VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK
|
|
- Lídia Török
- 6 évvel ezelőtt
- Látták:
Átírás
1 3 VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK 3-02 VÁKUUMTECHNIKA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY TARTALOM a vákuum fogalma és szerepe vákuumszivattyúk a vákuum mérése vékonyréteg leválasztási technológiák vákuumpárologtatás párologtató források porlasztás 2/27 A VÁKUUM FOGALMA, MÉRTÉKEGYSÉGEI DIN szabvány szerinti definíció: a vákuum a gázok egy olyan állapota, amelyben a részecskesűrűség kisebb mint a Föld légkörében SI mértékegysége: pascal (Pa), ami N/m Pa = 1 bar = 750 torr 1 torr = 1 mmhg = ~ 133 Pa elővákuum nagyvákuum Pa ultra nagyvákuum vákuumpárologtatás 3/27
2 A VÁKUUM SZEREPE I. ÁTLAGOS SZABAD ÚTHOSSZ A gáz részecskéinek áltagos szabad úthossza(l): az egyes részecskék ütközése között megtett átlagos távolság. L = C / P, ahol P a nyomás, C pedig egy, az anyagtól és a hőmérséklettől függő érték Levegőre számított értékek Nyomás Pa 10-5 Pa 1 Pa 10 5 Pa légkör Átlagos szabad úthossz (~) km 500 m 5 mm 50 nm Részecskék 1 mm 3 -ben (~) 24 db 2, , , Teniszlabda analógia Teniszlabdák távolsága (~) 80 km 1 m Ütközések közötti útvonal hossza (~) km 1 fényév 10 8 km km 10 m 4/27 A VÁKUUM SZEREPE II. TISZTASÁG ÉS FELÜLETI MONORÉTEG A párologó részecskék reagálhatnak a gázmolekulákkal és kémiailag szennyezhetik a leválasztott réteget -> a nagyobb vákuum előny A gázmolekulák adszorbeálódnak a hordozó és a vákuumtér felületein. Glimmeléssel (gázkisüléssel) eltávolíthatók a felületekről, de a felületi monoréteg a nyomás és a hőmérséklet alapján adódó idő alatt újraépül. Nyomás Pa 10-5 Pa 1 Pa 10 5 Pa A monoréteg kialakulásához szükséges idő (~) 1 hónap 30 s 300 µs 3 ns 5/27 VÁKUUMRENDSZEREK FŐ ALKATRÉSZEK vákuumszivattyúk (vsz) az elérendő vákuumtól függően akár több fokozatban vákuummérők (m) az elérendő vákuumtól függően akár több fokozatban szelepek (sz) vákuumkamra (vk) m vk Egy példa: vákuumpárologtató rendszer sz vsz 6/27
3 VÁKUUMSZIVATTYÚK 3 fő elven működő (és számtalan konkrét konstrukciójú) szivattyúk léteznek: Elv.1: térfogat-leválasztás elve (többnyire elővákuumra) Elv.2: hajtóközeges és impulzus-átadási elvű (nagyvákuumra) Elv.3: gáz-megkötő elvű (többnyire tisztaságot növelnek). < 10-5 Pa Pa Pa Nyomás-tartomány / szivattyú (elv) forgó-csúszó lapátos (Elv.1) olajdiffúziós (Elv.2) turbó-molekuláris (Elv.2) hidegcsapda ( krió ) (Elv.3) 7/27 ROTÁCIÓS ELŐVÁKUUM-SZIVATTYÚK FORGÓ-CSÚSZÓ LAPÁTOS SZIVATTYÚ Működési tartomány: 10 5 Pa -> ~0.1 Pa Működési elv: Ciklikusan magába szívja, majd elkülöníti a beszívott gáz, azután kiüríti. A BME-ETT-n: vákuumpárologtató (1. fokozatként) elektronmikroszkóp (1. fokozatként) vákuummal rögzítő mintatartó asztal 8/27 NAGYVÁKUUM SZIVATTYÚK I. OLAJDIFFÚZIÓS SZIVATTYÚ Működési tartomány: ~1 Pa -> 10-7 Pa Működési elv: A gáz bediffundál az olajgőzbe, amely nagy sebességgel áramlik. Fő előnyei: nagy szívósebesség, viszonylag olcsó, tartós és megbízható. Fő hátránya: az olajgőzök a vákuumtérbe juthatnak. szívótorok (nagyvákuum) vízhűtés szivattyúolaj fűtőtest gázmolekulák fúvóka gőzfüggöny fúvóka kipufogó (1 Pa!) 9/27
4 NAGYVÁKUUM SZIVATTYÚK II. TURBOMOLEKULÁRIS SZIVATTYÚ Működési tartomány: ~10-2 Pa -> 10-8 Pa Működési elv: A gáz részecskéi impulzust kapnak a nagy sebességgel forgó lapátoktól. Fordulatszám: akár fordulat / perc Fő előnyei: olaj nélküli, tiszta működés, nagy szívósebesség, Fő hátránya: viszonylag drága. Fordulat/perc értékek összevetésképp: mosógép centrifuga: ig NYHL CNC-fúró: ig!!! Pl. a BME-ETT-n: elektronmikroszkóp (2. fokozatként) 10/27 GÁZMEGKÖTŐ SZIVATTYÚK A VÁKUUM ÉS A TISZTASÁG NÖVELÉSE Kifagyasztók : A gáz vagy gőzrészecskék kicsapódnak egy (pl. vízzel, folyékony nitrogénnel) hűtött felületen. A parciális nyomást zárt térben a leghidegebb felület hőmérséklete korlátozza. Getter szivattyúk (adott gőzökre, gázokra szelektívek): Kémiailag megkötik vagy fizikailag elnyelik a részecskéket. 11/27 MI KORLÁTOZZA AZ ELÉRHETŐ LEGJOBB VÁKUUMOT? Vagyis minek a leszívását végzik a szivattyúk a vákuum különböző szintjein? ~ levegő ~ monoréteg Permeáció: az a folyamat, amelynek során egy gáz vagy folyadék áthatol egy pórusmentes szilárd anyagon. (Adszorpció diffúzió deszoprció.) Permeabilitás: áteresztőképesség Forrás: Bohátka S., Vákuumfizika és -technika, ELFT, 2008, J. F, O Hanlon, J Wiley & Sons, NY, 1988 alapján 12/27
5 A VÁKUUMMÉRÉS a nyomás mérésére számtalan elv és konstrukció létezik - nyomástartománytól, pontossági igénytől, környezettől, ártól stb. függően lehet választani egy nagyvákuum-rendszerbe minimum két mérő szükséges (külön az elő- és nagyvákuumra) Fő vákuummérő elvek az egyes nyomástartományokban < 10-5 Pa Pa Pa Nyomás-tartomány / Vákuummérés elve kapacitív (10 Pa-10 6 Pa) Pirani (10-1 Pa-10 3 Pa) ionizációs (10-8 Pa-10-1 Pa) 13/27 VÁKUUMMÉRÉSI ELV PÉLDA I. PIRANI VÁKUUMMÉRŐ Egy hőmérséklettől függő ellenállású fűtőszálat hevítünk, amelyet csak a vákuumtérben levő gáz hűt. A szál állandó hőmérsékleten tartásához szükséges áram összefügg a nyomással, így annak mérésén és szabályozáson alapul a műszer. Milyen technológiával készíthetünk ilyen szenzort? Si alapon, MEMS fűtött huzal 14/27 VÁKUUMMÉRÉSI ELV PÉLDA II. IONIZÁCIÓS VÁKUUMMÉRŐ Elektronáramot hozunk létre a vákuumban, amely ionizálja a gázrészecskéket. Az ionokat egy negatív elektródával felfogjuk és megszámoljuk (~ionáram). A nyomás csökkenésével csökken az ionáram is. Röntgen a vákuummérőben? Igen, a nagysebességű elektronok röntenfotonokat gerjeszthetnek az anódba csapódva. Ezek viszont sajnos elérik az ionkollektort is, amiben fotoelektronokat keltenek. Ezek árama hozzáadódik az ionáramhoz, ezzel rontják az vákuummérési tartomány alsó határát. Vesd össze: SEM-EDS!!! 15/27
6 A VÁKUUMPÁROLOGTATÁS ÉS PORLASZTÁS TECHNOLÓGIÁJA mindkét technológiával különböző anyagú, funkciójú, vastagságú vékonyrétegeket választhatunk le; feltételük a vákuum, bár porlasztásnál a leszívott térbe adott funkciójú és mennyiségű gázt (pl. O 2, Ar) töltenek; a leválasztandó anyag atomjaira vagy molekuláira (atomcsoportjaira) bontásának módszerei: párologtatás: hevítéssel porlasztás: ionokkal való bombázással 16/27 VÁKUUMPÁROLOGTATÓ FELÉPÍTÉSE Vákuumpárologtató felépítése (ETT Virtual Laboratory) Nagykapacitású (méretű) változat 17/27 A VÁKUUMPÁROLOGTATÁS FOLYAMATA A vákuumpárologtatás során három fontos folyamat megy végbe: 1. Párolgás: a párologtatandó tömbanyagot atomjaira bontjuk hevítéssel 2. Anyagáramlás: a részecskék egyenes vonalban, egyenletesen áramolnak 3. Kondenzáció (lecsapódás): az atomok lecsapódnak a hordozón, először szigeteket, majd összefüggő réteget alkotva szivattyú felé hordozók vákuumtér párologtató forrás áram bevezetés 18/27
7 ÁRAMMAL KÖZVETLENÜL ÉS KÖZVETETTEN HEVÍTETT FORRÁSOK Cél: a tömbanyag részecskékre bontása -> hevítés Fűtött huzalok (W) Fűtött lemezek (W, Mo) Fűtött tégelyek Fűtött kerámia tömbök (pl.: BN) 19/27 ELEKTRONSUGARAS FŰTÉSŰ PÁROLOGTATÓFORRÁS A párologtatandó tömbanyagot nagysebességű elektronokkal való bombázással fűtjük. Az elektronok mozgási energiája alakul hővé. párologtatandó anyag elektronsugár elektromágneses tér hűtővíz - 10 kv elektronforrás Miért kell akár 270 fokban eldugni a katódot? Azért, hogy a párolgó atomok és a belőlük keletkező ionok minél kisebb eséllyel érjék el. 20/27 A PÁROLOGTATÓ FORRÁSOK IRÁNYKARAKTERISZTIKÁJA Elektronsugaras párologtató forrás Porlasztó z irány Más iránykarakterisztikák Fényforrások, lámpatestek: Pontforrás Antennák: 21/27
8 EGYES ELEMEK EGYENSÚLYI GŐZNYOMÁSA Az egyes anyagok párolgási sebessége a hőmérséklettől és a nyomástól függ. Fontos: Az anyagok az olvadáspontjuk alatti hőmérsékleten is párolognak! olvadáspont Lásd pl. jégkocka 22/27 IONOKKAL SEGÍTETT RÉTEGLEVÁLASZTÁS a hordozó felületét meghatározott energiájú ionok bombázzák a rétegleválasztás közben, így a felületen adszorbeálódott, de még a helyüket kereső atomokat eltávolítjuk, csak azok az atomok maradnak a felületen, amelyek már meglevő atom-szigethez kapcsolódnak. Végeredményben egy tömörebb, mechanikailag stabilabb réteget kapunk. 23/27 VÉKONYRÉTEGEK ELŐÁLLÍTÁSA VÁKUUM PORLASZTÁSSAL A forrásanyag atomjaira bontása: Hevítés helyett ionokkal való bombázással Ionokat gázkisüléssel (a gáz atomjainak, molekuláinak elektronokkal való ütköztetésével) hozunk létre Porlasztás: vákuumtér Ar gáz katód: céltárgy, forrás földelt anód: hordozók vákuumszivattyú felé 24/27
9 A VÁKUUMPORLASZTÁS ALAPELVE A gáz ionok (pozitív töltésük révén) a vezető forrásanyag tömb irányában gyorsulnak és onnan semleges részecskéket löknek ki, amelyek lecsapódnak a hordozón (is). A negatív elektronok és a pozitív ionok gyorsulását a katódként bekötött forrásanyag (un. target) és hordozót tartó anódlemez közötti elektromágneses tér okozza. 25/27 A VÁKUUMPORLASZTÁS GYAKORLATI MEGVALÓSÍTÁSAI Magnetronos porlasztás: a plazmát állandó mágnessel és segédanóddal a ún. céltárgy közelében alakítják ki, a hatékonyabb ionkeltés miatt gyorsabban porlasztódik a céltárgy (target) katód (céltárgy) mágnes segédanód elektron elektron hordozók anód gáz-ion porlasztott atom gáz plazma 26/27 A VÁKUUMPORLASZTÁS AUTOMATIZÁLÁSA Pl.: porlasztó gyártósor kihívás egy általános gyártósorhoz képest: tisztaszobai körülmények, vákuumrendszer. az egymás után érkező mintákat a vákuum alatt levő porlasztótérbe zsiliprendszeren keresztül vezetik be 18 méter 27/27
ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp
ELTE Fizikai Intézet FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp mintatartó mikroszkóp nyitott ajtóval Fő egységek 1. Elektron forrás 10-7 Pa 2. Mágneses lencsék 10-5 Pa 3. Pásztázó mágnesek
Vákuumtechnika Bevezetés, történet. Csonka István Frigyes Dávid
Vákuumtechnika Bevezetés, történet Csonka István Frigyes Dávid 1 A speci célja Alapvető vákuumtechnikai ismeretek megszerzése (elmélet/gyakorlat, kvalitatív/kvantitatív ismeretek) Ne féljünk tőle (vö.
Fókuszált ionsugaras megmunkálás
FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz injektorok detektor CDEM (SE, SI) 2 Dual-Beam
Fókuszált ionsugaras megmunkálás
1 FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Ratter Kitti 2011. január 19-21. 2 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz
Vákuumtechnika. 1. Bevezetés. 2. Vákuumszivattyúk
Vákuumtechnika 1. Bevezetés A tudomány és a technika számos területén a levegő jelenléte zavaró lehet. Ennek egyik oka, hogy az atmoszférikus nyomású gázokban a legtöbb részecske szabad úthossza igen rövid.
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
1. MAGAS HİMÉRSÉKLETEK ELİÁLLÍTÁSA ÉS MÉRÉSE
1. MAGAS HİMÉRSÉKLETEK ELİÁLLÍTÁSA ÉS MÉRÉSE Az anyagok szintézise és alakítása a legtöbb esetben magas hımérsékleten történik. A hımérséklet emelésével az atomi mozgások sebessége növekszik (diffúzió,
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Vákuumtechnika Nagy- és ultranagyvákuumszivattyúk/mérők. Csonka István Frigyes Dávid
Vákuumtechnika Nagy- és ultranagyvákuumszivattyúk/mérők Csonka István Frigyes Dávid 1 Szivattyúk működése kompresszió elővákuumszivattyúknál a kivont térfogatot atmoszféra fölé kell komprimálni, nagyvákuumszivattyúknál
Halmazállapot-változások
Halmazállapot-változások A halmazállapot-változások fajtái Olvadás: szilárd anyagból folyékony a szilárd részecskék közötti nagy vonzás megszűnik, a részecskék kiszakadnak a rácsszerkezetből, és kis vonzással
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja
VÁKUUMTECHNIKA. Bohátka Sándor és Langer Gábor 24 ÓRÁS KURZUS TANANYAGA. TÁMOP C-12/1/KONV projekt
VÁKUUMTECHNIKA Bohátka Sándor és Langer Gábor 24 ÓRÁS KURZUS TANANYAGA TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt Ágazati felkészítés a hazai ELI projekttel összefüggő képzési és K+F feladatokra" VÁKUUMTECHNIKA
Katódporlasztás. 1.ábra: A katódporlasztás sematikus ábrája [ Mojzes, 1995] Az ionok targetbe csapódása következtében többféle folyamat játszódhat le.
Katódporlasztás A katódporlasztás alapja egy ritkított térben, két elektróda között létrehozott önfenntartó villamos kisülés, plazma létrehozása. Ebben a ritkított térben az elektronok felgyorsulnak és
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
7.3. Plazmasugaras megmunkálások
7.3. Plazmasugaras megmunkálások (Plasma Beam Machining, PBM) Plazma: - nagy energiaállapotú gáz - az anyag negyedik halmazállapota - ionok és elektronok halmaza - egyenáramú ív segítségével állítják elő
Hibrid Integrált k, HIC
Hibrid Integrált Áramkörök, k, HIC Az alábbi bemutató egyes ábráit a Dr. Illyefalvi Vitéz Zsolt Dr. Ripka Gábor Dr. Harsányi Gábor: Elektronikai technológia, ill. Dr Ripka Gábor: Hordozók, alkatrészek
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.
Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy
5. VÉKONYRÉTEG TECHNOLÓGIÁK
5. VÉKONYRÉTEG TECHNOLÓGIÁK Definíció: vékonyréteg az anyag olyan megjelenési formája, melynél valamilyen lényeges fizikai sajátság tekintetében az egyik térbeli irány kitüntetett szerepet játszik [1].
Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Tömegspektroszkópia. 1. Vákuum-követelmények
Tömegspektroszkópia Számos területen fontos különböző atomok, molekulák azonosítása, izotóparányok meghatározása, stb. Ennek egyik legelterjedtebb módja a tömegspektroszkópia. Ezeknek a méréseknek a során
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
6. mérés. Vákuumtechnika
Vákuumtechnika 1./12. oldal 6. mérés Vákuumtechnika 0. Tippek A képleteket nem kell megtanulni, de megérteni érdemes. A bekeretezett megjegyzés rovatok kizárólag érdeklődők számára készültek, elolvasásuk,
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
VÁKUUMTECHNIKA - FÉMEK GÁZLEADÁSA
A vákuumtechnika alapjai VÁKUUMTECHNIKA - FÉMEK GÁZLEADÁSA Számtalan technológiai művelet zajlik vákuumban. (vákuumcsomagolás, fémgőzölés, elektronmikroszkópia és sok más szerkezetvizsgáló módszer, MBE
Anyagszerkezet vizsgálati módszerek
Kromatográfia Folyadékkromatográfia-tömegspektrometria Anyagszerkezet vizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagszerkezet vizsgálati módszerek Kromatográfia 1/ 25 Folyadékkromatográfia-tömegspektrometria
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
A nanotechnológia mikroszkópja
1 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június 1. FEI Quanta 3D SEM/FIB 2 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június
Pásztázó elektronmikroszkópia (SEM) Elektronsugaras mikroanalízis (EPMA)
Pásztázó elektronmikroszkópia (SEM) Elektronsugaras mikroanalízis (EPMA) Anyagtudományi analitikai vizsgálati módszerek Koczka Béla Szervetlen és Analitikai kémia Tanszék Mikroszkópos leképezési technikák
Vákuumtechnika UHV vákuum-rendszerek. Csonka István Frigyes Dávid
Vákuumtechnika UHV vákuum-rendszerek Csonka István Frigyes Dávid 1 UHV felhasználása Főbb területek: Felületmódosítás [Molecular Beam Epitaxy, UHV-CVD] és analitika [UV/Röntgen fotoelektron-spektroszkópia
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Vegyipari géptan 3. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
egyiari gétan 3. Hidrodinamikai Rendszerek Tanszék, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 6 80 Fax: 463 30 9 www.hds.bme.hu Légszállító géek. entilátorok. Centrifugál ventilátor. Axiális ventilátor.
Az expanziós ködkamra
A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon
Vékonyrétegek - általános követelmények
Vékonyrétegek - általános követelmények egyenletes vastagság a teljes szubsztráton azonos összetétel azonos szerkezet (amorf, polikristályos, epitaxiális) azonos fizikai és kémiai tulajdonságok tömörség
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
MEMS, szenzorok. Tóth Tünde Anyagtudomány MSc
MEMS, szenzorok Tóth Tünde Anyagtudomány MSc 2016. 05. 04. 1 Előadás vázlat MEMS Története Előállítása Szenzorok Nyomásmérők Gyorsulásmérők Szögsebességmérők Áramlásmérők Hőmérsékletmérők 2 Mi is az a
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
2.ea Fényforrások. Nagynyomású kisülő lámpák OMKTI
2.ea Fényforrások Nagynyomású kisülő lámpák 1 Különbség a kisnyomású és nagynyomású kisülések között Kis nyomáson (1-100 Pa nagyságrend): a a kevesebb ütközés, így nagy közepes úthossz miatt az elektronok
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
ATOMEMISSZIÓS SPEKTROSZKÓPIA
ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
VÁKUUMTECHNIKA. Bohátka Sándor és Langer Gábor 9. SZIVATTYÚK. TAMOP-4.1.1.C-12/1/KONV-2012-0005 project
VÁKUUMTECHNIKA Bohátka Sándor és Langer Gábor 9. SZIVATTYÚK TAMOP-4.1.1.C-12/1/KONV-2012-0005 project Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Elektromos töltés, áram, áramkör
Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F
III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete
TestLine - Fizika hőjelenségek Minta feladatsor
1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Atomfizika előadás 2. Elektromosság elemi egysége szeptember 17.
Atomfizika előadás. Elektromosság elemi egysége 014. szeptember 17. Az elektrolízis Faraday-törvényei mkit Nm/A(k/A)It k/a 1--szer egy adott érték (egység létezése) minden egy vegyértékű elem 1 moljának
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.
Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja Archeometriai műhely ELTE TTK 2013. Elektronmikroszkópok TEM SEM Transzmissziós elektronmikroszkóp Átvilágítós vékony minta < 100
Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek.
Fázisátalakulások A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek. Fából vaskarika?? K Vizes kalapács Ha egy tartályban a folyadék fölötti térrészből
METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK
METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
VÁKUUMTECHNIKA. Bohátka Sándor és Langer Gábor 10. TECHNIKAI ISMERETEK 11. VÁKUUMRENDSZEREK FELÉPÍTÉSE, ÜZEMELTETÉSE
VÁKUUMTECHNIKA Bohátka Sándor és Langer Gábor 10. TECHNIKAI ISMERETEK 11. VÁKUUMRENDSZEREK FELÉPÍTÉSE, ÜZEMELTETÉSE TÁMOP-4.1.1.C-12/1/KONV-2012-0005 projekt Ágazati felkészítés a hazai ELI projekttel
Sugárzás és anyag kölcsönhatásán alapuló módszerek
Sugárzás és anyag kölcsönhatásán alapuló módszerek Elektronmikroszkópok A leképzendő mintára elektronsugarakat bocsátunk. Mivel az elektronsugár (mint hullám) hullámhossza kb. 5 nagyságrenddel kisebb a
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,
Vákuumtechnika Vákuum rendszerek tervezése, építése. Csonka István Frigyes Dávid
Vákuumtechnika Vákuum rendszerek tervezése, építése Csonka István Frigyes Dávid 1 Gondoljuk át: Mire akarjuk használni a berendezést? Ez milyen vákuumot (nyomás és tisztaság) igényel? Mekkora gázterhelést
ZH November 27.-én 8:15-től
ZH-2 2017 November 27.-én 8:15-től Érzékelési elvek Érzékelési módszerek Mikrotechnológia http://www.mogi.bme.hu/tamop/mikromechanika/math-index.html 1 Mikrotechnológia alapjai Mikrotechnológia = szerszámkészlet
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Halmazállapotok. Gáz, folyadék, szilárd
Halmazállapotok Gáz, folyadék, szilárd A levegővel telt üveghengerbe brómot csepegtetünk. A bróm illékony, azaz könnyen alakul gázhalmazállapotúvá. A hengerben a levegő részecskéi keverednek a bróm részecskéivel
Plazmasugaras felülettisztítási kísérletek a Plasmatreater AS 400 laboratóriumi kisberendezéssel
Plazmasugaras felülettisztítási kísérletek a Plasmatreater AS 400 laboratóriumi kisberendezéssel Urbán Péter Kun Éva Sós Dániel Ferenczi Tibor Szabó Máté Török Tamás Tartalom A Plasmatreater AS400 működési
A kromatográfia és szerepe a sokalkotós rendszerek minőségi és mennyiségi jellemzésében. Dr. Balla József 2019.
A kromatográfia és szerepe a sokalkotós rendszerek minőségi és mennyiségi jellemzésében. Dr. Balla József 2019. 1 Kromatográfia 2 3 A kromatográfia definíciója 1. 1993 IUPAC: New Unified Nomenclature for
3 / о» S ~ KÖZLEM ÉNYEK. 12. kötet 1-2 szám MELLÉKLET MTA A T O M M A G KUTATÓ INTÉZETE DEBRECEN junius
3 / о» S ~ KÖZLEM ÉNYEK 12. kötet 1-2 szám MELLÉKLET MTA A T O M M A G KUTATÓ INTÉZETE DEBRECEN 1970. junius I Ж; SZALAY SÁNDOR A FIZIKAI KÍSÉRLETEZÉS TECHNIKAI ALAPJAI Berecz István, Medveczky László,
NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK
Budapesti Műszaki és Gazdaságtudományi Egyetem NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK Dr. Palotás Béla Mechanikai Technológia és Anyagszerkezettani Tanszék Elektronsugaras hegesztés A katódból kilépő
A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR
A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR Készítette: TÓTH ESZTER A5W9CK Műszaki menedzser BSc. TUDOMÁNYOS DIÁKKÖRI DOLGOZAT CÉLJA Plazmasugaras és vízsugaras technológia
Perifériáknak nevezzük a számítógép központi egységéhez kívülről csatlakozó eszközöket, melyek az adatok ki- vagy bevitelét, illetve megjelenítését
Perifériák monitor Perifériáknak nevezzük a számítógép központi egységéhez kívülről csatlakozó eszközöket, melyek az adatok ki- vagy bevitelét, illetve megjelenítését szolgálják. Segít kapcsolatot teremteni
Plazmavágás
2016.09.23. Plazmavágás Ipari vágásmódszereket ismertető sorozatunkban egy, a magánszemélyek részére is már-már elérhető technológia, a plazmavágás került sorra. Százezerrel kezdődő összegtől már kapható
A halmazállapot-változások
A halmazállapot-változások A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Halmazállapotok Energia Kondenzáció Kondenzációs hő Kondenzáció Párolgás Gőz Fagyáshő Párolgáshő Folyadék
Felületmódosító technológiák
ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Biokompatibilis anyagok 2011. Felületm letmódosító eljárások Dr. Mészáros István 1 Felületmódosító technológiák A leggyakrabban változtatott tulajdonságok a felület
KS-502-VS ELŐNYPONTOK
KS-502-VS MIKROPROCESSZOR VEZÉRLÉSŰ NAGY HATÓTÁVOLSÁGÚ LEVEGŐ, GÁZMINTAVEVŐ GÁZMOSÓEDÉNYEKEN ÉS / VAGY SZORPCIÓS, VOC ÉS / VAGY PUF CSÖVEKEN TÖRTÉNŐ MINTAGÁZ ÁTSZÍVÁSRA Kalibrált mikró venturi térfogatáram-mérő.
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
Mikroszerkezeti vizsgálatok
Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Felhasználói kézikönyv
Felhasználói kézikönyv 5100A Lézeres távolságmérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. A készülék felépítése... 2 4. Műszaki jellemzők... 3 5. Alap műveletek... 3 6.
Korszerű tömegspektrometria a. Szabó Pál MTA Kémiai Kutatóközpont
Korszerű tömegspektrometria a biokémi miában Szabó Pál MTA Kémiai Kutatóközpont Tematika Bevezetés: ionizációs technikák és analizátorok összehasonlítása a biomolekulák szemszögéből Mikromennyiségek mintaelőkészítése
A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy
A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy hőelvonás), vagy munkavégzéssel (pl. súrlódási munka,
Elektromos töltés, áram, áramkörök
Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú
2015.02.02. Arany mikrohuzalkötés. A folyamat. A folyamat. - A folyamat helyszíne: fokozott tisztaságú terület
Arany mikrohuzalkötés Termoszónikus mikrohuzalkötés gyártósorai Garami Tamás BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY - helyszíne: fokozott tisztaságú terület
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott