Számoljunk a megfelelő pontossággal
|
|
- Emma Borosné
- 5 évvel ezelőtt
- Látták:
Átírás
1 A mi esetünkben is az A tömböt elképzelhetjük úgy, mint egy sok részecskéből álló rendszert, amelynek állapotát az elemeinek értéke határozza meg. Célunk egy olyan állapot elérése, amely optimális számunkra. Legyen f egy függvény, amelyet arra fogunk felhasználni, hogy megállapítsuk a rendszer állapotát. Minden egyes i, j, k, A tantárgy (vagy neki megfelelő tanár) i-napon, j-órában, k-osztályban megtartható-e, pontosabban milyen mértékben tartja be az általunk megszabott kényszereket, ez az érték annál nagyobb, minél több kényszernek szegül ellen. Természetesen különböző prioritásokat kell meghatároznunk (tanulók, tanárok), amelyek a programkészítő feladatai. Ezen függvényértékek összege kifejezésre juttatja, hogy azadott állapot menynyire optimális. Ha ezt az értéket a rendszerünk enegiájának tekintjük, akkor az órarendkészítő algoritmusunk nem más mint a Metropolis algoritmus. Ebben az esetben az A tömbünk kezdeti értékét úgy kapjuk meg, hogy véletlenszerűen feltöltjük a tömböket. Az optimális megoldáshoz úgy jutunk el, hogy az A tömb elemeinek a cserélgetésével próbáljuk csökkenteni a rendszrenergiáját. Tehát algoritmusunkat visszavezettük egy fizikai átalakulásra. Surányi Béla, Bolyai Farkas Líceum, Marosvásárhely Könyvészet: 1. Yoshikai Shirai, Jun-ici-Tsuji: Mesterséges intelligencia (Novotrade 1987) 2. Fizika - tankönyv a XII. osztály számára 3. Emile Aarts, Ian Korst: Simulated annealing & Boltzmann Machines Számoljunk a megfelelő pontossággal Kémiai tanulmányaink során sokszor kell számításokat végeznünk az irodalomban (tankönyvben) megadott számokkal, vagy saját méréseink eredményeit kell hasonló számítások segítségével a megfelelő módon kifejezni. A megfelelő mód arra vonatkozik, hogy mind a készen kapott számok, mind a saját mérési eredményeink hibákkal terheltek (véletlen hibákkal), így csak bizonyos pontossággal (valószínűséggel) közelítik meg a valódi (hibamentes) értéket. Ez utóbbit elvileg sohasem ismerjük, kivéve egyes tárgyak, személyek megszámlálását (pl. pontosan 12 diák van a csoportban), vagy a definiált mennyiségeket (pl. a szén bizonyos izotópjának atomtömege pontosan 12,0000). Ha nem is ismerhetjük meg a valódi értéket, statisztikai meggondolások alapján megadhatjuk (kiszámíthatjuk), hogy számolásunk eredménye mekkora valószínűséggel közelíti meg ezt az értéket. Vagyis, föl kell tüntetnünk eredményeink pontosságát, megbízhatóságát. Erre nézve több lehetőség van. Nemzetközi megállapodás szerint (szignifikáns-számjegy konvenció) a pontosságot az eredmény kifejezésmódjával tüntetjük fel oly módon, hogy csak annyi számjegyet írunk ki, hogy az utolsóelőtti még pontos (biztos) legyen, az utolsó pedig helyi értékének 1 egységével bizonytalan. így pl. az 5,00 szám azt jelenti, hogy valódi értéke 5 ± 0,01 intervallumban van. Más szóval, ha "csak" ennyire pontos az eredmény, nincs jogunk kettőnél több (pl. 5,000) tizedessel kifejezni. Ez látszólagos pontosságot jelentene, ami éppolyan hiba mint egyéb pontatlanság. Innen adódik a probléma, ugyanis kézi, vagy nagy számítógéppel végezve számításainkat, az eredmény rendszerint annyi számjeggyel jelenik meg, ahányra hely van a készülékben, s hogy bizonyítsuk, hogy milyen "pontosan" számoltunk, mindezt ki is írjuk. Helyesen eljárva, számításaink eredményét arra a megfelelő számjegyszámra kell hozni, csökkenteni, le- vagy felkerekíteni, amerre az adott pontosság feljogosít. A továbbiakban erről lesz szó. Közelítsük meg a kérdést lépésenként, s előbb újítsunk fel néhány alapfogalmat. Egy mérés hibáján (h) a méréseredmény (x) és a valódi érték (V) közti különbséget értjük: (1)
2 Mivel a V-t nem ismerjük, e helyett egy legvalószínűbb értéket, x-et (olvasd: x becsült) kell tekintenünk, amelyet a helyes értéknek fogadunk el. íly módon a mérés hibája: A helyesnek elfogadott érték is sokszor bizonytalan lehet, ezért igen nehéz a mérés hibájának reális felbecsülése. Első megközelítésben, ha a méréseredményeink csak véletlen hibákkal terheltek, a párhuzamos méréseredmények számtani középértékét tekintjük a legvalószínűbb helyes (valódi) értéknek: (2) (3) így, az egyes mérések hibája (a középértéktől való eltérése, deviációja): Az(I), (2), (4) egyenletekkel kifejezett hibát abszolút hibának nevezzük. Nyilvánvaló, hogy a hiba mértéke nem ugyanaz, ha például 2 cm-t tévedünk 30 cm, vagy pedig 3 km mérésekor. Ezért célszerű a hibát a mért mennyiség helyes értékére vonatkoztatni. Az így kapott kifejezést relatív hibának nevezzük, s rendszerint %-ban adjuk meg: E hiba nagysága dönti el a végeredményben kiírható számjegyek számát a szignifikáns-számjegy konvenciónak megfelelően. A számban a számjegyek különböző szerepet töltenek be. Az 1 -tői 9-ig terjedő számjegyek szignifikánsak (= jelentenek valamit). A zérus lehet szignifikáns, vagy nem szignifikáns. Minden zérus, amely az 1 9 számjegyek előtt áll, nem szignifikáns. Pl. 14 cm = 0,14 m = 0,00014 km. Mind - három szám csak két szignifikáns számjegyet tartalmaz, az utóbbi kettőben a zérusok csak a tizedespont helyének a kijelölésére szolgálnak. Ez könnyen belátható, ha ugyanazt a három számot a következő formában írjuk f el: 14 cm = 14.10~ 2 m = 14.10~ 5 km. Az első szignifikáns számjegy utáni zérusok szignifikánsak, pl. 1,0035 öt szignifikáns számjegyet tartalmaz. De tekintsük az Avogadro-számot: 6, atom (molekula)/mól. Ez négy szignifikáns számjegyet tartalmaz. A 6,0,2 pontosan ismert, a következő számjegy bizonytalan, valószínűleg szintén 2. Következésképpen a 6022 utáni számjegyek nem ismeretesek, ezeket húsz darab zérussal helyettesítjük ( ). Nyilván, ezek a zérusok nem szignifikánsak, csak a szám nagyságát jelzik Lássuk most néhány példán, hogyan alkalmazzuk a számjegy-konvenciót? A számfeladatok megoldása során készen kapott számokkal számolunk (pl. atomtömegek, molekulatömegek, térfogatok, stb.), s mivel ezek is kísérleti, mérési adatok, nem pontos számok. Tegyük fel, hogy e számok is az említett konvenciónak megfelelően vannak feltüntetve. így, a számolásokat rendszerint különböző pontosságú számokkal végezzük, s a kérdés az, hogy mekkora lesz a végeredmény hibája, hány számjeggyel kell feltüntetnünk a végeredményt? Számításaink során a hibák bizonyos törvényszerűség szerint halmozódnak (hibaterjedés törvényei). Ez mindenek előtt az alkalmazott műveletektől függ. a) Összeadás és kivonás esetén a végeredmény abszolút hibája a tényezők abszolút hibájának összegével egyenlő. Hogyan fejezzük ki helyesen az alábbi összeadás végösszegét: (4) (5)
3 Nyilvánvaló, hogy igen különböző pontosságú számokról van szó, s a végeredmény nem lehet 31,3159. Alkalmazzuk a szabályt. Az abszolút hibák összege: 0,1 + 0,01 + 0,0001 = 0,1. Ez azt jelenti, hogy az első tizedes már pontatlan, ennél többet nem írhatunk ki, így az eredmény 31,3 ± 0,1. Mivel a hibák összegének a kerekítésénél a legnagyobb hiba a döntő, a szabályt olyan formában is alkalmazhatjuk, hogy a végeredmény abszolút hibája a legpontatlanabb tényező abszolút hibájával egyenlő. Úgy is eljárhatunk, hogy a tényezőket az összeadás (kivonás) előtt a legpontatlanabb pontosságára kerekítjük, s a műveletet csak azután végezzük el. A fenti példa esetében: Nem ritka eset, hogy olyan számokkal kell számolnunk, amelyek pontossága jobban ismert, pl. 0,50 (± 0,02). A zárójelben szereplő szám a (véletlen) hibát jelenti standard deviációban kifejezve (több mérés középértékének ú.n. középhibája). Ez azt jelenti, hogy az adott szám valódi értéke nagyvalószínűséggel (ezt olykor meg is adják) a 0,50 ± 0,02 tartományban van. A standard deviációnak nem tulajdonítunk határozott előjelet, ugyanis, véletlen hibákról lévén szó, egyenlő a valószínűsége, hogy a hiba pozitív vagy negatív. Ebből következik, hogy a számított eredménynek számos lehetséges standard deviációja (hibája) lehet. Vegyük az alábbi példát: + 0,50 (±0,02) 4,10 (±0,03) A feladat tehát ilyen alakú: y = a + b c. Az összeg hibája (bizonytalansága): a) maximálisan ±0,1 lehet, ha a standard deviációk mind pozitívak, vagy mind negatívak (nem tudjuk) b) minimálisan zérus lehet, ha a három hiba úgy kompenzálódik, hogy összege zérus legyen (ezt sem tudjuk) c) legvalószínűbb, hogy az összeg hibája a két szélsőséges érték közé esik. Statisztikai meggondolások alapján kiszámítható, hogy az eredmény legvalószínűbb hibája (standard deviációja, s y ): Az s 2 neve variancia. A mi esetünkben tehát: (6) Tehát, a keresett összeg 2,63 ± 0,06. b) Szorzásnál és osztásnál más szabály érvényes: a végeredmény relatív hibája a tényezők relatív hibájának összegével egyenlő. A relatív hiba: a szám hibája osztva magával a számmal. Pl. 1,04.97,18 = 101,0672. Kérdés, hogy az eredmény megadható-e ebben a formában? Az első tényező relatív hibája 0,01:1,04 = 0,01 = 10~ 2. A másodiké 0,01:97,18 = A kettő összege = Az eredmény hibája (bizonytalansága) tehát, 101, = l.a szorzás végeredménye tehát, 101. A relatív hibák összegében is rendszerint a legnagyobb a döntő, s ilyenkor a szorzat relatív hibája is a legpontatlanabb tényező relatív hibájával egyenlő. Osztásnál ugyanúgy járunk el. Pl. 174:97,18 = 1, Az első tényező relatív hibája 1:174
4 = 5, A végeredmény bizonytalansága tehát, 1, = 0,01. A végeredmény: 1,79. Pontosabban megadott számokkal (ismerve a standard deviációt) is hasonlóan azámolunk. Pl.: Először kiszámítjuk az egyes tényezők relatív hibáit (standard deviációját): Ebben az esetben is az eredmény relatív varianciája, (s y ) 2 (6. egyenlet) egyenlő az egyes relatív varianciák összegével: A végeredmény abszolút standard deviációja tehát s = 0,0104. (±0,029) = ± 0,0003. így a végeredmény: y = 0,0104 (± 0,003). c) Hatványozás és gyökvonás. Legyen: Ha az exponens 1/x, akkor gyökvonásról van szó, továbbá feltételezzük, hogy x pontos szám, nem tartalmaz bizonytalanságot. Levezethető, hogy ha a hibája Aa, akkor az eredmény hibája: vagyis a számítási eredmény Ay/y relatív hibája egyenlő az a alap Aa/a relatív hibája szorozva az x exponenssel. A relatív hibát standard devianciában megadva: (7) így, pl. négyzetgyökvonásnál, mivel x = 1/2, egy szám négyzetgyökének a relatív pontossága feleakkora, mint magának a számnak a pontossága. P1.32 =?32 relatív pontossága 1 : 32, így a gyökéé 1:64. Zsebszámítógéppel azt kapjuk, hogy 32 = 5, Ennek pontossága: 5, /64 = 0,088 = 0,1. Tehát helyesen32= 5,7. Más példa számolásra:1,00 =? Mivel 1,00 bizonytalansága 0,01, a megadott szám pontos értéke 1,01 és 0,99 között van. MivelV1,01 = 1,005, és0,99 = 0,995, a gyökben ;sak a harmadik tizedes pontatlan, tehát l,00 :1,000. Még egy példa: egy gömb d = 2,15 cm átmérőjének a mérésekor a standard deviáció ± 0,02 cm. Mekkora a V térfogat standard deviációja és pontos értéke?
5 A relatív standard deviáció: A V abszolút standard deviációja S v =5,20.0,0028 =0,15 = 0,2. Tehát V = 5,2 (± 0,2). d) Hibaterjedés logaritmus számításakor. Legyen: vagyis y abszolút hibáját az a relatív hibája határozza meg. Pl.: A (9) alapján: Tehát Iog y = 2,699 (±0,004). Az eredmény általánosítható is. Ha egy szám pontossága 0,01 (mint a példánkban), úgy logaritmusa 0,004 egységre bizonytalan. Megfordítva, ha Iog x pontatlansága 0,004 egység, úgy x relatív pontatlansága 0,01. Ezt a ph-számításoknál értékesíthetjük úgy, hogy a számított ph ( Iog H) értékeket csak két tizedes pontossággal adjuk meg. Ha három tizedes pontossággal adnánk m eg, pl.: ph = 5,042, az ennek megfelelő hidrogénion-koncentráció pontossága 0,0025 lenne a ténylegest),01 helyett, ami azért sem valószínű, mert a számítás alapjául szolgáló egyensúlyi állandók relatív pontossága ennél jóval kisebb. Függelék I. A standard deviáció kiszámítása. Ha több párhuzamos mérésünk eredménye rendre xi,x2,... x n, a mérések számtani közepe x (lásd a 3. egyenletet). Azxgyenes mérések eltérése (deviációja) a középértéktől rendre d 1 =x 1 x;d 2 = X 2 x;... d n = x n x, az egyes mérések standard deviációja: A középérték standard deviációja pedig a x =. II.A kerekítés szabályai. a) Ha az elhanyagolandó számjegy nagyobb, mint 5, az előtte levő számot 1-gyel növeljük. Pl.: 32,147 helyesen kerekítve 32,15. b) Ha az elhanyagolható számjegy kisebb, mint 5, egyszerűen elhagyjuk. Pl.: ha a 7362-es számot, amely ±0,001 pontosságú 0,01 pontosságúra kerekítjük, az eredmény 7, Ezt helytelen lenne 7360 formában felírni, mert ez ismét 0,001 pontosságú lenne. c) Ha az elhagyandó számjegy pontosan 5, s ha az előtte álló számjegy páros, akkor az utolsó számot elhagyjuk. 4,865 -> 4,86. Ha az előtte álló számjegy páratlan, azt megnöveljük 1-gyel, s az utolsót elhagyjuk. 17,035-»- 17,04. Kékedy László
Értékes jegyek fogalma és használata. Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék
Értékes jegyek fogalma és használata Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Értékes jegyek száma Az értékes jegyek számának meghatározását
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
A SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24
OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5
352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Typotex Kiadó. Bevezetés
Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 3. Hibaszámítás, lineáris regresszió Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Hibaszámítás Hibák fajtái, definíciók Abszolút, relatív, öröklött
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
4. A mérések pontosságának megítélése
4 A mérések pontosságának megítélése 41 A hibaterjedési törvény Ha egy F változót az x 1,x,x 3,,x r közvetlenül mért adatokból számítunk ki ( ) F = F x1, x, x3,, x r (41) bizonytalanságát a hibaterjedési
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Negatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
Hatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Komplex számok trigonometrikus alakja
Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =
PRÓBAÉRETTSÉGI MEGOLDÁSA: MATEMATIKA, KÖZÉP SZINT. 3, ahonnan 2 x = 3, tehát. x =. 2
FELADATSOR MEGOLDÁSA I. rész 1.1.) a) igaz b) hamis. 1..) A helyes megoldás: b) R = r 1..) x = 7 = ahonnan x = tehát x =. 1.4.) Az oszlopdiagramból kiolvasható hogy a két üzem termelése között a legnagyobb
1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
1. Gauss-eloszlás, természetes szórás
1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 09 ÉRETTSÉGI VIZSGA 20 május MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók
MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.
1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
5. feladatsor megoldása
megoldása I. rész ( ) = 1. x x, azaz C) a helyes válasz, mivel a négyzetgyökvonás eredménye csak nemnegatív szám lehet.. A húrnégyszögek tétele szerint bármely húrnégyszög szemközti szögeinek összege 180.
V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői
V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
First Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet
Komplex számok algebrai alakja
Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z
Előadó: Horváth Judit
Előadó: Horváth Judit Az új NAT fejlesztésterületeihez kapcsolódó eredménycélok Alapműveletek - Helyesen értelmezi a 10 000-es számkörben az összeadást, a kivonást, a szorzást, a bennfoglaló és az egyenlő
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
4. évfolyam A feladatsor
Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat
2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam
01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás
c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3
1. Az alái feladatok egyszerűek, akár fejen is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonan erre a papírra írja! a.) Írja fel egy olyan egész együtthatós másodfokú egyenlet
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell
A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési
TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
A fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 017/018-as tanév. forduló Haladók II. kategória Megoldások és javítási útmutató 1. Egy tanár kijavította egy 1 f s csoport dolgozatait.
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
Matematika. 1. évfolyam. I. félév
Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.
Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba