Az informatika elméleti alapjai 2 elővizsga december 19.
|
|
- Gábor Horváth
- 6 évvel ezelőtt
- Látták:
Átírás
1 Név (aláírás): Az informatika elméleti alapjai 2 elővizsga december 19. A vizsgadolgozat 1. feladatára helyes válaszonként 1-1 pont kapható, a 2-3. feladatok megoldásáért 6-6 pont, a 4. feladatra helyes válaszonként 3 pont jár. Az 5. feladat mindenre kiterjedő kidolgozásáért 15 pont kapható, ehhez bizonyítás nem szükséges. Így a teljes dolgozatra legfeljebb 60 pont kapható. Jegyek: 5-ös (jeles): összpontszám 51, 4-es (jó): 42 összpontszám 50, 3-as (közepes): 33 összpontszám 41, 2-es (elégséges): 24 összpontszám 32, 1-es (elégtelen): összpontszám < 24.
2 1. (a) Legyen M = (Q,Σ,Γ,δ,q 0,q i,q n ) egy tetszőleges egyszalagos Turing-gép. Ha δ(q,a) = (r, b, R), akkor mi lesz az uqav konfiguráció rákövetkezője (v ε)? A) urbrv B) ubrrv C) urbv D) ubrv (b) A következő mondatnak azt a folytatását jelölje be, amelyik HAMIS! A PCP probléma (nyelv)... A) NP-teljes B) eldönthetetlen C) R D) RE. (c) Legyen f(n) = 2 2n +n és g(n) = 4 n +10n 3. Melyik igaz? A) f(n) = O(g(n)) B) g(n) = O(f(n)) C) mindkettő D) egyik se (d) LegyenM = ({q 0,q i,q n },{0,1},{0,1, },δ,q 0,q i,q n ), ahol az átmenetekδ(q 0,0) = (q 0,,L), δ(q 0,1) = (q i,,l),δ(q 0, ) = (q i,0,l). (A balra lépés kódja 000.) Ekkor M = A) B) C) D) (e) Fejezze be a tanult tétel kimondását! Minden k-szalagos (k 1), legalább lineáris, f(n) időkorlátos Turing-géphez van vele ekvivalens A) O(f(n) 2 ) időkorlátos Turing-gép. C) O(n 2 ) időkorlátos Turing-gép. B) 2 O(f(n)) időkorlátos Turing-gép. D) 2 kf(n) időkorlátos Turing-gép. (f) Egészítse ki a mondatot úgy, hogy az állítás igaz legyen! Ha..., akkor P=NP. A) ha minden NP-beli probléma polinom időben visszavezethető egy NP-teljes problémára B) létezik NP-teljes probléma NP-ben C) ha minden NP-teljes probléma eldönthető D) SAT P-beli (g) Legyen M = ({q 0,q i,q n },{0,1},{0,1,2, },δ,q 0,q i,q n ), ahol az átmenetek δ(q 0,0) = (q 0,,R),δ(q 0,1) = (q 0,2,R),δ(q 0,2) = (q i,1,l),δ(q 0, ) = (q 0,0,L). Minden további átmenet q n -be viszi a gépet. Az alábbi 3 állítás közül melyik igaz q q 0 2 M egy lehetséges konfigurációátmenete, 2. M elfogadja az egyetlen 2-ből álló szót, 3. M eldönti az általa felismert nyelvet. A) igaz, hamis, hamis B) hamis, igaz, igaz C) hamis, hamis, igaz D) hamis, hamis, hamis (h) Egy M nemdeterminisztikus Turing-gép egy u szóra vett számítási fájában 5 ág van, két számítás 7 illetve 8 konfigurációátmenet után elfogadó konfigurációban, míg a másik három számítás 3, 7 illetve 10 konfigurációátmenet után elutasító konfigurációban vágződik. Ekkor M futási ideje (időigénye) az u szóra: A) 5 B) 8 C) 10 D) 35 (i) Nyelveket és tulajdonságaikat párosítunk. Melyik egy lehetséges helyes párosítás? 1. L átló, 2. L u, 3. L halt 4. 3SAT 5. RE-ben van, de nem R beli, 6. komplementere R-beli. 7. komplementere nem R-beli. 8. nincs RE-ben. A) B) C) D)
3 2. Az M = {q 0,q 1,q 2,q 3,q i,q n },{0,1},{0,1,,#},δ,q 0,q i,q n determinisztikus Turing-gép állapotátmenetei az alábbi átmenetdiagrammal vannak megadva. 0/0,R 1/1,R #/#,R 1/1,R #/#,R q 0 0/#,R q 1 /,L 0/0,L #/#,L q 2 q i /,S /,R q 3 1/#,L /,S q n 0/0,L 1/1,L #/#,L (a) Adjuk meg az 100 szóhoz tartozó kezdőkonfigurációból valamely megállási konfigurációba a konfigurációátmenetek sorozatát! (b) Adjuk meg az M Turing gép által felismert L(M) nyelvet! 3. Adjunk meg egy Turing-gépet, ami az f(a n ) = ba 2n b (n N) szófüggvényt számítja ki!
4 4. (a) Definiálja a számosság fogalmát! Mit mond ki a Cantor-Bernstein tétel? Adjon meg egy szavakkal, nyelvekkel kapcsolatos continuum számosságú halmazt! (b) Definiálja a k-szalagos, determinisztikus Turing gépet (k 1)! Adja meg a komponensek jelentését! (Az átmenet függvényt is!!!) (c) Mit értünk kiszámítható szófüggvény alatt? Adja meg a visszavezetés definícióját! (d) Mit mondhatunk egy L nyelvről eldönthetőség szempontjából, ha tudjuk, hogy L és a komplementere is felismerhető Turing géppel? Vajon az L u nyelv komplementere felismerhető-e Turing géppel? Miért?
5 (e) Definiálja az NP-teljesség fogalmát! Milyen bonyolultsági osztályok közötti összefüggés következne abból, ha valamelyik NP-teljes nyelv eldöntésére polinom idejű determinisztikus algoritmust találnánk? (f) Definiálja a SPACE(f(n)), NSPACE(f(n)) bonyolultsági osztályokat. Van-e olyan NPbeli nyelv, ami nem dönthető el determinisztikusan polinom tárral? Miért? (g) Definiálja az Elér nyelvet! Mondja ki az Elér nyelv determinisztikus tárbonyolultságáról tanult tételt, Savitch tételét, valamint annak következményét NPSPACE-szel kapcsolatosan. (h) Mondja ki a bonyolultsági osztályok hierarchiatételét! Mely tartalmazás valódiságát tudjuk, és mely tartaémazásokról sejtjük, hogy valódiak?
6 5. NP-teljes gráfproblémák.
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
RészletesebbenTuring-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1
Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:
Részletesebbendefiniálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
RészletesebbenDeníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
RészletesebbenSzámításelmélet. Will június 13. A kiszámíthatóság fogalma és a Church-Turing tézis
Számításelmélet Will 2010. június 13. A kiszámíthatóság fogalma és a Church-Turing tézis. A Turing gép, mint algoritmus modell. A rekurzív és a rekurzívan felsorolható nyelvek. Algoritmikusan eldönthet
RészletesebbenLogika és számításelmélet. 10. előadás
Logika és számításelmélet 10. előadás Rice tétel Rekurzíve felsorolható nyelvek tulajdonságai Tetszőleges P RE halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. P triviális, ha P
RészletesebbenLogika és számításelmélet. 12. előadás
Logika és számításelmélet 12. előadás NP lehetséges szerkezete NP-köztes nyelv L NP-köztes, ha L NP, L P és L nem NP-teljes. Ladner tétele Ha P NP, akkor létezik NP-köztes nyelv. (biz. nélkül) NP-köztes
RészletesebbenBonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
RészletesebbenTesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév
1. oldal, összesen: 6 Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév NÉV:... 1. Legyenek,Q,M páronként diszjunkt halmazok; /= Ř, Q > 2, M = 3. Egyszalagos, determinisztikus Turing gépnek
RészletesebbenLogika és számításelmélet. 7. előadás
Logika és számításelmélet 7. előadás Elérhetőség, fóliasorok, ajánlott irodalom Előadó: Kolonits Gábor Elérhetőség: 2-708, kolomax@inf.elte.hu Előadások innen tölthetők le: www.cs.elte.hu/ tichlerk Ajánlott
RészletesebbenAlgoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
RészletesebbenNP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
RészletesebbenLogika és számításelmélet. 7. előadás
Logika és számításelmélet 7. előadás Elérhetőség, fóliasorok, ajánlott irodalom Előadó: Tichler Krisztián Elérhetőség: 2-708, ktichler@inf.elte.hu Előadások itt lesznek: www.cs.elte.hu/ tichlerk Elérhetőség,
RészletesebbenLogika és számításelmélet
Logika és számításelmélet 12. előadás Irányítatlan/irányított Hamilton út/kör Hamilton út/kör Adott egy G = (V, E) irányítatlan / irányított gráf ( V = n). Egy P = v i1,..., v in felsorolása a csúcsoknak
RészletesebbenBevezetés a bonyolultságelméletbe gyakorlatok I. A(0, y) := y + 1 y 0 A(x, 0) := A(x 1, 1) x 1 A(x, y) := A(x 1, A(x, y 1)) x, y 1
Bevezetés a bonyolultságelméletbe gyakorlatok I. B. Az Ackermann függvény avagy nem minden olyan egyszerű, mint amilyennek látszik Legyen A(x, y) a következő, rekurzív módon definiált függvény: A(0, y)
RészletesebbenA digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
RészletesebbenFormális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
RészletesebbenBonyolultságelmélet feladatok
Bonyolultságelmélet feladatok Hajgató Tamás Iván Szabolcs Updated: November 26, 2009 1 Függvények nagyságrendje A következő definíciókat használjuk, ahol f, g két N N függvény (mindig fel fogjuk tenni,
RészletesebbenLogika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:28
Bonyolultságelmélet Monday 26 th September, 2016, 18:28 A kurzus teljesítési követelményei 2 Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten
RészletesebbenLogika és számításelmélet Készítette: Nagy Krisztián
Logika és számításelmélet Készítette: Nagy Krisztián LOGIKA RÉSZ 1. Gondolkodásforma vagy következtetésforma Egy F = {A 1, A 2,, A n } állításhalmazból és egy A állításból álló (F, A) pár. 2. Helyes következtetésforma
RészletesebbenA Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12
RészletesebbenBonyolultságelmélet. SZTE Informatikai Tanszékcsoport
Bonyolultságelmélet Ésik Zoltán SZTE Informatikai Tanszékcsoport Számítástudomány Alapjai Tanszék A kiszámíthatóság elméletének kialakulása 1900: Hilbert 10. problémája Adott f(x 1,..., x n ) = g(x 1,...
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:27. Bonyolultságelmélet
Monday 26 th September, 2016, 18:27 A kurzus teljesítési követelményei Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten előadáson Pontszám:
Részletesebben1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri.
Számításelmélet Dr. Olajos Péter Miskolci Egyetem Alkalmazott Matematika Tanszék e mail: matolaj@uni-miskolc.hu 2011/12/I. Készült: Péter Gács and László Lovász: Complexity of Algorithms (Lecture Notes,
RészletesebbenFelismerhető nyelvek zártsági tulajdonságai II... slide #30. Véges nemdeterminisztikus automata... slide #21
A számítástudomány alapjai Ésik Zoltán SZTE, Számítástudomány Alapjai Tanszék Bevezetes Bevezetés.................................................... slide #2 Automaták és formális nyelvek Szavak és nyelvek...............................................
RészletesebbenVéges automaták, reguláris nyelvek
Véges automaták, reguláris nyelvek Kiegészítő anyag az lgoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: lgoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 27. augusztus 3. véges automata
RészletesebbenTuring-gép május 31. Turing-gép 1. 1
Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus
RészletesebbenA Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum
RészletesebbenKriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
RészletesebbenTuring-gépek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz VIII. Friedl Katalin BME SZIT március 18.
Turing-gépek Kiegészítő anyag az Algoritmuselmélet tárgyhoz VIII. (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 2016. március 18. A veremautomatáknál az hogy
RészletesebbenTuring-gépek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT augusztus 16.
Turing-gépek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 2017. augusztus 16. A veremautomatáknál az, hogy
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 6. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 6. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2011. március 8. 1. További példák Példa. Legyen L = 3-SZÍNEZHETŐSÉG = { G
RészletesebbenA Számítástudomány alapjai
Mechatronika, Optika és Gépészeti Informatika Tanszék A Számítástudomány alapjai Szemelvények az Elméleti Számítástudomány területéről Fogalmak: Számítástechnika Realizáció, technológia Elméleti számítástudomány
RészletesebbenA Turing-gép. Formális nyelvek III.
Formális nyelvek III. Általános és környezetfüggő nyelvek Fülöp Zoltán SZTE TTIK Informatikai Intézet Számítástudomány Alapjai Tanszék 6720 Szeged, Árpád tér 2. Definíció. Egy Turing-gép egy M = (Q,Σ,Γ,
RészletesebbenAutomaták mint elfogadók (akceptorok)
Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e
RészletesebbenÁllamvizsga kérdések a matematikus szakon, 2001.
Államvizsga '01, 12. tétel: Algoritmusok bonyolultsága... 1 Államvizsga kérdések a matematikus szakon, 2001. 10. tétel : Algoritmusok bonyolultsága (Számítási modellek, véges automaták, Turinggépek, eldönthet
RészletesebbenLOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET
LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET Készítette: Butkay Gábor és Gyenes József A jegyzet a 2013-2014-es tanév 2. felében lévő Logika és számításelmélet előadások alapján született. A jegyzet nem
RészletesebbenApproximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
RészletesebbenMatematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
RészletesebbenAlgoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 11. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 26. 1. Mahaney-tétel bizonyítása Emlékeztető. Mahaney-tétel
RészletesebbenFunkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
RészletesebbenAlgoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
RészletesebbenElőfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
RészletesebbenMatematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
RészletesebbenFormális nyelvek és automaták vizsgához statisztikailag igazolt várható vizsgakérdések
1. Feladat Az első feladatban szereplő - kérdések 1 Minden környezet független nyelv felismerhető veremautomatával. Minden környezet független nyelv felismerhető 1 veremmel. Minden 3. típusú nyelv felismerhető
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 1. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 1. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. február 1. Az algoritmus naív fogalma Az algoritmus egy eljárás, ami
RészletesebbenNagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
RészletesebbenNagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
RészletesebbenZH feladatok megoldásai
ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a
RészletesebbenEllenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 7. Előadás: Hálózatok, P- és N P-teljes problémák Előadó: Hajnal Péter 2015. tavasz 1. Hálózatok és egy P-teljes probléma Emlékeztető.
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
RészletesebbenSzámítógép és programozás 2
Számítógép és programozás 2 8. Előadás Megoldhatóság, hatékonyság http://digitus.itk.ppke.hu/~flugi/ Elméleti áttekintés a SzámProg 1 tárgyból Algoritmikus eldönthetőség kérdése Bizonyíthatóság kérdése,
RészletesebbenKiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
RészletesebbenSZAKDOLGOZAT. Major Sándor Roland
SZAKDOLGOZAT Major Sándor Roland Debrecen 2009 Debreceni Egyetem Informatikai Kar A P vs. NP probléma vizsgálata Témavezető: Dr. Herendi Tamás Egyetemi adjunktus Készítette: Major Sándor Roland Programtervező
RészletesebbenBonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II.
onyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. 1. Feladat Mutassuk meg, hogy a n/-hosszú kör probléma NP-nehéz! n/-hosszú kör Input: (V, ) irányítatlan gráf Output: van-e G-ben a csúcsok felén
RészletesebbenNyelvek és automaták augusztus
Nyelvek és automaták Csima Judit Friedl Katalin 2013. augusztus Ez a jegyzet a Budapesti Műszaki és Gazdaságtudományi Egyetem mérnökinformatikus hallgatói számára tartott Nyelvek és Automaták tantárgy
Részletesebben6. előadás A reguláris nyelvek jellemzése 2.
6. előadás A reguláris nyelvek jellemzése 2. Dr. Kallós Gábor 2014 2015 1 Tartalom A reguláris nyelvek osztályának jellemzése a körbebizonyítás Láncszabályok A 2. állítás és igazolása Ekvivalens 3-típusú
RészletesebbenFormális nyelvek - 5.
Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenKalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
RészletesebbenHardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések
Hardver és szoftver rendszerek verifikációja Röviden megválaszolható kérdések 1. Az informatikai rendszereknél mit ellenőriznek validációnál és mit verifikációnál? 2. A szoftver verifikációs technikák
RészletesebbenA számítógépes nyelvészet elmélete és gyakorlata. Automaták
A számítógépes nyelvészet elmélete és gyakorlata Automaták Nyelvek és automaták A nyelvek automatákkal is jellemezhetőek Automaták hierarchiája Chomsky-féle hierarchia Automata: új eszköz a nyelvek komplexitásának
Részletesebben1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Részletesebben2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
RészletesebbenFraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
RészletesebbenBizonyítási módszerek ÉV ELEJI FELADATOK
Bizonyítási módszerek ÉV ELEJI FELADATOK Év eleji feladatok Szükséges eszközök: A4-es négyzetrácsos füzet Letölthető tananyag: Emelt szintű matematika érettségi témakörök (2016) Forrás: www.mozaik.info.hu
RészletesebbenKvantum-számítógépek, univerzalitás és véges csoportok
Kvantum-számítógépek, univerzalitás és véges csoportok Ivanyos Gábor MTA SZTAKI BME Matematikai Modellalkotás szeminárium, 2013 szeptember 24. Kvantum bit Kvantum bitek Kvantum kapuk Kvantum-áramkörök
RészletesebbenALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
RészletesebbenModern irányzatok a bonyolultságelméletben: éles korlátok és dichotómia tételek
Modern irányzatok a bonyolultságelméletben: éles korlátok és dichotómia tételek Marx Dániel Paraméteres Algoritmusok és Bonyolultság Kutatócsoport Informatikai Kutatólaboratórium SZTAKI 05. június 5. Kombinatorikus
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenFeladatok. 6. A CYK algoritmus segítségével döntsük el, hogy aabbcc eleme-e a G = {a, b, c}, {S, A, B, C}, P, S nyelvtan által generált nyelvnek!
Feladatok 1. A CYK algoritmus segítségével döntsük el, hogy cabcab eleme-e a G = {a, b, c}, {S, A, B, C, D, E}, P, S nyelvtan által generált nyelvnek! P: S AD EB SS A AB a B DD b C CB c D EC a E AD b 2.
RészletesebbenAlgoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
RészletesebbenNyelv hatványa: Legyen L egy nyelv, nemnegatív egész hatványai,,. (rek. definició) Nyelv lezártja (iteráltja): Legyen L egy nyelv. L nyelv lezártja.
Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális ábécének nevezzük Ábécé: Ábécének nevezzük az univerzális ábécé egy tetszőleges véges részhalmazát Betű: Az ábécé elemeit
RészletesebbenA matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
RészletesebbenAnalízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 3. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Sallai Gyöngyi 2011. február 15. 1. Eldöntő Turing-gépek Emlékeztető. L Σ nyelv pontosan
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
RészletesebbenGRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
RészletesebbenBonyolultságelmélet. Monday 10 th October, 2016, 17:44
Monday 10 th October, 2016, 17:44 NP-teljes gráfelméleti problémák Tétel A Hamilton-Út probléma NP-teljes. NP-teljes gráfelméleti problémák Tétel A Hamilton-Út probléma NP-teljes. Ötlet,,Értékválasztó
RészletesebbenElső zárthelyi dolgozat megoldásai biomatematikából * A verzió
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő
RészletesebbenModellek ellenőrzése és tesztelése
Modellek ellenőrzése és tesztelése Rendszermodellezés imsc gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
RészletesebbenBevezetés a számításelméletbe
Bevezetés a számításelméletbe egyetemi jegyzet Gazdag Zsolt Eötvös Loránd Tudományegyetem, Informatikai Kar, Algoritmusok és Alkalmazásaik Tanszék Lektorálta: Dr. Németh L. Zoltán egyetemi adjunktus A
RészletesebbenTotális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
RészletesebbenALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 9. Előadás. Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter április 12.
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 9. Előadás Előadó: Hajnal éter Jegyzetelő: Hajnal éter 2010. április 12. Alternáló polinomiális idő Emlékeztető. Σ i, Π i Definíció.
Részletesebben1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
RészletesebbenA Peano-görbe. Besenyei Ádám ELTE
A Peano-görbe Besenyei Ádám ELTE A folytonos görbe kifejezés hallatán hajlamosak vagyunk először egy, a szó szoros értelmében egybefüggően megrajzolható vonalra gondolni. A görbe fogalma azonban a vártnál
Részletesebben3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
RészletesebbenCsak felvételi vizsga: csak záróvizsga: közös vizsga: Mérnökinformatikus szak BME Villamosmérnöki és Informatikai Kar. 2015. május 27.
Név, felvételi azonosító, Neptun-kód: MI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Mérnökinformatikus szak BME Villamosmérnöki
RészletesebbenIdőzített átmeneti rendszerek
Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek
RészletesebbenA SZÁMÍTÁSTUDOMÁNY ALAPJAI
Írta: ÉSIK ZOLTÁN A SZÁMÍTÁSTUDOMÁNY ALAPJAI Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Szegedi Tudományegyetem Természettudományi és Informatikai Kar Számítástudomány Alapjai Tanszék
Részletesebben