot lát el. Nem lehet kizárni ugyanis olyan rendellenességet, amelynek

Részletesebben

Trajexia hajtásszabályozó

Trajexia hajtásszabályozó TJ1- Trajexia hajtásszabályozó Hajtásszabályozás Önálló fejlett hajtásszabályozó MechatroLink-II hajtási buszkapcsolattal 16 tengelyes fejlett hajtáskoordináció robusztus, gyors MECHATROLINK-II hajtáskapcsolattal

Részletesebben

V2 CITY9 Analóg vezérl egység H gördül kapukhoz

V2 CITY9 Analóg vezérl egység H gördül kapukhoz V2 CITY9 Analóg vezérlegység H gördül kapukhoz TARTALOMJEGYZÉK FONTOS MEGJEGYZÉSEK...3 MEGFELELSÉGI NYILATKOZAT...3 A VEZÉRLEGYSÉG LEÍRÁSA...3 ELEKTROMOS CSATLAKOZTATÁS TÁBLÁZATA...5 MOTORER ÉS MKÖDÉSI

Részletesebben

54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus

54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Fázishasításos elven működő vezérlő elektronika két rezgőadagoló működtetéséhez, max. 2 x 8A. TS35 sínre szerelhető kivitel (IP 20)

Fázishasításos elven működő vezérlő elektronika két rezgőadagoló működtetéséhez, max. 2 x 8A. TS35 sínre szerelhető kivitel (IP 20) VIBRAC - 218 Fázishasításos elven működő vezérlő elektronika két rezgőadagoló működtetéséhez, max. 2 x 8A. TS35 sínre szerelhető kivitel (IP 20) Tip:006-002-005-008 Jellemzők: Két rezgőadagoló működtetése

Részletesebben

SOROMPÓ. Beninca VE.650 sorompó DA.24V vezérléssel 1. oldal. Használati útmutató és alkatrészlista

SOROMPÓ. Beninca VE.650 sorompó DA.24V vezérléssel 1. oldal. Használati útmutató és alkatrészlista Beninca VE.650 sorompó DA.24V vezérléssel 1. oldal SOROMPÓ Használati útmutató és alkatrészlista Beninca VE.650 sorompó DA.24V vezérléssel 2. oldal VE.650 sorompó 1. Általános jellemzők A VE.500 sorompó

Részletesebben

SmartLoop Analóg Tűzjelző Központ. Felhasználói leírás

SmartLoop Analóg Tűzjelző Központ. Felhasználói leírás SmartLoop Analóg Tűzjelző Központ Felhasználói leírás Tartalomjegyzék 1 A KÖZPONT BEMUTATÁSA...3 1.1 A GYÁRTÓ NEVE...3 1.2 A TERMÉK PONTOS AZONOSÍTÁSA...3 1.3 MELLÉKELT DOKUMENTÁCIÓK...3 1.4 LEÍRÁSOK...3

Részletesebben

GSM-LINE ADAPTER PRO 5 GSM 900MHz / 1800MHz / 850MHz / 1900MHz HASZNÁLATI ÚTMUTATÓ

GSM-LINE ADAPTER PRO 5 GSM 900MHz / 1800MHz / 850MHz / 1900MHz HASZNÁLATI ÚTMUTATÓ GSM-LINE ADAPTER PRO 5 GSM 900MHz / 1800MHz / 850MHz / 1900MHz HASZNÁLATI ÚTMUTATÓ A készülék funkciói A GSM-LINE ADAPTER PRO célja, hogy a GSM hálózatra illessze azokat a riasztórendszereket, melyek vezetékes

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 6300B Digitális Gépjármű Diagnosztikai Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. Előlap és kezelőszervek... 3 4. Műszaki jellemzők... 4

Részletesebben

Szelepmozgató motorok hárompont vezérléshez

Szelepmozgató motorok hárompont vezérléshez Adatlap Szelepmozgató motorok hárompont vezérléshez biztonsági funkció nélkül SU, SD biztonsági funkcióval (rugó fel/le) SD EN 4597 bizonyítvánnyal rendelkező biztonsági funkció (rugó le) Leírás A szelepmozgatók

Részletesebben

Fordulatszámmérő és szabályozó áramkör tervezése egyenáramú kefés motorhoz

Fordulatszámmérő és szabályozó áramkör tervezése egyenáramú kefés motorhoz MISKOLCI EGYETEM Gépészmérnöki és Informatikai Kar Automatizálási és Infokommunikációs Intézeti Tanszéke Villamosmérnöki BSc szak Ipari automatizálás és kommunikáció szakirány Fordulatszámmérő és szabályozó

Részletesebben

PQRM5100 31 Ux Ix xx xx (PS) Háromfázisú multifunkciós teljesítmény távadó. Kezelési útmutató

PQRM5100 31 Ux Ix xx xx (PS) Háromfázisú multifunkciós teljesítmény távadó. Kezelési útmutató Háromfázisú multifunkciós teljesítmény távadó Kezelési útmutató Tartalomjegyzék 1. Kezelési útmutató...5 1.1. Rendeltetése... 5 1.2. Célcsoport... 5 1.3. Az alkalmazott szimbólumok... 5 2. Biztonsági útmutató...6

Részletesebben

Gi.Bi.Di. gyártmányú F4 Plus típusú egyfázisú két motorhoz alkalmazható mikroprocesszoros vezérlés, - beépített rádiófrekvenciás vevővel.

Gi.Bi.Di. gyártmányú F4 Plus típusú egyfázisú két motorhoz alkalmazható mikroprocesszoros vezérlés, - beépített rádiófrekvenciás vevővel. 1 Gi.Bi.Di. gyártmányú F4 Plus típusú egyfázisú két motorhoz alkalmazható mikroprocesszoros vezérlés, - beépített rádiófrekvenciás vevővel. ÁLTALÁNOS ÓVINTÉZKEDÉSEK Ezen óvintézkedések a termék szerves

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

GSM Gate Control Pro 20 GSM Gate Control Pro 1000

GSM Gate Control Pro 20 GSM Gate Control Pro 1000 GSM Gate Control Pro 20 GSM Gate Control Pro 1000 TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ v1.21.2387 és újabb modulverziókhoz Dokumentumverzió: 1.61 2015.10.19 Jellemzők: Kimenetek vezérlése interneten keresztül,

Részletesebben

A típusszámok felépítése

A típusszámok felépítése Konduktív szintszabályozó 61F-D21T-V1 Ideális választás szintszabályozásra ipari berendezéseknél és készülékeknél. Lehetőség a kimenetek öntartásának be- és kikapcsolására az öntartó áramkörök segítségével.

Részletesebben

Multifunkciós Digitális Idõrelé

Multifunkciós Digitális Idõrelé Multifunkciós Digitális relé H5CX Jól látható, háttérmegvilágításos, inverz LCD kijelzõ. Programozható ellenõrzõjel szín a kimenet változásának vizuális figyelmeztetésére (sorkapcsos bekötésû típusok).

Részletesebben

NCT 101, 104, 115 szerszámgép vezérlések Telepítési leírása A.066 (M) (L) kiadási számú szoftver változattól

NCT 101, 104, 115 szerszámgép vezérlések Telepítési leírása A.066 (M) (L) kiadási számú szoftver változattól NCT 101, 104, 115 szerszámgép vezérlések Telepítési leírása A.066 (M) (L) kiadási számú szoftver változattól 2 Gyártó és fejlesztõ: NCT Ipari Elektronikai kft. H1148 Budapest Fogarasi út 7 Postafiók: 1631

Részletesebben

Antenna forgató elektronikus vezérlése visszajelzéssel

Antenna forgató elektronikus vezérlése visszajelzéssel Antenna forgató elektronikus vezérlése visszajelzéssel Vezérlő egység A személyi számítógépek fejlődése olyan irányba tart, hogy eltűnnek a klasszikus csatlakozófelületek mint a COM és az LPT. Az újabb

Részletesebben

VIBROCONTROL 4000. Nagy érzékenységű rezgésvédelem maximális üzembiztonságért. C1344e

VIBROCONTROL 4000. Nagy érzékenységű rezgésvédelem maximális üzembiztonságért. C1344e VIBROCONTROL 4000 Nagy érzékenységű rezgésvédelem maximális üzembiztonságért C1344e Az állandó állapotfigyelés optimális gépvédelmet nyújt Növeli gépeik és berendezéseik kihasználtságát Megelőzi a gép

Részletesebben

S8VK-G (15/30/60/120/240/480 W-os típusok)

S8VK-G (15/30/60/120/240/480 W-os típusok) Új termék Kapcsolóüzemű tápegység S8VK-G (15/30/60/120/240/480 W-os típusok) Megbízható és egyszerűen kezelhető Világszerte használható tápegység Mostoha körülmények közt is ellenálló Egyszerű és gyors

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 830B Digitális Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Biztonsági információ... 3 4. Speciális használati figyelmeztetések... 3 5. Általános

Részletesebben

Ipari automatizálási relék

Ipari automatizálási relék Ipari automatizálási relék Mûszaki ismertetõ Relének nevezzük azokat a segéd és vezérlõáramköri villamos készülékeket, amelyek a mûködtetõ tekercsre kapcsolt villamos gerjesztés hatására érintkezõik állapotát

Részletesebben

Szabályozható DC tápegység. AX-3005DBL-egycsatornás AX-3005DBL-3-háromcsatornás. Használati útmutató

Szabályozható DC tápegység. AX-3005DBL-egycsatornás AX-3005DBL-3-háromcsatornás. Használati útmutató Szabályozható DC tápegység AX-3005DBL-egycsatornás AX-3005DBL-3-háromcsatornás Használati útmutató 1. fejezet. A tápegység elhelyezése és kezelési útmutató Amikor elhelyezi a tápegységet az üzemeltetési

Részletesebben

Nyomtatóport szintillesztő 3V2

Nyomtatóport szintillesztő 3V2 Nyomtatóport szintillesztő 3V2 A 3V2-es verziójú illesztő kártya lehetővé teszi a nyomtató porthoz vagy az UC300-hoz való kényelmes, egyszerű hozzáférést, a jelszintek illesztett megvalósítása mellett.

Részletesebben

2 - ELEKTROMOS BEKÖTÉSEK

2 - ELEKTROMOS BEKÖTÉSEK 4. oldal 2A A VEZETÉKEK KERESZTMETSZETE 2 - ELEKTROMOS BEKÖTÉSEK - A vezérlıegység áramellátását (a külsı biztosítódobozának csatlakozókapcsán) egy legalább 3x1,5 mm 2 - es vezetékkel kell megoldani. Amennyiben

Részletesebben

E - F. frekvenciaváltó gépkönyv. Érvényes: 2006. júliustól

E - F. frekvenciaváltó gépkönyv. Érvényes: 2006. júliustól E - F frekvenciaváltó gépkönyv Érvényes: 2006. júliustól P Köszönjük Önnek, hogy a PROCON Hajtástechnika Kft. által gyártott frekvenciaváltót választotta. A gépkönyv biztosítja az Ön számára a frekvenciaváltó

Részletesebben

PROGRAMOZHATÓ LOGIKAI VEZÉRLİK

PROGRAMOZHATÓ LOGIKAI VEZÉRLİK Misák Sándor PROGRAMOZHATÓ LOGIKAI VEZÉRLİK 4. elıadás DE TTK v.0.1 (2011.10.05.) A PROGRAMOZHATÓ VEZÉRLİK HARDVERFELÉPÍTÉSE II. 1. A PLC-k illesztése az irányítandó objektumhoz; 2. Általános ismeretek

Részletesebben