Fák 3. előadás. (Horváth Gyula anyagai felhasználásával)
|
|
- Réka Hajdu
- 5 évvel ezelőtt
- Látták:
Átírás
1 Fák 3. előadás (Horváth Gyula anyagai felhasználásával)
2 Fák Bináris fa "fordított" ábrázolása, a levelektől vissza: Ha a bináris fa elemei címezhetőek is (pl. sorszámuk van), akkor elképzelhető egy olyan statikusan láncolt ábrázolás, amikor azt adjuk meg minden elemről, hogy ki van a fában fölötte. Típus BFa=Tömb(1..Max,BFaelem) BFaelem=Rekord(érték: Elemtípus, szülő: 0..Max) Egy ilyen fára persze másféle műveleteket definiálhatunk. 2/33
3 Fák Üres(bf): Ciklus i=1-től N-ig bf(i).szülő:=0 Ciklus vége Beilleszt(bf,a,b): {a szülője b-nek} bf(b).szülő:=a 3/33
4 Fák Ősszülő(bf,e): Ha bf(e).szülő=0 akkor Ősszülő:=e különben Ősszülő:=Ősszülő(bf,bf(e).szülő) Őse?(bf,utód,ős): Ha utód=ős akkor Őse?:=igaz különben ha bf(utód).szülő=0 akkor Őse?:=hamis különben Őse?:=Őse?(bf,bf(utód).szülő,ős) Megjegyzés: egyetlen fa esetén a bf tömb lehet globális változó is. 4/33
5 Fák Ősszülő(bf,e): Ciklus amíg bf(e).szülő 0 e:=bf(e).szülő Ciklus vége Őse?(bf,utód,ős): Ciklus amíg utód ős és bf(utód).szülő 0 utód:=bf(utód).szülő Ciklus vége Őse?:=utód=ős Ugyanez ciklussal. 5/33
6 Fák Bináris fa "fordított" ábrázolása, a levelektől vissza: Ha a bináris fa elemei címezhetőek is (pl. sorszámuk van), akkor elképzelhető egy olyan dinamikusan láncolt ábrázolás, amikor azt adjuk meg minden elemről, hogy ki van a fában fölötte. Típus BFa=Tömb(1..Max,BFaelemMutató) BFaelem=Rekord(érték: Elemtípus, szülő: BFaelemMutató) Egy ilyen fára persze másféle műveleteket definiálhatunk. 6/33
7 Fák Üres(bf): Ciklus i=1-től N-ig bf(i):=sehova Ciklus vége Beilleszt(bf,a,b): {a szülője b-nek} Tartalom(bf(b)).BFaelemMutató:=bf(a) 7/33
8 Nem bináris fák A fa rekurzív adatszerkezet jellemzői: sokaság: azonos típusú elemekből áll; akár 0 db elemet tartalmazhat; Üres: rekurzív nullelem, kitüntetett konstans; Fraktál (=önhasonlóság) tulajdonság: a részei ugyanolyan szerkezetűek, mint az egész; nem lineárisan rendezett (azaz nem sorozatféle): bármely elemének 0, 1, 2 (közvetlen) rákövetkezője lehet; minden elemnek legfeljebb egy (közvetlen) előzője van. 8/33
9 Nem bináris fák A fa rekurzív adatszerkezet ábrázolása: Típus TFa=Rekord (elem: TElem ágak: Sorozat(TFa)) Egy speciális változat (ágszám felső korláttal): Típus TFa=Rekord (elem: TElem db: Egész ág: Tömb(1..Max,TFa)) 9/33
10 Nem bináris fák A fa rekurzív adatszerkezet műveletei: Üres:Fa üres?(fa):logikai Egyeleműfa(Elem):Fa gyerekszám(fa):egész Beilleszt(Fa,Fa):Fa {NemDef} Gyökérelem(Fa):Elem {NemDef} Gyökérmódosít(Fa,Elem):Fa {NemDef} Gyerek(Fa,Egész):Fa {NemDef} 10/33
11 Nem bináris fák A fa műveletei megvalósítása dinamikus láncolással: Üres(f): f:=sehova Eljárás vége. üres?(f): üres?:=(f=sehova) Egyeleműfa(e): Lefoglal(f,(e,Üressorozat)); Egyeleműfa:=f 11/33
12 Nem bináris fák A fa műveletei megvalósítása dinamikus láncolással: gyerekszám(f): gyerekszám:=elemszám(tartalom(f).ágak) Gyökérelem(f): Gyökérelem:=Tartalom(f).elem Gyökérmódosít(f,e): Tartalom(f).elem:=e Eljárás vége. gyerekszám(f): gyerekszám:=tartalom(f).db 12/33
13 Nem bináris fák Sorozattal ábrázolva: Beilleszt(mire,mit): Tartalom(mire).ágak:= Végére(Tartalom(mire).ágak,mit) Eljárás vége. Gyerek(f,i): Ha i Elemszám(Tartalom(f).ágak) akkor Gyerek:=Tartalom(f).ágak(i) különben Gyerek:=Üres 13/33
14 Nem bináris fák Tömbbel ábrázolva: Beilleszt(mire,mit): Tartalom(mire).db:=Tartalom(mire).db+1 Tartalom(mire).ág(Tartalom(mire).db):=mit Eljárás vége. Gyerek(f,i): Ha i Tartalom(f).db akkor Gyerek:=Tartalom(f).ág(i) különben Gyerek:=Üres 14/33
15 Nem bináris fák alkalmazás A fa elemszáma elemszám(f): Ha üres?(f) akkor elemszám:=0 különben s:=1 Ciklus i=1-től Tartalom(f).db-ig s:=s+elemszám(tartalom(f).ág(i)) Ciklus vége elemszám:=s 15/33
16 A fa magassága Nem bináris fák alkalmazás magasság(f): Ha üres?(f) akkor magasság:=0 különben max:=0 Ciklus i=1-től Tartalom(f).db-ig m:=magasság(tartalom(f).ág(i)) Ha m>max akkor max:=m Ciklus vége magasság:=max+1 16/33
17 Bináris ábrázolás: Nem bináris fák binárisan balra az 1. gyerek jobbra a következő testvér /33
18 Nem bináris fák binárisan Gyerek(f,i): Ha i=1 akkor Gyerek:=Tartalom(f).bal különben Gyerek:=Testvér(Tartalom(f).bal,i) Testvér(f,i): Ha i=2 akkor Testvér:=Tartalom(f).jobb különben Testvér:=Testvér(Tartalom(f).jobb,i-1) 18/33
19 Nem bináris fák binárisan Elsőgyerek(f): Elsőgyerek:=Tartalom(f).bal Következőgyerek(gy): Következőgyerek:=Tartalom(gy).jobb Vanméggyerek(gy): Vanméggyerek:=(Tartalom(gy).jobb sehova) 19/33
20 Nem bináris fák binárisan Gyerek(f,i): gy:=elsőgyerek(f) Ha i=1 akkor Gyerek:=gy különben Ciklus j=2-től i-ig gy:=következőgyerek(gy) Ciklus vége Gyerek:=gy 20/33
21 Nem bináris fák binárisan Fa "fordított" ábrázolása, a levelektől vissza: Ha a fa elemei címezhetőek is (pl. sorszámuk van), akkor elképzelhető egy olyan statikusan láncolt ábrázolás, amikor azt adjuk meg minden elemről, hogy ki van a fában fölötte. Típus Fa=Tömb(1..Max,Faelem) Faelem=Rekord(érték: Elemtípus, szülő: 0..Max) Ez ugyanaz, mint a bináris fáknál! 21/33
22 Kérdezőfa A kérdezőfa egy olyan bináris fa, amelyre teljesülnek az alábbi tulajdonságok: A fának n levele van, amelyek balról jobbra sorrendben az 1,,n számokat tartalmazzák. A fának n-1 belső pontja van, mindegyiknek 2 gyereke. Minden p belső pont a p bal-részfájában levő levélértékek maximumát tartalmazza. Minden kérdéshez költségek tartoznak, vagy a kérdések száma korlátozott vagy a nem válaszok száma korlátozott... A kérdezőfát úgy építjük fel, hogy a kérdések összköltsége minimális legyen! 22/33
23 A kérdezőfa használata: Kérdezőfa Induljunk ki a fa gyökeréből (az 1-es elemből)! Amíg az aktuális pont nem levél, kérdezzünk rá az aktuális ponthoz tartozó értékre (a keresett érték -e nála)! Ha a válasz igen, akkor lépjünk a fában balra, egyébként pedig jobbra! Statikus láncolással: Típus Kérdezőfa=Tömb(1..Max,Faelem) Faelem=Rekord(érték,ár: Egész, bal,jobb: 0..max) 23/33
24 Kérdezőfa Kérdés(kf,p,S): p:=1; S:=0 Ciklus amíg kf(p).bal>0 {vagy kf(p.jobb)>0} S:=S+kf(p).érték; Be: V Ha V="igen" akkor p:=kf(p).bal különben p:=kf(p).jobb Ciklus vége Eljárás vége. 24/33
25 Kérdezőfa Kérdezőfa előállítása kérdésköltségek esetén: Jelölje K(x) a kérdezőfában a gyökértől az x levélig haladó úton a belső pontok kérdéseihez tartozó értékek összegét. Ha a gondolt szám x, akkor a kitalálásának költsége K(x). Az a kérdezőfa optimális, amelyre a K(x) értékek maximuma a lehető legkisebb. A kérdezőfa előállítása: dinamikus progarmozás! 25/33
26 Szófák A szófa: nem bináris fa a gyökere üres a szavak felülről lefelé olvashatók hol a szó vége? hány gyerek lehet? 26/33
27 Szófák A szófa: jelöljük a szóvégeket! 27/33
28 A szófa ábrázolása: Szófák indexeljük a következő betűvel a szófa további részét; jelezzük, hogy szó végén vagyunk-e! Típus SzóFa=Rekord (betű:tömb('a'..'z':szófa, vége:logikai) 28/33
29 Szófák Szó keresése: Bennevan?(szf,s): Ha Tartalom(szf).vége és üres?(s) akkor Bennevan?:=igaz különben ha üres?(s) akkor Bennevan?:=hamis különben ha üres?(tartalom(szf).betű(első(s))) akkor Bennevan?:=hamis különben Bennevan?:=Bennevan?(Tartalom(szf). betű(első(s)),elsőnélküli(s)) 29/33
30 Szófák Szó beillesztése: Beilleszt(szf,s): Ha üres?(s) akkor Tartalom(szf).vége:=igaz különben Ha üres?(tartalom(szf).betű(első(s))) akkor Lefoglal(Tartalom(szf).betű(első(s)) Beilleszt(Tartalom(szf).betű(első(s)), elsőnélküli(s)) 30/33
31 Szófák Problémák: minden elemhez annyi mutató kell, ahány betű van az ábécében; kérdéses a magyar ábécével való indexelés; sok faelemnél nincs is elágazás, azaz egyetlen ág meg tovább. Ötlet: Indexelés helyett logaritmikus keresés rendezett tömbben. Kérdés: Lineáris is elég rendezetlen tömbben? 31/33
32 Szófák A szófa tömörítése: vonjuk össze az elágazás nélküli csomópontokat! 32/33
33 Fák 3. előadás vége
Adatszerkezetek I. 9. előadás
Adatszerkezetek I. 9. előadás Nem bináris fák A fa rekurzív adatszerkezet jellemzői: sokaság: azonos típusú elemekből áll; akár 0 db elemet tartalmazhat; Üres: rekurzív nullelem, kitüntetett konstans;
Bináris fa. A fa (bináris fa) rekurzív adatszerkezet: ÜresFa. BinFa:= Rekord(Elem,BinFa,BinFa) ÜresFa. Fa := Rekord(Elem,Fák)
Fák, bináris fák Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2017.02.03. 7:50 2/68 Bináris fa: példák sin(b(i)+a*x) Sin +
Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A
Bináris fa. A fa (bináris fa) rekurzív adatszerkezet: ÜresFa. BinFa:= Rekord(Elem,BinFa,BinFa) ÜresFa. Fa := Rekord(Elem,Fák) Fák
Fák, bináris fák Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) Fák 2015.07.14. 10:15 2/42 Bináris fa A fa (bináris fa) rekurzív
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Algoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
Hierarchikus adatszerkezetek
5. előadás Hierarchikus adatszerkezetek A hierarchikus adatszerkezet olyan < A, R > rendezett pár, amelynél van egy kitüntetett r A gyökérelem úgy, hogy: 1. r nem lehet végpont, azaz a A esetén R(a,r)
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Adatszerkezetek és algoritmusok
2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
17. A 2-3 fák és B-fák. 2-3 fák
17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak
Rendezések. Összehasonlító rendezések
Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk
Haladó rendezések. PPT 2007/2008 tavasz.
Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés
Algoritmusok és adatszerkezetek I. 1. előadás
Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási
Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa
Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok
Algoritmizálás, adatmodellezés 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből
Algoritmusok és adatszerkezetek I. 4. előadás
Algoritmusok és adatszerkezetek I. 4. előadás A lista olyan sorozat, amelyben műveleteket egy kiválasztott, az ún. aktuális elemmel lehet végezni. A lista rendelkezik az alábbi műveletekkel: Üres: Lista
Multihalmaz, intervallumhalmaz
Multihalmaz, intervallumhalmaz Halmaz féleségek 1. Halmaz Gyümölcsök: {alma,körte,szilva,barack} 2. Multihalmaz Állatok: {(macska,4),(rigó,2),(galamb,3)} 3. Intervallumhalmaz diszjunkt Óráim: {[8-10],[13-14],[16-20)}
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Kupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.
10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia
B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.
B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés
Halmaz típus Értékhalmaz:
Halmaz, multihalmaz Halmaz féleségek 1. Halmaz Gyümölcsök: {alma,körte,szilva,barack} 2. Multihalmaz Állatok: {(macska,4),(rigó,2),(galamb,3)} 3. Intervallumhalmaz diszjunkt Óráim: {[8-10],[13-14],[16-20)}
Adatszerkezetek I. 4. előadás
Adatszerkezetek I. 4. előadás Kupac A kupac olyan véges elemsokaság, amely rendelkezik az alábbi tulajdonságokkal: 1. Minden elemnek legfeljebb két rákövetkezője (leszármazottja) lehet. Azaz bináris fának
Visszalépéses kiválogatás
elépő a tudás közösségébe Informatika szakköri segédanyag Heizlerné akonyi iktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő: Abonyi-Tóth Andor, Zsakó László
Algoritmusok és adatszerkezetek I. 2. előadás
Algoritmusok és adatszerkezetek I. 2. előadás Verem Verem= speciális sorozattípus Műveletei: Üres, üres?, Verembe, Veremből, tető Üres: Verem üres?(verem): Logikai tető(verem): Elem {NemDef} Verembe(Verem,Elem):
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor
Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Algoritmizálás és adatmodellezés tanítása 6. előadás
Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,
Programozási alapismeretek 3. előadás
Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg
Algoritmusok és adatszerkezetek I. 2. előadás
Algoritmusok és adatszerkezetek I. 2. előadás Verem Verem= speciális sorozattípus Műveletei: Üres, üres?, Verembe, Veremből, tető Üres: Verem üres?(verem): Logikai tető(verem): Elem {NemDef} Verembe(Verem,Elem):
PROGRAMOZÁSI TÉTELEK
PROGRAMOZÁSI TÉTELEK Összegzés tétele Adott egy N elemű számsorozat: A(N). Számoljuk ki az elemek összegét! S:=0 Ciklus I=1-től N-ig S:=S+A(I) Megszámlálás tétele Adott egy N elemű sorozat és egy - a sorozat
Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:
Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad
A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Adatszerkezetek I. 6. előadás
Adatszerkezetek I. 6. előadás Táblázat A táblázat olyan halmazféleség, amelyben az elemeket kulcsértékkel azonosítjuk. A szokásos halmazműveletekből azonban csak néhányat definiálunk rá: Üres: Táblázat
Algoritmusok és adatszerkezetek I. 3. előadás
Algoritmusok és adatszerkezetek I. 3. előadás Kupac A kupac olyan véges elemsokaság, amely rendelkezik az alábbi tulajdonságokkal: 1. Minden elemnek legfeljebb két rákövetkezője (leszármazottja) lehet.
10. előadás Speciális többágú fák
10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
Számláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
file:///d:/okt/ad/jegyzet/ad1/b+fa.html
1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes
Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3
Láncolt Listák Adatszerkezetek Adatszerkezet: Az adatelemek egy olyan véges halmaza, amelyben az adatelemek között szerkezeti összefüggések vannak Megvalósítások: - Tömb, Láncolt lista, Fa, Kupac, Gráf,
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,
Fa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:
Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa
A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
Rekurzív algoritmusok
Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:
Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek
A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Adatbázis és szoftverfejlesztés elmélet. Programozási tételek
Adatbázis és szoftverfejlesztés elmélet Témakör 8. 1. Egy sorozathoz egy érték hozzárendelése Az összegzés tétele Összefoglalás Programozási tételek Adott egy számsorozat. Számoljuk és írassuk ki az elemek
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet
7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Bevezetés a programozásba I.
Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
7 7, ,22 13,22 13, ,28
Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem
A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:
A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék
9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
file:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html
1 / 6 2018.01.20. 23:23 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes tananyagának
ELEMI PROGRAMOZÁSI TÉTELEK
ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság
datszerkezetek Bevezetés datszerkezet adatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű a kezeléshez datszerkezet típusok Tömbök lineáris
Algoritmusok és adatszerkezetek I. 5. előadás
Algoritmusok és adatszerkezetek I. 5. előadás Táblázat A táblázat olyan halmazféleség, amelyben az elemeket kulcsértékkel azonosítjuk. A szokásos halmazműveletekből azonban csak néhányat definiálunk rá:
Láncolt listák. PPT 2007/2008 tavasz.
Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt
Shannon és Huffman kód konstrukció tetszőleges. véges test felett
1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,
Algoritmizálás és adatmodellezés tanítása 4. előadás
Algoritmizálás és adatmodellezés tanítása 4. előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: skalár (más szóval elemi vagy strukturálatlan) összetett (más szóval strukturált)
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
Bevezetés a programozásba. 5. Előadás: Tömbök
Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és
5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E
5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus
Adatszerkezetek 1. Dr. Iványi Péter
Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk
Algoritmizálás és adatmodellezés 2. előadás
Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,
Bináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor
Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív
Elemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
Algoritmizálás, adatmodellezés 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből
15. A VERSENYRENDEZÉS
15. A VERSENYRENDEZÉS A versenyrendezés (tournament sort) a maximum-kiválasztó rendezések közé tartozik, ugyanis az elemek közül újra és újra kiválasztja (eltávolítja és kiírja) a legnagyobbat. Az eljárás
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán