Válogatás a kompetenciamérések
|
|
- Fruzsina Kissné
- 6 évvel ezelőtt
- Látták:
Átírás
1 I. Válogatás a kompetenciamérések feladataiból Az ORSZÁGOS KOMPETENCIAMÉRÉS 2001-ben indult el, és mára már Európa és a világ szakmailag és szolgáltatásaiban legkorszerűbb mérési rendszerei között tartják számon. A részvétel kevés kivételtől eltekintve minden érintett diák számára kötelező. A munkafüzet első felében a korábbi évek feladataiból válogattunk feladatokat, az Oktatási Hivatal engedélyével, amelyet ezúton köszönünk meg. A feladatokban bemutatott szituációk többnyire életszerűek, azt igénylik, hogy a hétköznapi életben használjuk matematikai jártasságunkat. A korábbi évek tesztfüzetei megtalálhatók a oldalon. 1. Terem A következő ábrán egy terem alaprajza látható, az X pontban áll Péter. Melyik ábra mutatja helyesen az betűjelét! pontban álló Péter által belátható teremrészt? Satírozd be a helyes ábra 6
2 2. Sokszög forgatása A következő képen egy síkidom látható. Ezt a síkidomot a síkban elforgatjuk. Melyik ábrán szereplő sokszöget kapjuk a forgatás után? Satírozd be a helyes ábra betűjelét! Válogatás a kompetenciamérések feladataiból 3. Elforgatás I. Az alábbi alakzatok közül melyik hozható létre a fenti alakzat elforgatásával? 7
3 4. Elforgatás II. Csaba azt a feladatot kapta, hogy forgassa el az alábbi síkidomot N pont körül 270 -kal az óra járásának megfelelő irányban. Melyik alakzatot kell lerajzolnia Csabának? N 5. Kiegészítés Melyik ábra egészíti ki az eredeti alakzatot téglalappá? A B C D 8
4 6. Kirakós A következő képen négy különböző alakzat látható. Helyezd el mind a négy alakzatot egy négyzethálón úgy, hogy ne fedjék egymást! Az alakzatokat csak elforgatni szabad, tükrözni nem. Válogatás a kompetenciamérések feladataiból Végleges megoldás: 9
5 7. Tetrisz Balázs tetriszt játszik a számítógépén. A lefelé eső alakzatokat forgatással, illetve jobbra és balra történő eltolással lehet mozgatni a pályán, amíg le nem érnek az aljára vagy el nem érnek egy másik alakzatot. Ha egy hézagmentes sor keletkezik, az eltűnik a pályáról, és a fölötte lévő sorok lejjebb kerülnek. Hogyan mozgassa Balázs a következő ábrán lefelé eső alakzatot, hogy hézagmentessé váljon és eltűnjön a legalsó sor? Satírozd be a helyes válasz betűjelét! Lefelé eső alakzat A B C D Forgassa el balra 90 -kal, és tolja el jobbra. Forgassa el jobbra 90 -kal, és tolja el jobbra. Kétszer forgassa el 90 -kal, és tolja el jobbra. Forgatás nélkül tolja el jobbra. 8. Gördülő négyzet A következő ábrán az látható, ahogy egy mintás négyzetet átfordítunk egyik oldaláról a másikra: 1. átfordítás 2. átfordítás Melyik ábra mutatja helyesen a négyzetet a 15. átfordítás után? Satírozd be a helyes ábra betűjelét! 10
6 9. Kincsesláda Zsófi egy kincsesládát ásott el a kertjükben, térképet is készített a helyéről tölgyfa ház bejárata almafa postaláda Válogatás a kompetenciamérések feladataiból A kincsesládát a tölgyfától és az almafától ugyanolyan távolságra ásta el úgy, hogy egyenlő távolságra legyen a postaládától és a ház bejáratától is. Melyik koordinátájú helyen áshatta el a kincsesládát? Satírozd be a helyes válasz betűjelét! A (4; 8) B (7; 7) C (8; 8) D (10; 7) 11
7 10. Útbaigazítás A térképen jelzett helyen álló turista útbaigazítást kért egy járókelőtől, hogy hol talál a közelben egy piacot. A járókelő a következőt mondta: Az első keresztutcánál forduljon balra, utána a harmadiknál jobbra, majd innen a másodiknál balra, és az első kereszteződésnél megtalálja a piacot. A B C D E Melyik helyen található a piac? Satírozd be a helyes válasz betűjelét! A A B B C C D D 12 E E
8 11. Szobanövény A következő ábrán Liliék házának alaprajza látható, tájolása az iránytűről olvasható le. Lili névnapjára egy cserepes virágot kapott, amelynek a gondozási útmutató szerint sok fényre van szüksége, ezért érdemes olyan szobában tartani, amelyik keletről kapja a fényt. konyhaétkező nappali Válogatás a kompetenciamérések feladataiból Ny É K ablak ajtó D Melyik helyiségben helyezze el Lili a növényt? Satírozd be a helyes válasz betűjelét! A A fürdőszobában. B A hálószobában. C A konyha-étkezőben. D A nappaliban. 13
9 12. Lakás Virág úr és családja elhatározták, hogy házat építenek. Elkészítettek egy vázlatot arról, hogy hány szobás legyen a ház, és hogyan nyíljanak egymásból a helyiségek. Ez látható a következő ábrán. előszoba kamra nappali étkező konyha folyosó helyiségeket összekötő ajtó a) Döntsd el, melyik igaz, illetve melyik hamis a következő állítások közül! Válaszodat a megfelelő kezdőbetű besatírozásával jelöld! Igaz Hamis Virág úrék 3 hálószobát szeretnének. I H Az étkezőből nyílik a legtöbb helyiség. I H Két ugyanarra a ra nyílik. I H Minden hálószobából nyílik. I H 14
10 b) Az építész négy alaprajzot mutatott Virág úréknak. Melyik alaprajz felel meg az előző ábra alapján a család elképzelésének? Satírozd be a helyes ábra betűjelét! A előszoba kamra konyha folyosó étkező nappali B nappali előszoba étkező folyosó konyha kamra ajtó Válogatás a kompetenciamérések feladataiból ajtó C D kamra előszoba konyha előszoba étkező kamra konyha nappali étkező folyosó nappali folyosó 15
11 13. Origami Csilla egy origamikönyvben lévő alakzatot hajtogat. A könyv utasítása szerint úgy kell összehajtani a papírt, hogy kihajtogatás után a következő hajtásvonalak legyenek láthatók rajta. Melyik lehet az ÖSSZEHAJTOGATOTT papír képe? Satírozd be a helyes ábra betűjelét! 14. Szalvétahajtogatás Egy szalvétát az alább látható módon hajtogatunk össze. Az összehajtogatott szalvétát kihajtogatjuk az eredeti méretére. Milyen hajtásvonalakat látunk a szalvétán? Satírozd be a helyes ábra betűjelét! 16
12 15. Elölnézet A fenti testnek melyik az elölnézeti képe? Válogatás a kompetenciamérések feladataiból 16. Kockaháló A következő ábrán egy kocka hálója látható. A kockahálóból Máté összehajtogatott egy kockát. Melyik kockát kapta a hajtogatás után? Satírozd be a helyes ábra betűjelét! 17
13 Oktaéder Az alábbi ábra egy oktaéder alakú dobókockát mutat, amelynek oldallapjain 1-től 8-ig találhatók a számok Melyik kiterített palástból NEM lehet a fenti dobókockát összehajtogatni? Satírozd be a helyes ábra betűjelét! A B C D
14 18. Felhőkarcoló A híres Transzamerika Piramis egy gúla alakú felhőkarcoló San Franciscóban. A következő ábrán az épület elölnézeti és oldalnézeti képe látható. Elölnézet Oldalnézet Az épület eleje és hátulja egyforma, illetve a két oldalnézeti kép is megegyezik. Melyik ábra szemlélteti az épületet felülnézetből? Satírozd be a helyes ábra betűjelét! Válogatás a kompetenciamérések feladataiból 19
15 19. Síkfutás A zedországi 1500 méteres síkfutást négy kameraállásból rögzíti a televízió. A következő ábra az 1, 2, 3, 4 számokkal jelölt négy futó pozícióját, valamint az A, B, C és D jelű kamerák elhelyezkedését mutatja. futás iránya D C A B a) Melyik kamera felvétele alapján készült a következő ábra a futók pozíciójáról? Satírozd be a helyes válasz betűjelét! A A kamera B B kamera C C kamera D D kamera b) Állapítsd meg a felső ábra alapján, melyik versenyzőtársát látja a 3-as számmal jelölt futó, ha balra hátrafelé pillant! Satírozd be a helyes válasz betűjelét! A 1 B 2 C 4 D Nincs mögötte senki. c) Az 1500 méteres síkfutás zedországi rekordja a verseny előtt 3 perc 50 másodperc volt. A verseny győztese 228 másodperc alatt ért célba. Megdőlt-e az országos rekord? Satírozd be a helyes válasz betűjelét! Válaszodat számítással indokold! I Igen, megdőlt a rekord. N Indoklás: Nem, nem dőlt meg a rekord. 20
16 20. Bejárat Egy üzlet bejárati és kijárati üvegajtaja is befelé nyílik. A bejárati ajtón ezt a feliratot látjuk belépés előtt: TOLNI, a kijárati ajtón ezt látjuk kilépés előtt: HÚZNI. Kijárat Bejárat? TOLNI Melyik feliratot látjuk az UTCÁRÓL NÉZVE a kijárati ajtón? Satírozd be a helyes ábra betűjelét! E HÚZNI Z N NZ NI Z HÚ I N HÚZ I ZN HÚ HÚZNI NZ Válogatás a kompetenciamérések feladataiból 21. Rajzolóprogram Informatikaórán a tanulók egy rajzolóprogramot használtak, amelyben egy teknőst kellett utasításokkal irányítani. A teknősnek azt az utasítást adták, hogy haladjon egyenesen, majd forduljon el balra 24 -kal, majd ismét haladjon tovább ugyanannyit, és megint forduljon balra 24 -ot. Ezt az eljárást addig kell ismételni, amíg a teknős vissza nem ér a kiindulási pontba. 24 Hány oldalú szabályos sokszöget rajzoltattak a teknőssel a tanulók? Satírozd be a helyes válasz betűjelét! A 8 B 10 C 12 D 15 E 18 21
17 22. Építkezés A következő ábrán egy építkezésen felhúzott fal részlete látható. Ablakrés 1,5 m 1 m A fal felépítése után az egyik munkás az ablakrésen szeretné kiadni a bent maradt négy falazódeszkát a társának. Melyik az a deszka, amelyik biztosan NEM fér ki az ablakrésen? Satírozd be az ábra betűjelét! 1,51 m 1,6 m 1,1 m 3 m 4 m 2,5 m 2,5 m 1,51 m 23. Sierpiñski-háromszög Az ábrán a Sierpiñski-háromszög látható, melyet egy lengyel matematikusról, Wacław Sierpiñskiről neveztek el. Készítése: Egy egyenlő oldalú (szabályos) háromszög oldalfelező pontjait összekötve újabb egyenlő oldalú háromszöget kapunk. Ezután vágjuk ki az új háromszöget, így három egyenlő oldalú háromszög marad az eredeti háromszögön belül. Ismételjük meg az eljárást minden kisebb háromszögön, s eredményül a Sierpiñski-háromszöget kapjuk. (A fehér rész a háromszög, a fekete a lyuk benne, melyet kivagdostunk). Az ábrán az eredeti nagy háromszög hányadrésze fehér? Satírozd be a helyes válasz betűjelét! A 3 4 B 1 2 C D
Válogatás a kompetenciamérések
I. Válogatás a kompetenciamérések feladataiból Az ORSZÁGOS KOMPETENCIAMÉRÉS 2001-ben indult el, és mára már Európa és a világ szakmailag és szolgáltatásaiban legkorszerűbb mérési rendszerei között tartják
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
TestLine - Gergelyfi J. tesztje 6. évfolyam Minta feladatsor
2017.01.11. 06:51:44 1. következő ábrán egy kirándulóterület szintvonalas 2:12 Normál térképe látható, amelyen 4 túraútvonal is szerepel. ( szintvonal az azonos tengerszint feletti magasságban lévő pontokat
Országos kompetenciamérés 2013 Feladatok és jellemzőik. matematika 10. évfolyam
213 Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 214 1. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 213 májusában immár tizedik alkalommal került sor az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5
WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1
Programozási nyelvek 2. előadás
Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
FELVÉTELI FELADATOK 4. osztályosok számára B-2 feladatlap
FELVÉTELI FELADATOK 4. osztályosok számára B- feladatlap 001. február Név:.. Születési év: hó:. nap:. Kedves Felvételiző! A feladatlap megoldási ideje: 45 perc Zsebszámológépet nem használhatsz! Mivel
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...
Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Minden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
Geometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY. Írd be a körökbe a 2, 3, 4 és 5 számokat úgy, hogy a szomszédos számok különbsége -nél nagyobb legyen!
31. 32. 33. 26 Matematika 10. évfolyam
31. A közlekedésben néhány jármű (mentők, rendőrség, tűzoltóság) elején speciális felirat látható. Ezt a feliratot a járművezetők a visszapillantó tükörből tudják elolvasni anélkül, hogy hátrafordulnának.
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 2. félév A kiadvány KHF/4631-13/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio
DÖNTŐ 2013. április 20. 7. évfolyam
Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
10. 2013. május 29., 8.00. Országos kompetenciamérés. f ü z e t
10. évfolyam 2013. május 29., 8.00 A f ü z e t Országos kompetenciamérés 2013 Általános tudnivalók a feladatokhoz Ebben a tesztfüzetben matematika- és szövegértési feladatokkal találkozol. A fela da to
Válogatás a kompetenciamérések
I. Válogatás a kompetenciamérések feladataiból Az ORSZÁGOS KOMPETENCIAMÉRÉS 2001-ben indult el, és mára már Európa és a világ szakmailag és szolgáltatásaiban legkorszerűbb mérési rendszerei között tartják
Programozási nyelvek 4. előadás
Programozási nyelvek 4. előadás Fa rajzolása rekurzívan Logo fa variációk A fa egy törzsből áll, amelynek tetején két ág nő ki, s mindkettő tulajdonképpen egy-egy alacsonyabb, rövidebb törzsű fa. Az ábrában
b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.
Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros
TestLine - Kompetenciamérés - matematika, 10. osztály Minta feladatsor
2017.03.19. 10:00:30 10. osztályos kompetenciamérés gyakorlótesztje. 1. 2:18 Normál hullócsillag, vagyis meteor akkor jelenik meg, ha egy űrbeli részecske a Föld légkörébe érkezve elég. Ha a meteorok a
TestLine - Kompetenciamérés - matematika, 10. osztály Minta feladatsor
2017.12.26. 06:37:28 10. osztályos kompetenciamérés gyakorlótesztje. z alábbi ábrákon szereplő térkép egy kilátó környezetéről készült. Egy kirándulás 1. alkalmával a párás levegő miatt minden irányban
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
Számlálási feladatok
Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag
Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
PISA2006. Nyilvánosságra hozott feladatok matematikából
PISA2006 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Autózás 5 Füzetkészítés 7 Kerékpárok 10 Nézd a tornyot 12 Testmagasság Autózás M302 AUTÓZÁS Kati autózni ment. Útközben egy macska
Bevezető Kedves Negyedik Osztályos Tanuló!
Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet
7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold!
7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold! 1. Az alábbi táblázatban az látható, hogy Gábor a legutóbbi hat kosárlabda-mérkőzésén hány büntetődobást
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
IV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:
1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)
Írd le, a megoldások gondolatmenetét, indoklását is!
0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,
Kvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre.
Kvíz1 Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. A táblázatban látható szabályszerségek alapján melyik képlettel
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
TestLine - Matematika teszt Minta feladatsor
Hello! Ez egy matematikával kapcsolatos teszt. 15 kérdésből áll. Sok sikert! Ebben az egyenletben mennyi az x értéke? 32x+1-3x+2 = 162. (1 helyes válasz) 1. 1:37 Normál x=2 x=4 x=3 Egy iskolai kosárlabdacsapat
Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.
Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.
1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
A mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés.
20. modul 1. melléklet 4. évfolyam csoport A mérést végző neve: A tanterem hossza: A tanterem szélessége: A folyosó hossza: A folyosó szélessége: lépés. lépés. lépés. lépés. 20. modul 2. melléklet 4. évfolyam
48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA
XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan
BÁBUK - 4 pont Fejtsd meg az öt szám közötti kölcsönös összefüggést, amelyekbõl a bábu össze van állítva, és számítsd ki a C bábunál hiányzó számot.
ÖSSZEFÜGGÉS - 1 pont Keresd meg a képben elrejtett összes összefüggést, és találd ki, melyik szám van elrejtve a kérdõjel alatt! ABLAKOK - pont A házon lévõ 9 ablak nem véletlenszerûen van elhelyezve.
Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy
Geometriai transzformációk
Geometriai transzformációk 11 elemi geometriafeladat 10. és DG Matektábor 2016. október 6. Röviden a transzformációkról Tengelyes tükrözés 10. és ( DG Matektábor) Geometriai transzformációk 2016. október
VI.9. KÖRÖK. A feladatsor jellemzői
VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának
OPTIKAI CSALÓDÁSOK. Vajon valóban eltolódik a vékony egyenes? A kávéházi fal. Úgy látjuk, mintha a vízszintesek elgörbülnének
OPTIKAI CSALÓDÁSOK Mint azt tudjuk a látás mechanizmusában a szem által felvett információt az agy alakítja át. Azt hogy valójában mit is látunk, nagy szerepe van a tapasztalatoknak, az emlékeknek.az agy
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24
. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca
Sorozatok határértéke VÉGTELEN SOROK
Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:
6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV
6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.
PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Egy 20 feladatból álló tesztet kell megoldanod. A munka elvégzésére 120
Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.
5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör
MATEMATIKA ÉRETTSÉGI október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 005. október 5. KÖZÉPSZINT I. 1) Egyszerűsítse a következő törtet! (x valós szám, x 0 ) ( pont) x 3x x A számláló átalakítva: xx 3 Látjuk, hogy x ismeretlennel le tudunk egyszerűsíteni.
Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
MATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
Négygyermekes családra szabva
Négygyermekes családra szabva A lakás 110 nm-vel a magyarországi átlag négyzetmétereket tekintve azt jóval meghaladja (Budapesten 64 nm, míg vidéken 88 nm), mégis igazi kihívás volt az eredeti alaprajzból
Számalakzatok Sorozatok 3. feladatcsomag
Számalakzatok Sorozatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 13 18 év négyzetszámok háromszögszámok teljes indukció különbségi sorozatok Az ókori görögök szívesen játszottak a pozitív egész számokkal,
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
Ajánlott szakmai jellegű feladatok
Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
1. Munkalap. 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra!
1. Munkalap 1. Fejezze be az előrajzolás szerinti vonalfajták ábrázolását! Ügyeljen a vonalvastagságra! 2. Rajzoljon merőleges egyenest az e egyenes P pontjába! e P 3. Ossza fel az AB szakaszt 2:3 arányban!
MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN
MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 1. MODUL: IDŐBEN A TÉRBEN TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály
Észpörgető matematika verseny / Eredmények/ Feladatok
Észpörgető matematika verseny / Eredmények/ Feladatok név iskola összes pontszám helyezés 1. Izsák Imre ÁMK 60 5 Horváth Gáspár 2. Izsák Imre ÁMK 39 11. Ruzsicska Soma 3. Gál Rebeka Izsák Imre ÁMK 33 13.
1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont
2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott
1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be?
1. osztályosok 1. Anya szeretne Zsófi kabátjára 3 gombot felvarrni. Ha zöld és kék színű gombokból válogat, akkor a kabáton hányféleképp alakulhat a színek sorrendje? 2. Zsófi blúzára anya 4 gombot varr,
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
Országos kompetenciamérés 2013 Feladatok és jellemzőik. matematika 8. évfolyam
213 Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal Budapest, 214 8. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 213 májusában immár tizedik alkalommal került sor az
2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET TESZT matematikából a 2014/2015-es tanévben
XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály
1. feladat: XV. évfolyam Megyei döntő - 2016. február 20. MEGOLDÁSOK - 3. osztály Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
Javítókulcs 4. osztály megyei 1. Titkos üzenetet kaptál, amelyben a hét minden napja le van írva egyszer, kivéve azt a napot, amelyiken találkozol az üzenet küldőjével. Minden betű helyett egy szimbólumot
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom
1. alkalom 1. Beszínezzük a koordináta-rendszer rácspontjait. Egyetlen szabályt kell betartanunk: az (a;b) pontnak ugyanolyan színűnek kell lennie, mint az (a-b;a) és az (a;b-a) pontnak (a és b egész számok).
A NÉGY DIMENZIÓ TALÁNYAI OSZTÁLY 1.FORDULÓ KICSI/KÖZEL
A NÉGY DIMENZIÓ TALÁNYAI 9-10. OSZTÁLY 1.FORDULÓ KICSI/KÖZEL A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió,
MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET TESZT MATEMATIKÁBÓL a 2015/2016-os tanévben
4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?
PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.
A felmérési egység kódja:
A felmérési egység lajstromszáma: 0092 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Energüz//30/Ksz//Ált Energetikai üzemeltető szakképesítés-csoportban,
Egybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
Bevezetés a síkgeometriába
a síkgeometriába 2016.01.29. a síkgeometriába 1 Fogalom, alapfogalom Álĺıtás,axióma Térelemek kölcsönös helyzete 2 A szögek A szögek mérése Szögfajták Szögpárok 3 4 a síkgeometriába Fogalom, alapfogalom