DIGITÁLIS TECHNIKA II

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DIGITÁLIS TECHNIKA II"

Átírás

1 DIGITÁLIS TECHNIK II Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 9. ELŐDÁS Z ELŐDÁS ÉS TNNYG z előadások rató Péter: Logikai rendszerek tervezése ( old.) Tieze U., Schenk Ch: nalóg és digitális áramkörök ( old.) Zsom Gyula: Digitális technika I és II Rőmer Mária: Digitális rendszerek áramkörei Gál Tibor: Digitális rendszerek I és II, enesóczky Zoltán: Funkcionális elemek 2004 (28-46 old.) enesóczky Zoltán: Digitális tervezés funkcionális elemekkel és mikroprocesszorral, 2008, (22-33 old.) Kovács Cs. Digitális elektronika old. 1 c. könyvein, jegyzetein alapulnak. 2 ÁRMKÖRGENERÁCIÓK 1930-as évek, relés áramkörök, ell Labs (korai hajtóerő: telefon kapcsolástechnika) INTEGRÁLT ÁRMKÖR 1940-évek, elektroncsövek, pl. ENIC (electronic numerical integrator and calculator), 18 ezer cső, 140 kw (ma: négy alapműveletes kalkulátor kb. 9 ezer tranzisztor) (hajtóerő: katonai alkalmazások, tüzérségi röppálya számítások, stb.) 3 Kilby: Fizikai Nobel díj 2000 The Nobel Prize in Physics 2000: "for basic work on information and communication technology "for his part in the invention of the integrated circuit Si IC SZDLOM (FIRCHILD) R. Noice eredeti szabadalmának egy lapja: TRNZISZTOR ÉS Z IC tranzisztor a 20. századot leginkább meghatározó találmány. SEMICONDUCTOR DEVICE- ND-LED STRUCTURE Közzétéve: pril 25, 1961, (R. Noyce az INTEL egyik alapítója) 5 Kétféle tranzisztor elképzelés: - külső térrel vezérelni az elektronok áramát: térvezérlésű tranzisztor (FET, MOSFET, stb.) - az anyag (félvezető) belsejében létrehozni a vezérlő elektródát : bipoláris tranzisztor (JT) FET MOS JT TRNSISTOR Field Effect Transistor Metal-Oxide-Semiconductor ipolar Junction Trasistor TRNSfer resistor 6 1

2 ÁRMKÖRGENERÁCIÓK (2) 1950/1960 félvezető diódás és tranzisztoros áramkörök - RTL resistor-transistor-logic - DTL diode-transistor-logic - ECL emitter-coupled logic (később) 1961-től SSI (előzőek egy chipen) 1960-as évek TTL (transistor-transistor logic), Sylvania, majd igazán sikeresen Texas Instruments ÁRMKÖRGENERÁCIÓK Ellenállás-tranzisztor logika (RTL resistor-transistor-logic) kis áramerősítési tényezőjű tranzisztorok telítésbe kerülnek, kis kimeneti terhelhetőség ma már nem használják. Dióda-tranzisztor logika (DTL diode-transistor-logic) telítéses működés miatt nagy kapukésleltetési idő miatt nem használják as évek CMOS (complementary metal-oxidesemiconductor) 7 8 TTL EVEZETŐ Elterjedt IC technológia Két alapváltozat 74 (ipari) és 54 (katonai) Több sorozat ipoláris tranzisztorok, diódák és ellenállások Tokozás DIL, SMT TTL SOROZTOK STNDRD ELVULT! SCHOTTKY ELVULT! S LOW-POWER SCHOTTKY LS DVNCED SCHOTTKY S FST F DIL SMT Dual-In-Line Surface Mounting Technology 9 DVNCED LOW-POWER SCHOTTKY LS 10 TTL ÁRMKÖRCSLÁD Lényegében a dióda-tranzisztor logika (DTL) módosított változata lacsony fokú integráció (SSI) és rövid késleltetési idők TTL áramkörcsalád emenet: multiemitteres-tranzisztor (ÉS funkció); Kimenet: háromféle: - ellenütemű, - nyitott kollektoros, - három-állapotú Legegyszerűbb TTL-áramköri elem a kétbemenetes NND-kapu Invertáló kimenetű (NND, NOR, NOT) kapuáramkörök technikailag egyszerűbben valósíthatók meg mint a neminvertálók. 11 TTL FESZÜLTSÉGSZINTEK Kimeneten: 5V Kötött feszültség szintek 4V H 3V 2,4V 2V T 1V 0,4V L 0V emeneten: H 2V T 0,8V L 12 2

3 TTL EMENETI KRKTERISZTIK TTL KIMENETI KRKTERISZTIK kimeneti karakterisztika függ a logikai állapottól! megengedett (logikai) tartomány kimenet LOW kimenet HIGH LOGIKI ÁRMKÖRÖK KPCSOLÁSTECHNIKI MEGVLÓSÍTÁS (KLSSZIKUS) TTL LPKPU (NND) 4 k 1,6 k 130 Egy-egy alapáramkör megvalósítására egész sor áramkörtechnikai megoldás létezik, amelyek: - teljesítményfelvételben, - tápfeszültségigényben - H ill. L szintben - sebességben, - kimeneti terhelhetőségben (fan out) térnek el egymástól. 15 D1 D2 1 k T4 D3 bemeneti fokozat, ÉS kapu,, második fokozat, fázishasító,, ellenütemű kimenőfokozat, totem-pole,, T4, diódás szinteltolóval. logikai funkciót diódák is ellátnák, a 16 tranzisztorhatás felgyorsítja az átkapcsolást. TTL NND LYOUT Standard 2-bemenetű TTL NND kapu áramköre Kettős 4-bemenetű TTL NND kapu layout-ja z ábrán látható elrendezés az integrált TTL kapcsolásokban ma már egyre kevésbé használják a tranzisztor telítéses működése miatt fellépő nagy kapukésleltetési idők miatt. Megoldás: Schottky-tranzisztorokból álló TTL kapu. (meggátolja, hogy a nyitott tranzisztor U CE < 0.3 V) 17 TTL LPKPU (NND) totem-pole kimenet felső tranzisztora mint aktív felhúzó terhelés kis dinamikus munkaellenállást képvisel, ami felgyorsítja a kimenetet terhelő kapacitások áttöltését, és így az átkapcsolást. 130 ohmos ellenállás szerepe áramkorlátozás. többemitteres tranzisztor a Texas Instruments szabadalma. D1 és D2 diódák a bemenetet védik az esetleges negatív túlfeszültség ellen, illetve a negatív amplitúdójú tranziensek és zavarjelek ellen. 18 3

4 (KLSSZIKUS) TTL LPKPU (NND) 4 k 1,6 k 130 TTL LPKPU FESZÜLTSÉGEI: EMENET MGS (HIGH) D1 D2 1 k T4 D3 +2 V U be +2 V +1,4 V ~+0,8 V +0,7 V U ki 0 V ( 0,4 V) ha kinyit, akkor is vezet, és T4 lezár. I kimenet L szintű lesz és a tranzisztor nagy áramot be 40 μ, U ki 0,4 V. és tranzisztorok telítésben vannak, ez jelentős sebességkorlátozó tényező. Kimeneten képes felvenni, mely pl. a kimenetre csatlakoztatott 0 1 átmenet: nsec késleltetés. és tranzisztor inverz kapubemenetből származik (L állapotban a üzemben van. bemenetekből folyik ki áram) 19 Ha minden bemenet H állapotú, akkor az R1-en átfolyó áram a 20 kinyitott C diódáján át folyik bázisára és azt kinyitja. (KLSSZIKUS) TTL LPKPU (NND) 4 k 1,6 k 130 TTL LPKPU FESZÜLTSÉGEI: EMENET LCSONY (LOW) T4 D1 D2 1 k D3 0 V +0,7 V 0 V 0 V +3,6 V (> +2,4 V) ha lezár, akkor lezár is. T4 kinyit és a kimeneten H szint jelenik meg. z emitterkövetőként I be < U T /R 1 = 5 V / 4 k 1,2 m (specifikáció: max 1,6 m) működő tranzisztor ebben az esetben nagy kimenő U ki (üresjárásban) = 5-2 x 0,7 = +3,6 V áramot képes leadni és a terhelő kapacitások is gyorsan Ha akár csak egy bementre is alacsony feszültségszintet adunk, akkor a hozzá tartozó E dióda kinyit és a bázisárama megszakad. lezár feltöltődhetnek és a kimenet H szintre kerül. 5V 4V 3V 2V 1V 0V U TTL INVERTER TRNSZFER KRKTERISZTIK kb. 0,7-1,4 V bemeneti feszültség tartományban a meredekség: -1,6 tranzisztor aktív üzemmódban mint közös emitteres erősítő U működik, 1V 2V 3V 4V 5V 1 = z átviteli karakterisztika alakját lényegében az aktív felhúzó üzem és a totem-pole kimenet határozzák meg. u = - 1,6 k / 1 k = -1, k 1,6 k 130 D1 D2 1 k TTL ÁRMKÖRCSLÁD T4 D3 z integrált TTL kapcsolásokban ma már egyre kevésbé használják a tranzisztorok telítéses működése miatt fellépő nagy kapukésleltetési idők miatt megakadályozása Schottky tranzisztor használata 24 4

5 TELJESÍTMÉNY-KÉSLELTETÉS SZORZT Áramkörtípus akkor jó ha kicsi a késleltetése és a teljesítményfelvétele. SCHOTTKY TRNZISZTOR Schottky telítésgátló diódás tranzisztor Jósági szám (figure-of-merit): a két paraméter szorzata (power-delay product). 54/74 típus: t pd = 10 nsec, egy kapura P = 10 mw P t pd = 100 pj Értelmezhető (kb.) mint 1 bit kapcsolásához szükséges energia. 25 dióda negatív visszacsatolást hoz létre, ha kinyit, és így meggátolja, hogy a nyitott tranzisztor kollektor-emitter feszültsége 0,3V alá csökkenjen. 26 SCHOTTKY TTL TTL nagyobb sebességű változata. Schottky dióda egy fém-félvezető dióda. Schottky gátas dióda a tranzisztor bázisa és kollektora között: megakadályozza hogy a tranzisztor telítésbe kerüljön. Schottky tranzisztor: nagyobb kapcsolási sebesség. Schottky dióda és a pn átmenet potenciálképei és az áram-feszültség karakterisztikái hasonlóak, azonban az áramvezetési mechanizmusok lényegesen különböznek. 27 DIGITÁLIS ÁRMKÖRÖK: SCHOTTKY-TTL Schottky-diódák és Schottky-tranzisztorok alkalmazása az áramkör működésének (a telítésbe vezérelt bipoláris tranzisztorok kapcsolási folyamatainak) gyorsításához vezet. Schottky-technológia legfontosabb áramkörcsaládjai az S- (Schottky) és az LS- (Low power Schottky) áramkörcsaládok. 28 LPÁRMKÖR: SCHOTTKY TTL NND Tranzisztorok: 4 kivételével (ez nem megy telítésbe) mindegyik kollektora Schottky diódával megfogva Védődiódák: gyors diódák, a negatív kilengések levágására 5: Emitter követő, felgyorsítja a kimenet 0 1 kapcsolását 50 ohm ellenállás: 0 1 kapcsolásnál korlátozza az áramtranzienst, továbbá biztosítja az impedanciaillesztést LOW-POWER SCHOTTKY lap-kapuáramkör LS-(Low- Power-Schottky) Technológiával Nagyobb ellenállások - kisebb áramok emeneti kapu: Schottky diódák Series 54LS/74LS t pd = 9 nsec, P = 2 mw t pd P = 18 pj Series 54S/74S t pd = 3 nsec, P = 19 mw t pd P = 57 pj hagyományos TTL kapuhoz viszonyítva a Schottky-áramkör ellenállás 30 értékeinek kb. ötszöröse. Teljesítményigénye ezért ötödrésze az előzőnek. 5

6 SCHOTTKY TTL:TELJESÍTMÉNY- KÉSLELTETÉS SZORZT 54S/74S típus: t pd = 3 nsec, egy kapura P = 19 mw P t pd = 57 pj 54LS/74LS típus: t pd = 9 nsec, egy kapura P = 2 mw P t pd = 18 pj 1,5-szer illetve 5-ször jobb mint a standard TTL (100 pj)! 31 KIMENETI FOKOZT: TOTEM-POLE Standard TTL-kapcsolásokban: ellenütemű kimeneti fokozat totem pole -kimenet. Ez a leggyakoribb TTL-kimenet. Több kimenetet nem szabad párhuzamosan kapcsolni - rövidzár veszély. Üzemmód: pull-down és pull-up. H és L szintre gyorsan kapcsol. Több TTL-kimenet összekapcsolása nagyon sok kapukimenet jelét kell eredő logikai kimeneti jel kialakításához összekapuzni (pl. buszrendszerek): - nyitott kollektoros kimenet (open collector) - Tri-State-kimenet 32 D NYITOTT KOLLEKTOROS KIMENET U T R T Ki 1 z ellenállás általában nincs beépítve az áramkörbe! L-H átmenete lassabb, mint a totem-pole kimeneté. kimeneti tranzisztor mindig pull-down-üzemmódban dolgozik. Vezetési állapotában a kimenetet a testponttal összeköti, zárt állapotában pedig leválasztja (nagy ellenállás). lkalmazás: nagyobb kimeneti áramok, nagyobb tápfeszültségek, stb., továbbá ún. huzalozott kapuknál. 33 NYITOTT KOLLECTOROS (OPEN COLLECTOR) KIMENETEK z ilyen kapuk kimenetén csupán egyetlen tranzisztor van, amelynek emittere a földre van kötve. Ezek a kimenetek párhuzamosíthatók és közös kollektor-ellenállással működnek. Hátránya: a kimeneti feszültség felfutási sebessége kisebb, mint az ellenütemű végfokozatoké, mert a parazita kapacitások itt csak az Rc ellenálláson keresztül töltődhetnek fel V OPEN COLLECTOR KIMENETEK KPCSOLÁS 5 V OPEN COLLECTOR KIMENETEK KPCSOLÁS R C OC kimenetek párhuzamos kapcsolása. R C kimeneti feszültség csak akkor lesz H szintű, ha minden kimenet H állapotú. Ez ÉS függvény a pozitív logikában. z L szint akkor áll elő a kimeneten, ha legalább egy vagy több kimenet L állapotú. Negatív logikában VGY függvényt kapunk. 35 OC kimenetek kapcsolási rajzjele. 36 6

7 Huzalozott ÉS-függvény ábrázolása logikai jelekkel. Nyitott kollektoros kimenettel kialakított VGY-függvény 37 Huzalozott VGY-kapcsolat Huzalozott ÉS-kapcsolat 38 OPEN-COLLECTOR KIMENETEK ÖSSZEKÖTÉSE OC KIMENET: FELHÚZÓ ELLENÁLLÁS MÉRETEZÉSE Minimális értékét az L, maximális értékét a H kimeneti szint határozza meg: Huzalozott VGY, huzalozott ÉS funkció wired-or wired-nd Mivel a függvény huzalozással valósul meg, ezért huzalozott logikájú kapcsolásnak nevezik. 39 R pu min U = I Open-Collector TTL bemenetek (m db kimenet) (n db bemenet) max OL U n I OL max IL R Open-Collector TTL bemenetek (m db kimenet) (n db bemenet) pu max U = m I min OH U + n I OH min IH 40 5V 4V 3V 2V 1V SCHMITT-TRIGGERES EMENETŰ INVERTER U = Hiszterézis 0,8 V U Lassan változó, vagy zajjal terhelt jelek is feldolgozhatók. Ha a zavar amplitúdója kisebb mint a hiszterézis, nem okoz hibás működést SCHMITT-TRIGGERES EMENETŰ INVERTER Schmitt-trigger bemenetű inverter funkciója nem logikai, hanem áramköri. Schmitt-trigger áramkör megformálja a bementére érkező jelet, a jelváltozások átmeneteit meredekebbé teszi (felgyorsítás). 0V 1V 2V 3V 4V 5V

8 V HÁROM ÁLLPOTÚ (tristate) KIMENET Számos alkalmazási területen lényeges egyszerűsítés érhető el a kapuk kimeneteinek párhuzamosításával, akkor ha egy vezetékre fűzött több kapu közül mindig az egyik logikai állapota kell meghatározza a kimeneti állapotot. Ilyenkor buszrendszerről beszélünk. kapu működését egy V tiltja vagy engedélyezi. Ha V tilt (HIGH), a kiment egy ún. harmadik, nagyimpedanciás állapotba kerül, nem befolyásolja a következő kapu állapotát. HÁROMÁLLPOTÚ (TRI-STTE) KIMENET Tri-State-kimenet: totem-pole-kimenet módosított változata. z engedélyező bemenetre adott 0 -szint mindkét kimeneti tranzisztort egyszerre lezárja. X 1 X 2 EN Y L L H H L H H H H L H H H H H L irreleváns L leválasztva HÁROM ÁLLPOTÚ KIMENET Normál totem-pole kimenet: nem köthetők össze, tönkremegy! Több kimenet egy vezetékre kapcsolása: háromállapotú (tri-state) kimenetű kapuval. HÁROMÁLLPOTÚ (TRISTTE) KIMENETEK kapuk kimeneteinek párhuzamosítása, úgy, hogy egy vezetékre fűzött több kapu közül mindig az egyik logikai állapota határozza meg a kimeneti állapotot. Ilyenkor buszrendszerről beszélünk. Felhasználás: busz vezeték meghajtása. buszvezetékre csatlakoztatott tri-state kimenetű áramkörök közül mindig csak egyet szabad engedélyezni, a többi kimenete lebeg, így nem befolyásolják a buszvezeték állapotát, és nem is károsítják egymást. 45 Ez a kimenet valódi ellenütemű kimenet azzal a járulékos tulajdonsággal, hogy egyfajta külön vezérlőjelre nagyohmos állapotba kerülhet. Ez un. harmadik állapot. 46 8

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II DIGITÁLIS TECHNIK II Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 6. ELİDÁS: LOGIKI ÁRMKÖRÖK I 6. ELİDÁS LOGIKI ÁRMKÖRÖK 1. Digitális áramkörcsaládok 2. Inverter és tulajdonságai 3.

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

ANALÓG ÉS DIGITÁLIS TECHNIKA I

ANALÓG ÉS DIGITÁLIS TECHNIKA I ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 4. ELŐADÁS LOGIKAI ÁRAMKÖRÖK I 2010/2011 tanév 2. félév 1 4. ELŐADÁS

Részletesebben

Digitális kapcsolások megvalósítása Bináris állapotok megvalósítása

Digitális kapcsolások megvalósítása Bináris állapotok megvalósítása Bináris állapotok megvalósítása Bináris állapotok realizálásához két állapot megkülönböztetése, azaz egyszerű átkapcsolás-átváltás szükséges (pl. elektromos áram iránya, feszültség polaritása, feszültség

Részletesebben

DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint IGIÁIS ENIK II r. ovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és echnológia Intézet 0. EŐÁS OGIKI ÁRMKÖRÖK II MOS ÉS MOS Z EŐÁS ÉS NNG z előadások Rőmer Mária: igitális rendszerek áramkörei

Részletesebben

DIGITÁLIS TECHNIKA 11. Előadás

DIGITÁLIS TECHNIKA 11. Előadás DIGITÁLIS TECHNIKA 11. Előadás Előadó: Dr. Oniga István Egyetemi docens 2010/2011 II félév Digitális integrált áramkörök technológiája A logikai áramkörök megépítéséhez elıször is ki kell választanunk

Részletesebben

11.2. A FESZÜLTSÉGLOGIKA

11.2. A FESZÜLTSÉGLOGIKA 11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy

Részletesebben

Irányítástechnika Elıadás. A logikai hálózatok építıelemei

Irányítástechnika Elıadás. A logikai hálózatok építıelemei Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 8. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék

Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák Az inverter, alapfogalmak Kiürítéses típusú MOS inverter Kapuáramkörök kialakítása

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 A MOS inverterek http://www.eet.bme.hu/~poppe/miel/hu/13-mosfet2.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint RENDSZER

Részletesebben

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák A CMOS inverter, alapfogalmak működés, számitások, layout CMOS kapu áramkörök

Részletesebben

34-35. Kapuáramkörök működése, felépítése, gyártása

34-35. Kapuáramkörök működése, felépítése, gyártása 34-35. Kapuáramkörök működése, felépítése, gyártása I. Logikai áramkörcsaládok Diszkrét alkatrészekből épülnek fel: tranzisztorok, diódák, ellenállások Két típusa van: 1. TTL kivitelű kapuáramkörök (Tranzisztor-Tranzisztor

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGITÁLIS TEHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 8. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:

Részletesebben

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint 25.5.5. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐDÁS: LOGIKI (OOLE) LGER ÉS LKLMÁSI IRODLOM. ÉS 2. ELŐDÁSHO rató könyve2-8,

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Műveleti erősítők - Bevezetés

Műveleti erősítők - Bevezetés Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Műveleti erősítők - Bevezetés Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2014.

Részletesebben

Diszkrét aktív alkatrészek

Diszkrét aktív alkatrészek Aktív alkatrészek Az aktív alkatrészek képesek kapcsolási és erősítési feladatokat ellátni. A digitális elektronika és a teljesítményelektronika gyors kapcsolókra épül, az analóg technikában elsősorban

Részletesebben

Teljesítmény-erősítők. Elektronika 2.

Teljesítmény-erősítők. Elektronika 2. Teljesítmény-erősítők Elektronika 2. Az erősítés elve Erősítés: vezérelt energia-átalakítás Vezérlő teljesítmény: Fogyasztó teljesítmény-igénye: Tápforrásból felvett teljesítmény: Disszipálódott teljesítmény:

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három

Részletesebben

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök

Részletesebben

Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor

Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor 4. félév Óraszám: 2+2 1 I. RÉSZ A DIGITÁLIS ÁRAMKÖRÖK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Általános témák, amelyek vonatkoznak az SSI, MSI, LSI és

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Scmitt-trigger kapcsolások

Hobbi Elektronika. Bevezetés az elektronikába: Scmitt-trigger kapcsolások Hobbi Elektronika Bevezetés az elektronikába: Scmitt-trigger kapcsolások 1 Az NE555 mint Schmitt-trigger Ha az NE555 trigger és treshold bemeneteit közös jellel vezéreljük, hiszterézissel rendelkező billenő

Részletesebben

Teljesítményerősítők ELEKTRONIKA_2

Teljesítményerősítők ELEKTRONIKA_2 Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.

Részletesebben

29.B 29.B. Kombinációs logikai hálózatok

29.B 29.B. Kombinációs logikai hálózatok 29.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a kombinációs hálózatok jellemzıit! Ismertesse az alapfüggvényeket megvalósító TTL és CMOS kapuáramkörök jellemzıit és kimeneti megoldásait!

Részletesebben

ELEKTRONIKA I. TRANZISZTOROK. BSc Mérnök Informatikus Szak Levelező tagozat

ELEKTRONIKA I. TRANZISZTOROK. BSc Mérnök Informatikus Szak Levelező tagozat ELEKTRONIKA I. TRANZISZTOROK BSc Mérnök Informatikus Szak Levelező tagozat Tranzisztorok Elemi félvezető eszközök Alkalmazásuk Analóg áramkörökben: erősítők Digitális áramkörökben: kapcsolók Típusai BJT

Részletesebben

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris. Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros

Részletesebben

XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat

XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17. Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t

Részletesebben

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői Elektronika 2 1. Előadás Műveleti erősítők felépítése, ideális és valós jellemzői Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,

Részletesebben

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3 Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések

Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések Hobbi Elektronika Bevezetés az elektronikába: Boole algebra, logikai kifejezések 1 Felhasznált anyagok Mészáros Miklós: Logikai algebra alapjai, logikai függvények I. BME FKE: Logikai áramkörök Electronics-course.com:

Részletesebben

ANALÓG ÉS DIGITÁLIS TECHNIKA I

ANALÓG ÉS DIGITÁLIS TECHNIKA I ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS BILLENŐ ÁRAMKÖRÖK 2010/2011 tanév 2. félév 1 IRODALOM

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló

Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló Hobbi Elektronika Bevezetés az elektronikába: A tranzisztor, mint kapcsoló 1 Felhasznált irodalom Tudásbázis: Bipoláris tranzisztorok (Sulinet - szakképzés) Wikipedia: Tranzisztor Szabó Géza: Elektrotechnika-Elektronika

Részletesebben

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék Integrált áramkörök/2 Rencz Márta Elektronikus Eszközök Tanszék Mai témák MOS áramkörök alkatrészkészlete Bipoláris áramkörök alkatrészkészlete 11/2/2007 2/27 MOS áramkörök alkatrészkészlete Tranzisztorok

Részletesebben

2.Előadás ( ) Munkapont és kivezérelhetőség

2.Előadás ( ) Munkapont és kivezérelhetőség 2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön

Részletesebben

Gingl Zoltán, Szeged, dec. 1

Gingl Zoltán, Szeged, dec. 1 Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:

Részletesebben

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben

Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél

Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél A nagy áram meghajtó képességű IC-nél nagymértékben előjöhetnek a földvezetéken fellépő hirtelen áramváltozásból adódó problémák. Jelentőségükre

Részletesebben

Digitális Technika 2. Logikai Kapuk és Boolean Algebra

Digitális Technika 2. Logikai Kapuk és Boolean Algebra Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.

Részletesebben

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó

Részletesebben

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek Elektronika 2 7. Előadás Analóg és kapcsoló-üzemű tápegységek Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - B. Carter, T.R. Brown: Handbook of Operational Amplifier Applications,

Részletesebben

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök

Részletesebben

Koincidencia áramkörök

Koincidencia áramkörök Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

Elektronika I. Dr. Istók Róbert. II. előadás

Elektronika I. Dr. Istók Róbert. II. előadás Elektronika I Dr. Istók Róbert II. előadás Tranzisztor működése n-p-n tranzisztor feszültségmentes állapotban p-n átmeneteknél kiürített réteg jön létre Az emitter-bázis réteg között kialakult diódát emitterdiódának,

Részletesebben

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Buck, boost konverter Készítette: Támcsu Péter, 2016.10.09, Debrecen Felhasznált dokumentum : Losonczi Lajos - Analog Áramkörök 7 Feszültség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Digitális rendszerek II. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu

Digitális rendszerek II. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Digitális rendszerek II. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Bevezető Bool algebra Egy állítás vagy IGAZ vagy HAMIS Egy esemény bekövetkezik vagy nem Logikai változóként kezelhetjük, amely

Részletesebben

A PC vagyis a személyi számítógép. VII. rész

A PC vagyis a személyi számítógép. VII. rész ismerd meg! A PC vagyis a személyi számítógép MOS logikai integrált áramkörök II. rész A MOS logikai áramkörök kapcsolástechnikai megvalósítását és mûködését egy egyszerû, diszkrét alkatrészekbõl felépített

Részletesebben

D I G I T Á L I S Á R A M K Ö R Ö K

D I G I T Á L I S Á R A M K Ö R Ö K ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 D I G I T Á L I S Á R A M K Ö R Ö K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Logikai rendszerek...3 RTL rendszer...5 DTL rendszer...5 TTL rendszer...6

Részletesebben

Komparátorok alkalmazása

Komparátorok alkalmazása Komparátorok alkalmazása Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés A komparátorok definíciója és rajzjele Komparátorok és műveleti erősítők A komparátorok tulajdonságai A nem-ideális

Részletesebben

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 4. DC MOTOROK VEZÉRLÉS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 4. DC MOTOROK VEZÉRLÉS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 4. DC MOTOROK VEZÉRLÉS Dr. Soumelidis Alexandros 2019.03.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG DC motorvezérlés

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGITÁLIS TECHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 4. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató P.: Logikai rendszerek tervezése (171-189

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Standard cellás tervezés

Standard cellás tervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez

Részletesebben

A valós digitális áramkörök legfontosabb tulajdonságai

A valós digitális áramkörök legfontosabb tulajdonságai A valós digitális áramkörök legfontosabb tulajdonságai Mivel a valóságos digitális áramköröket nem ideális kapcsoló elemek valósítják meg, ezért viselkedésük nem ideális. Ezeket figyelembe kell venni a

Részletesebben

Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák

Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

F1301 Bevezetés az elektronikába Térvezérlésű tranzisztorok

F1301 Bevezetés az elektronikába Térvezérlésű tranzisztorok E, Kísérleti Fizika Tanszék F1301 Bevezetés az elektronikába Térvezérlésű tranzisztorok E, Kísérleti Fizika Tanszék TÉRVEZÉRLÉŰ TRANZIZTOROK (FET-ek) Térvezérlésű (unipoláris) tranzisztor (Field Effect

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Áramkörök számítása, szimulációja és mérése próbapaneleken

Áramkörök számítása, szimulációja és mérése próbapaneleken Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

MUNKAANYAG. Mádai László. Logikai alapáramkörök. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Mádai László. Logikai alapáramkörök. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Mádai László Logikai alapáramkörök A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja: SzT-017-50

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Buapesti Műszaki és Gazaságtuományi Egyetem MKROEEKTRONKA, VEEA6 Térvezérelt tranzisztorok. A JFET-ek http://www.eet.bme.hu/~poppe/miel/hu/11-jfet.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint

Részletesebben

i1. Az elektronikában alkalmazott mennyiségek SI mértékegységei és prefixei.

i1. Az elektronikában alkalmazott mennyiségek SI mértékegységei és prefixei. i1. Az elektronikában alkalmazott mennyiségek SI mértékegységei és prefixei. M, mega 10 6 k, kilo 10 3 m,milli 10-3 µ, mikro 10-6 n, nano 10-9 p, piko 10-12 f, femto 10-15 Volt, Amper, Ohm, Farad, Henry,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budapesti Műszaki és Gazdaságtudományi Egyetem MKROELEKTRONKA, VEEA306 A bipoláris tranzisztor. http://www.eet.bme.hu/~poppe/miel/hu/08-bipol3.ppt http://www.eet.bme.hu Az ideális tranzisztor karakterisztikái

Részletesebben

Kombinációs hálózatok Adatszelektorok, multiplexer

Kombinációs hálózatok Adatszelektorok, multiplexer Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 MOS áramkörök: CMOS áramkörök, konstrukciós kérdések http://www.eet.bme.hu/~poppe/miel/hu/14-cmos.ppt http://www.eet.bme.hu Vizsgált

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók. Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

TFBE1301 Elektronika 1.

TFBE1301 Elektronika 1. E, Kísérleti Fizika Tanszék TFBE1301 Elektronika 1. Térvezérlésű tranzisztorok E, Kísérleti Fizika Tanszék TÉRVEZÉRLÉŰ TRANZIZTOROK (FET-ek) Térvezérlésű (unipoláris) tranzisztor (Field Effect Transistor

Részletesebben

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók

Részletesebben

Laptop: a fekete doboz

Laptop: a fekete doboz Laptop: a fekete doboz Dankházi Zoltán ELTE Anyagfizikai Tanszék Lássuk a fekete doboz -t NÉZZÜK MEG! És hány GB-os??? SZEDJÜK SZÉT!!!.2.2. AtomCsill 2 ... hát akkor... SZEDJÜK SZÉT!!!.2.2. AtomCsill 3

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

Magyar nyelvű szakelőadások a 2000-2001-es tanévben

Magyar nyelvű szakelőadások a 2000-2001-es tanévben Erdélyi Magyar Műszaki Tudományos Társaság Magyar nyelvű szakelőadások a 2000-2001-es tanévben Kolozsvári Műszaki Egyetem Számítástechnika Kar Szerzők dr. Baruch Zoltán Bíró Botond dr. Buzás Gábor dr.

Részletesebben

HSS86 ( ) típusú léptetőmotor meghajtó

HSS86 ( ) típusú léptetőmotor meghajtó HSS86 (93.034.028) típusú léptetőmotor meghajtó Jellemzők Teljesen zárt kör Alacsony motorzaj Alacsony meghajtó és motormelegedés Gyors válaszidő, nagy motorsebesség Optikailag leválasztott ki és bemenetek

Részletesebben

HSS60 ( ) típusú léptetőmotor meghajtó

HSS60 ( ) típusú léptetőmotor meghajtó HSS60 (93.034.027) típusú léptetőmotor meghajtó Jellemzők Teljesen zárt kör Alacsony motorzaj Alacsony meghajtó és motormelegedés Gyors válaszidő, nagy motorsebesség Optikailag leválasztott ki és bemenetek

Részletesebben

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK 28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök

Részletesebben