Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414,
|
|
- Enikő Halász
- 6 évvel ezelőtt
- Látták:
Átírás
1 Neurális hálózato Nem ellenőrzött tanulás Patai Béla BME I.E. 414,
2 Nem ellenőrzött tanulás (Klaszterezés ) Az eseteet szoásos módon az x paramétervetor írja le (pl. fényesség, hosszúság, urtózis, textúraparamétere stb.). A besorolást ellenőrzött tanulás (osztályozás) esetén az y imeneti címe adja meg. x 1 =[x 11 x 12 x 1N ] x 2 =[x 21 x 22 x 2N ] x L =[x P1 x P2 x PN ] Tanítómintá alapján tanított rendszer y 1 y 2 y P x új =[x új1 x új2 x újn ] Tanított rendszer y új =?
3 Célun rendszerint anna megadása, hogy az újonnan érező x új mintához milyen valószínűséggel tartozi egy y címe, ehhez a P(y x) eloszlást éne ismernün. Bayes-tétel P, y P y P( ) P y P( y) x x x x Ellenőrzött tanulásnál a tanulóminta-halmazból becsülhetjü P(x y)-t és P(x)-t innen becsüljü P(y x)-t. Nemellenőrzött tanulásnál csa P(x)-t tudju becsülni. Valamilyen rejtett strutúrát eresün az adatoban. Klaszterezés: a P(x) olyan becslése, melyben a mintatérben elülönülő csoportora bontju a mintáat x 2 x 1
4 Miért lehet jó laszterezni a mintáat? segíthet a ilógó (outlier) adato felderítésében ha mindegyi ialauló lasztertől távoli adat érezi, valószínűleg hibás (ilógó, outlier) megmutatja, hogy a jelenségne, folyamatna vanna-e tipius állapotai pl. egy gyártási folyamatban, egy eletromos vagy egyéb fogyasztási viseledésben lehetne tipius helyzete felhasználható hiányzó paramétere pótlására ha el tudju dönteni, vagy valószínűsíteni tudju, hogy melyi laszterbe tartozi a néhány paraméterében hiányos adat, aor a laszter tipius paraméterei jobb javítást, pótlást teszne lehetővé adato előfeldolgozása, ami történhet neuronhálóval (vagy a neuronháló rétegeivel) az adateloszlástól függő paramétere beállításában segíthet (pl. RBF típusú háló özéppont és szórásparaméterei) élethű mesterséges mintá generálása (bizonyos szempontból mindig evés a mintán!)
5 Klaszterezési eljáráso Diszriminatív: az egyes esete (mintá) özti távolságot használju fel: a özeli mintá tartozzana egy csoportba, a távolia ülön csoportba. Kritius a jó távolságmérté megtalálása! Generatív: Egy, a mintahalmaz létrehozását (generálását) magyarázó modellt használun. A modell magyarázza az egyes csoporto létrejöttét a modellparamétereet tanulju. Kritius a jó modell megtalálása!
6 Diszriminatív laszterezés - példa #1 K átlagépző, K-özéppontépző eljárás (K-means) Feladat: P mintapontot, K csoportba laszterezün ezdeti özépponto: c (0) =1,2,,K c (j)= átlag {X }, =1,2,,K j=0 X ={} üres halmaz =1,2,,K p=1 NEM j=j+1 Leállás? (pl. j > J limit vagy más feltétel) Melyi özépponthoz van az x(p) a legözelebb? Jelölje *. c * -x(p) <= c -x(p) minden -ra x(p)-t besorolju az X * halmazba NEM p = p+1 p>p? IGEN IGEN MATLAB DEMÓ! Kritius: a jó távolságmérté és jó laszterszám (K) meghatározása
7 Diszriminatív laszterezés példa #2 Hierarchius laszterezés Kritius: a jó távolságmérté és távolságlimit meghatározása Atuális távolságlimit 0 p 6 p 10 p 1 p 11 p 4 p 12 p 2 p 13 p 14 p 3 p 15 p5 p8 p9 p7
8 Távolságmértée mintaponto, mintapont és halmaz özéppont, illetve halmazo özt Eulideszi: p, p ( p p ) Manhattan: p, p N N T Mahalanobis: p, p ( p p ) C ( p p ) N p p 2
9 Távolság ét halmaz özt (pl. hierarchius laszterezésnél) d N12 d C12 d C13 <d C12 d N13 > d N12 Halmazözépponto Legözelebbi eleme Legtávolabbi eleme stb. más végeredményre vezethetne
10 A generatív laszterezés alapötlete Egy, az észlelt mintáat magyarázó modellt eresün (alotun), amely lasztereben (csoportoban) generálja a mintaeloszlást,és a modell paramétereit becsüljü a mintá alapján Generáló modell: ? K mintá: p 1, p 2, p 3, p 4, p 5, p 6, p 7, p 8,.. p N-1, p N,
11 Leggyarabban alalmazott eset: Gauss eloszláso everée Modell: x ( ) x 1 1 P ( x ) e 2 K P P P Természetesen a jobboldalon egyi tényező sem ismert. Becsüljü meg a lasztere a priori valószínűségét P()-t, és az egyes lasztereet generáló P (x )-at az adatoból. Az egyszerűség edvéért salár (x) paraméterrel jellemzett esetre az egyes lasztereet generáló eloszlás: ( x ) Ehhez a és paramétereet ell megbecsülnün
12 Első laszter mintapontjait generáló eloszlás =1, 1 1 1? x 1,1,, x 1,N1 mintá: p 1, p 2, p 3, p 4, p 5, p 6, p 7, p 8,.. p N-1, p N, N = N1+N2+ +NK =2, Másodi laszter mintapontjait generáló eloszlás? x 2,1,, x 1,N2 x K,1,, x K,NK K =K, K? K K-di laszter mintapontjait generáló eloszlás
13 Demópélda RGB ép: pl. a ép pixeleine zöldszín-hisztogramja, és özelítése 6 Gauss eloszlással
14 Legelterjedtebb (iteratív) eljárás: EM algoritmus (Expectation Maximization) Levezetés: Gauss eloszláso everée (salár x bemeneti változó), a várhatóértée 1, 2,..., K - táblán
15 Legelterjedtebb (iteratív) eljárás: EM algoritmus (Expectation Maximization) ( j) ( z 1 mutatná, hogy a j-di minta a -di laszterből jött de éppen ezt nem ismerjü! várható értéét i tudju számítani) 1. Adott átmenetileg rögzített = [ 1, 2,, K ] T mellett megbecsüljü, hogy az egyes mintá várhatóan melyi laszterbe tartozhatna (melyi -val jellemzett generátor hozhatta létre az adott mintát). - EXPECTATION ( j) () t E z : t iteráció után mi a becsült valószínűsége, hogy a j-di mintát a -di laszter generátora hozta létre 2. Átmenetileg rögzítjü a mintá egyes laszterebe sorolásána valószínűségét, és igyeszün = [ 1, 2,, K ] T -val maximálisan jól özelíteni a mintahalmazon tapasztalt P(x )- t. - MAXIMIZATION 3. GoTo 1.
16 EM algoritmus lépései Gauss eloszláso everée modell esetén Expectation: anna valószínűsége, hogy az x j minta a -di t laszterbe tartozi - ˆ becslése (t-di iteráció) ˆ ˆ ˆ E P x, E z () t ( j) j () t Maximization j j ( t1) E z ( j) E z ( j) 4. () t x () t () P x j ˆ j 3. 1 P ( ) e ( t1) () t ( t1) 1 ˆ 2 ( t) P N r () t 1 ( t1) P () r e ( t1) r ( j) E z j E z ( t) ( t1) 2 ( t1) 2 ( x ) j 2 ( ) ( t1) 2 r ( t1) 2 r ( x ) j 2 ( ) ( j) () t ( t) 2 ( ˆ x j ) j E z ( j) () t
17 Felhasználás: pl. hiányos, hibás adato Mivel mindig evés az adat: ha hiányzi egyi-mási omponense, rendszerint aor sem éri meg eldobni, jobb pótolni a hiányt. Enne alalmas eszöze lehet a laszterezés. Demópélda: Két paraméterrel jellemezzü a mintáinat: Egyes mintána hiányzi az egyi omponense (vagy annyira torz, hogy nem vesszü figyelembe). Például az n-di minta: xn1 pn? p x x 1 2
18 A étdimenziós adathalmaz eloszlása x 1 x 2
19 n-di minta: x n1 =0, de hiányzi az x n2 paraméter. Nézzü meg, melyi x n2 legvalószínűbb értée az x 2 eloszlás alapján: 0.02 X2 eloszlása a teljes mintahalmazon -> x2 legvalószínűbb értée Az x1=0-hoz tartozó minta valószínűleg a 3-as laszterbe tartozi! -> max. valószínűségel x2= laszter 0 1. laszter 3. laszter x
20 Másodi demópélda Eredeti ép 20%-ban hibás pixele (1-1 színomponens elveszett)
21 Balról-jobbra: a hibás ép, a globális paramétereel javított és a laszterezett, majd laszterenénti paramétereel javított 20%-ban hibás pixele (1-1 színomponens elveszett)
22 Hol használju, pl. a neurális hálózatonál a nem ellenőrzött tanulást? Pl. RBF típusú neuronháló első rétegéne paraméterbeállításánál Adato előfeldolgozása, ami történhet neuronhálóval (vagy a neuronháló rétegeivel) tipius előfeldolgozási lépés lehet a főomponensanalízis (Principal Component Analysis, PCA) Új mintá (pl. épe) generálása a tanításhoz
23 Autoenóder neuronháló adattömörítés, lényegiemelés (pl. PCA): z x vagy z x tulajdonságo generálása: z x vagy z x (rita megoldást eresün, pl. L1 regularizáció) ˆx Deóder neuronháló z Enóder neuronháló x
24 Variációs autoenóder háló ˆx Tanítás: 1. Egy {x () } minibatch 2. Előreterjesztés 3. x és ˆx özti hibával (eltéréssel) hibavisszaterjesztés (BP) (előreterjesztésnél a megfelelő és alapján egy-egy véletlen számmal ialaítju az értéet, pl. z rand z x x rand x z ésőbb ezzel végezzü a BP-t.) z x x z x: N( xz, xz ) xz Deóder neuronháló z: N(, ) zx zx z Enóder neuronháló x zx xz zx p ( xz) q ( zx)
25 Demópélda: mintá generálása variácós autoenóderrel z1: a mosoly mértée z2: a fej elfordulás mértée
26 Demópélda: ézzel írott számjegye generálása z1 z2
27 A látens változó eloszlása az autoenódernél (bal) és a variációs autoenódernél (jobb) a ét legfontosabb látens változó
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Intelligens elosztott rendszerek
Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,
Intelligens elosztott rendszerek. Információfúzió (valószínűségi alapon, Kálmán-szűrőt használva, Dempster-Shafer elmélet alapján)
Intelligens elosztott rendszere Információfúzió (valószínűségi alapon, Kálmán-szűrőt használva, Dempster-Shafer elmélet alapján) Patai Béla BME I.E. 414, 463-26-79 patai@mit.bme.hu, http://www.mit.bme.hu/general/staff/patai
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Inferencia valószínűségi modellekben
Statisztikai tanulás az idegrendszerben, 2016. Inferencia valószínűségi modellekben Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Inferencia valószínűségi modellekben
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges
CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens
CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi
Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz
Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,
Diszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 206/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Tanulás Boltzmann gépekkel. Reiz Andrea
Tanulás Boltzmann gépekkel Reiz Andrea Tanulás Boltzmann gépekkel Boltzmann gép Boltzmann gép felépítése Boltzmann gép energiája Energia minimalizálás Szimulált kifűtés Tanulás Boltzmann gép Tanulóalgoritmus
PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL
PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL Csúszóablakos szegmentálás Szegmentálás direkt osztályozással Kisméretű ablakkal kivágott kép alapján megítéli az adott pixel környezetének a típusát Nagyon lassú, nehezen
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Demográfiai modellek (folytatás)
Demográfiai modellek (folytatás) 4. A teljesebb anyag 4.1. A megoldás egy változata Alábbiakban az előző gyakorlaton szereplő keretprogramból kapható egy lehetséges megoldást részletezzük. (Ha már a sajátja
Digitális Fourier-analizátorok (DFT - FFT)
6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
RBF neurális hálózat alkalmazása magasság meghatározására 1
RBF neurális hálózat alalmazása magasság meghatározására 1 Veres Gábor, a Budapesti Mûszai és Gazdaságtudományi Egyetem Általános- és Felsõgeodéziai Tanszé dotorandusza (E-mail: tsoa@sc.bme.hu) Bevezetés
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Strukturált Generátorrendszerek Online Tanulása és Alk-ai
Strukturált Generátorrendszerek Online Tanulása és Alkalmazásai Problémamegoldó Szeminárium 2010. nov. 5 Tartalomjegyzék Motiváció, példák Regressziós feladatok (generátorrendszer fix) Legkisebb négyzetes
Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1
Építési projektek ütemtervi bizonytalanságainak, kockázatainak figyelembe vétele a pénzügyi tervezésnél Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő, MVM Paks
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3
Balogh Zsuzsanna Hana László BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Ebben a dolgozatban a Bayes-féle módszer alalmazási lehetőségét mutatju be a ocázatelemzés
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.
Mesterséges Intelligencia Elektronikus Almanach Neurális hálózatokh 1 BME 1990: Miért neurális hálók? - az érdeklıdésünk terébe kerül a neurális hálózatok témakör - fıbb okok: - adaptív rendszerek - felismerési
Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz
Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Pozitron emissziós tomográfia alapelve Szervezetbe pozitron kibocsátására képes radioaktív izotópot tartalmazó anyagot visznek cukoroldatban. Sejtek
Kódverifikáció gépi tanulással
Kódverifikáció gépi tanulással Szoftver verifikáció és validáció kiselőadás Hidasi Balázs 2013. 12. 12. Áttekintés Gépi tanuló módszerek áttekintése Kódverifikáció Motiváció Néhány megközelítés Fault Invariant
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Proporcionális hmérsékletszabályozás
Proporcionális hmérséletszabályozás 1. A gyaorlat célja Az implzsszélesség modlált jele szoftverrel történ generálása. Hmérsélet szabályozás implementálása P szabályozóval. 2. Elméleti bevezet 2.1 A proporcionális
Nem roncsoló tesztelés diszkrét tomográfiával
Nem roncsoló tesztelés diszkrét tomográfiával Dr. Balázs Péter, adjunktus Képfeldolgozás és Számítógépes Grafika Tanszék SZTE TTIK, Informatikai Tanszékcsoport A teszteléshez használt CT berendezés lapdetektor
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés
FELADATOK Taylor- (Maclauri- soro, hibabecslés Határozzu meg az e üggvéy -örüli Taylor-sorát! Adju meg a hatváysor overgecia sugarát, ill. overgecia halmazát! Számítsu i a deriváltaat a -helye: e, e, e,
Rejtett Markov Modell
Rejtett Markov Modell A Rejtett Markov Modell használata beszédfelismerésben Készítette Feldhoffer Gergely felhasználva Fodróczi Zoltán előadásanyagát Áttekintés hagyományos Markov Modell Beszédfelismerésbeli
Regresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Segédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat
Formális nyelvek a gyakorlatban Formális nyelvek, 1 gyakorlat Segédanyagok Célja: A programozási nyelvek szintaxisának leírására használatos eszközök, módszerek bemutatása Fogalmak: BNF, szabály, levezethető,
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Gépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.
Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Egyszerű döntés Döntési fák Tanuljuk meg! Metsszük meg! Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Példaprobléma:
IV.7 MÓDSZER KIDOLGOZÁSA FELHASZNÁLÓI ADATOK VÉDELMÉRE MOBIL ALKALMAZÁSOK ESETÉN
infokommunikációs technológiák IV.7 MÓDSZER KIDOLGOZÁSA FELHASZNÁLÓI ADATOK VÉDELMÉRE MOBIL ALKALMAZÁSOK ESETÉN ANTAL Margit, SZABÓ László Zsolt 2015, január 8. BEVEZETÉS A KUTATÁS CÉLJA A felhasználó
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Digitál-analóg átalakítók (D/A konverterek)
1.Laboratóriumi gyaorlat Digitál-analóg átalaító (D/A onvertere) 1. A gyaorlat célja Digitál-analóg onvertere szerezeti felépítése, műödése, egy négy bites DAC araterisztiájána felrajzolása, valamint az
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
Szepesvári Csaba. 2005 ápr. 11
Gépi tanulás III. Szepesvári Csaba MTA SZTAKI 2005 ápr. 11 Szepesvári Csaba (SZTAKI) Gépi tanulás III. 2005 ápr. 11 1 / 37 1 Döntési fák 2 Felügyelet nélküli tanulás Klaszter-anaĺızis EM algoritmus Gauss
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í
ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő
Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö
ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö
ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő
ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI A szükséges mintaszám krlát elemzése Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Mit is jelent az eredmény, ha pnts lenne
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
Asszociációs szabályok
Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM
KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
Valószínűségszámítás feladatok
Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát
Random Forests - Véletlen erdők
Random Forests - Véletlen erdők Szabó Adrienn Adatbányászat és Webes Keresés Kutatócsoport 2010 Tartalom Fő forrás: Leo Breiman: Random Forests Machine Learning, 45, 5-32, 2001 Alapok Döntési fa Véletlen
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A