Teljesítmény-erősítők. Elektronika 2.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Teljesítmény-erősítők. Elektronika 2."

Átírás

1 Teljesítmény-erősítők Elektronika 2.

2 Az erősítés elve Erősítés: vezérelt energia-átalakítás Vezérlő teljesítmény: Fogyasztó teljesítmény-igénye: Tápforrásból felvett teljesítmény: Disszipálódott teljesítmény: -

3 Teljesítmény-erősítők Végerősítő fokozat: ha P f >0,5 1W, akkor teljesítményerősítő Feszültségerősítés: 1 csak áramerősítés Hatásfok: 100% Teljesítmény-erősítés:

4 A tranzisztor A tranzisztor három kivezetésű vezérelhető eszköz Tranzisztorok Bipoláris: NPN és PNP - Emitter, Bázis, Kollektor (E,B,C) Unipoláris (térvezérlésű): JFET n/p csatornás és MOSFET n/p csatornás kiürítéses/növekményes (S,G,D)

5 Emitterkövető kapcsolás Földelt kollektoros (FC) kapcsolás az emitterfeszültség követi a bázisfeszültséget Áramátviteli tényező: Áramerősítési tényező: 1 Differenciális ellenállás: Termikus feszültség: 26 Feszültségerősítés: 1 Áramerősítés: 1 Teljesítmény-erősítés: 1

6 Terhelt emitterkövető kapcsolás A kimenet az emitter; R t terhelőellenállással lezárva Az áramkör akkor éri el a kivezérlés határát, amikor a tranzisztoron átfolyó áram nulla Szinuszos kivezérlés esetén a kimeneti feszültség szélsőértékei: Teljesítmény-maximum: esetén:, Az áramkör teljesítményfelvétele független a kivezérlés mértékétől és változó terhelés esetén is állandó: 2 Maximális hatásfok:,

7 Tulajdonságok Az áramkört két fő tulajdonság jellemzi: a tranzisztoron átfolyó áram sohasem 0. a kapcsolás összes teljesítményfelvétele állandó és a kivezérléstől független. Ezek a tulajdonságok az A osztályú beállítás jellemzői.

8 A komplementer emitterkövető kapcsolás Pozitív bemeneti feszültség esetén a T 1 tranzisztor emitter követőként működik, T 2 lezár. Negatív bemeneti feszültség esetén T 2 emitter követő, T 1 zár le.

9 A komplementer emitterkövető kapcsolás Szinuszos kivezérlés esettén a tranzisztorok fél perióduson ként felváltva vezetnek. Ha U be = 0, akkor mindkét tranzisztor lezár, ezért az áramkör nem vesz fel munkaponti áramot. Az ilyen működési módot ellenütemű B osztályú üzemnek nevezzük.

10 A komplementer emitterkövető kapcsolás A kimenet minden terhelés esetén ±Ut között kivezérelhető. A kimenő teljesítmény fordítva arányos Rt-vel és nincs szélsőértéke. Nincs szükség teljesítményillesztésre.

11 A komplementer emitterkövető kapcsolás A maximális kimenő teljesítményt a megengedett csúcsáram és a tranzisztor maximális veszteségi teljesítménye korlátozza. Maximális szinuszos kivezérlés esetében:

12 A komplementer emitterkövető kapcsolás a tranzisztoronkénti veszteségi teljesítmény: a felvett telepteljesítmény

13 A komplementer emitterkövető kapcsolás az áramkör hatásfoka:

14 A komplementer emitterkövető kapcsolás átváltási torzítása

15 A vs. B osztáljú üzemmód A B AB Hatásfok kicsi nagy nagy Torzítás kicsi nagy kicsi

16 AB osztályú teljesítményerősítő Az átváltási torzítás jelentősen csökken, ha a tranzisztorokat előfeszítjük. Az ilyen működési módot ellenütemű AB osztályú üzemnek nevezzük. Az átváltási torzítást ellenütemű AB osztályú üzemben olyan kicsire csökkenthetjük, hogy negatív visszacsatolás hatására már teljesen elenyészővé válhat.

17 Előfeszítési módszerek U U 1 3 = U = U 2 1 0,7V + U 2 1,4V

18 Gyakorlati megvalósítások

19 Gyakorlati megvalósítások 1 3 R U12 0,7 1 R6 2 U U R6 R6 + R 0,7V 5 U 12

20 Gyakorlati megvalósítások Dr. Buchman Attila 20

21 A osztályú emitterkövető kapcsolásműveleti erősítős meghajtása előerősítő emitter követő meghajtó

22 Miért A osztályú? Mert kivezérlés nélkül is a tranzisztor jelentős áramot vezet. A nyugalmi áram értékét részben a táp részben az emitter ellenállás értékei határozzák meg. 15 I C = 1, 88A 8-0,7V -15V 0V

23 Szimuláció (TINA) A ki és bemeneti jelalakok egyformák (emitterkövető) A bemeneti jel átlagértéke 0V, a kimeneti jel átlagértéke - 0,7V (0,7V offsetfeszültség)

24 A osztályú emiterkövető, globális visszacsatolással A visszacsatolást nem a műveleti erősítő hanem az emitterkövető kimenetéről vesszük.

25 Így eltűnik a 0,7V offszet 0V 0,7V A terhelő ellenálláson, nyugalmi állapotban, most már egyáltalán nem folyik áram. 0V 0V 15 I C = = 1, 88A 8

26 Szimuláció A ki és bemeneti jelalakok egyformák (emitterkövető) A be és kimeneti jelek átlagértéke 0V. (nincs offszet)

27 A globális visszacsatolás jobb A osztáljú erősítő Feszültség erősítés Kimeneti feszültség ofszet A terhelésen átfolyó nyugalmi áram Lokális visszacsatolás Globális visszacsatolás 1 1-0,7V 0 0,7V / Rt 0

28 B osztályú komplementer emitterkövető meghajtása

29 Miért B osztályú? 0V 0V Mert kivezérlés nélkül vagy kissjelű kivezérlés esetén a tranzisztorok nem vezetnek. I C = 0

30 Megjegyzések B-osztályú üzemmódra jellemzők az átváltási torzítások. Kis bemeneti feszültség esetében elfogadhatatlan ul nagy a torzítás.

31 B osztályú erősítő, globális visszacsatolással A visszacsatolást közvetlenül a terhelő ellenállásrol vesszük.

32 Szimuláció Az átváltási torzítások eltűntek! Fennáll e még a B osztályú üzemmód?

33 B osztályú erősítő, globális visszacsatolással 0V 0V Nyugalmi állapotban egyik tranzisztor sem vezet. 0V 0V

34 De akkor kivezérlés híján nincs visszacsatolás Visszacsatolás nélkül a műveleti erősítő a két bemenet közti feszültség különbséget erősíti. Ez elméletileg nulla de a valóságban nem.

35 A valóságban mindig létezik egy bemeneti ofszet feszültség Például:1mV ofszet esetében a nagy nyílthurkú erősítés miatt a kimeneti feszültség nagyot nőne, de ekkor egy tranzisztor vezetni fog és létrejön a visszacsatolás.

36 Tehát mégis AB osztályú az üzemmód? Nem, nert csak egy tranzisztor vezet. Hogy melyik, az a bemeneti ofszet pillanatnyi polaritásától függ.

37 Miért tűnt el az átváltási torzítás? Azért mert a kis jeleket az erősítő nagymértékben erősíti! (nyílthurkú erősítés). A meghajtó erősítési tényezője nem állandó!

38 Harmonikus torzítási tényezők

39 AB osztályú erősítő Dr. Buchman Attila 39

40 LT Spice szimuláció

41 Transzfer karakterisztika

42 A D-osztályú erősítő jellemzői A tranzisztorok kapcsoló üzemmódban működnek Előny: ennek következtében nagy a hatásfok (90% feletti) Előny: Egyszerű felépítésű kapcsolás (előfeszítésre nincs szükség) Hátrány: rossz a jel zaj viszony (szűréssel korrigálni lehet)

43 A tranzisztor kapcsoló üzemmódja N csatornás MOSFET esetében a küszöbfeszültség pozitív Ha UGS<UTH a tranzisztor lezár Ha UGS>UTH a tranzisztor vezet P csatornás MOSFET esetében a küszöbfeszültség negatív Ha UGS<UTH a tranzisztor vezet Ha UGS>UTH a tranzisztor lezár NPN bipoláris tranzisztor esetében Ha UBE<0,7V a tranzisztor lezár Ha UBE>0,7V a tranzisztor vezet PNP bipoláris tranzisztor esetében Ha UBE<-0,7V a tranzisztor vezet Ha UBE>-0,7V a tranzisztor lezár

44 Átviteli karakterisztika (NMOS ) küszöbfeszültség

45 A tranzisztor kapcsoló üzemmódja: zárt állapot Ha a tranzisztor nem kap vezérlő feszültséget, akkor lezár A kimeneti körben áram nem folyik. A tranzisztoron disszipálódó teljesítmény tehát gyakorlatilag 0

46 Ha a tranzisztort túlvezéreljük akkor telítésbe lép A kimeneti körben rövidzárlatként viselkedik: a tranzisztoron nulla a feszültségesés A tranzisztoron disszipálódó teljesítmény tehát gyakorlatilag 0 A tranzisztor kapcsoló üzemmódja: telített állapot

47 N-csatornás MOSFET kapcsoló Elméletileg a tranzisztor által felvett teljesítmény minden időpillanatban: 0 100%-os hatásfok

48 MOSFET kapcsoló szimulálása

49 Impulzusszélesség-moduláció (PWM) Kapcsolóüzemű tranzisztor vezérlése Négyszögjel kitöltési tényezőjének változtatása: PWM - Pulse Width Modulation Kitöltési-tényező (duty-time): 100%

50 Impulzusszélesség-moduláció u ki = a u ki ( u u ) be ref + Utáp, ha u = 0, ha ube = u Utáp, ha u megvalósítása a be ref be > u < u ref ref Egy feszültség komparátorral valósítható meg Az egyik bemenetre az erősítendő jelet, a másikra pedig egy nagyfrekvenciás háromszögjelet kapcsolunk

51 A bemeneti feszültség növekedik: a kimeneti impulzus szélessége is növekedik Impulzusszélesség-moduláció megvalósítása Uki Ube Uref

52 A bemeneti feszültség csökken: a kimeneti impulzus szélessége is csökken Impulzusszélesség-moduláció megvalósítása Uki Ube Uref

53 A PWM jel T Output m 10.00m 15.00m 20.00m Time (s) Alkalmas a végfokozat kapcsoló üzemmódbeli kivezérlésére. A periódusa állandóértékű (a referencia háromszögjel frekvenciája határozza meg). Minden periódus átlagértéke a bemeneti jel amplitúdójával arányos.

54 A PWM jel spektruma Alacsony frekvenciás összetevő (elsősorban az Ube hatására történő átlagérték változásoknak a következménye) magas frekvenciás összetevők (elsősorban a nagyfrekvenciás Uref jelnek köszönhetők)

55 A PWM jel szűrése Alul áteresztő szűrő karakterisztika Áteresztjük vágjuk 55

56 Ideális és elérhető kimeneti T 1.00 jelek m Output m m 40.00m 50.00m 60.00m 70.00m Time (s) 56

57 PWM jel szűrése T 1.00 szűrő Out m Out3 Ube m m 40.00m 50.00m 60.00m 70.00m Time (s) T 5.00 Output Az eredeti jel m 10.00m 15.00m 20.00m Time (s) PWM modulátor

58 D osztályú erősítő Bemeneti jel Magas frekvenciás referencia PWM modul átor D vég fok szűrő

59 PW M Kimenő teljesítmény növelése

60 Pozitív PWM jelre, 2 á PW M

61 Negatív PWM jelre, 2 á PW M

62 Végeredmény Két ellenütemben vezérelt fokozat esetén a kimeneti feszültség amplitúdója megduplázódik A terhelésre jutó maximális teljesítmény négyszer nagyobb lesz: p = u 2 R

63 Példa: 20W-tos, D osztályú, hangfrekvenciás IC 20W maximális teljesítmény 24V táp és 4Ω terhelő ellenállás esetén Teljes harmonikus torzítás (THD) + zaj = 1W, 8Ω 93% 20W Maximális PWM frekvencia1mhz 180mΩ a kapcsoló tranzisztorok veszteségi ellenállása

64 Torzítás - teljesítmény függvény 8Ω terhelés esetén 8W felett a torzítás rohamosan növekszik 4Ω terhelés esetén ez a határ 10W felett van

65 Hatásfok - teljesítmény függvény 8Ω terhelés esetén 8W felett haladja meg a 90% 4Ω terhelés esetén ez a határ 10W felett van

66 Erősítés - frekvencia függvény 8Ω terhelés esetén 30Hz az alsó határfrekvencia 4Ω terhelés esetén 40Hz A felső határfrekvencia mindkét esetben jóval nagyobb mint 20kHz

Teljesítményerősítők ELEKTRONIKA_2

Teljesítményerősítők ELEKTRONIKA_2 Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

Zh1 - tételsor ELEKTRONIKA_2

Zh1 - tételsor ELEKTRONIKA_2 Zh1 - tételsor ELEKTRONIKA_2 1.a. I1 I2 jelforrás U1 erősítő U2 terhelés 1. ábra Az 1-es ábrán látható erősítő bemeneti jele egy U1= 1V amplitúdójú f=1khz frekvenciájú szinuszos jel. Ennek megfelelően

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három

Részletesebben

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris. Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. Felhasznált eszközök. Mérési feladatok

MÉRÉSI JEGYZŐKÖNYV. Felhasznált eszközök. Mérési feladatok MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Tranzisztoros erősítő alapkapcsolások vizsgálata (5. mérés) A mérés időpontja: 2004. 03. 08 de A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: Belso Zoltan KARL48

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló

Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló Hobbi Elektronika Bevezetés az elektronikába: A tranzisztor, mint kapcsoló 1 Felhasznált irodalom Tudásbázis: Bipoláris tranzisztorok (Sulinet - szakképzés) Wikipedia: Tranzisztor Szabó Géza: Elektrotechnika-Elektronika

Részletesebben

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek Elektronika 2 7. Előadás Analóg és kapcsoló-üzemű tápegységek Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - B. Carter, T.R. Brown: Handbook of Operational Amplifier Applications,

Részletesebben

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1 1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség

Részletesebben

feszültség konstans áram konstans

feszültség konstans áram konstans Szélessávú Hírközlés és Villamosságtan Tanszék Űrtechnológia laboratórium Szabó József Egyszerű feszültség és áramszabályozó Űrtechnológia a gyakorlatban Budapest, 2014. április 10. Űrtetechnológia a gyakorlatban

Részletesebben

A LED, mint villamos alkatrész

A LED, mint villamos alkatrész LED tápegységek - LED, mint villamos alkatrész - LED, a törpefeszültségű áramkörben - közel feszültséggenerátoros táplálás és problémái - analóg disszipatív áramgenerátoros táplálás - kapcsolóüzemű áramgenerátoros

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének

MÉRÉSI JEGYZŐKÖNYV. A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének MÉRÉSI JEGYZŐKÖNYV A mérések célja: A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének gyakorlása A mérések tárgya: A mérést végezte: A mérések helye: A mérések

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök

Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Buck, boost konverter Készítette: Támcsu Péter, 2016.10.09, Debrecen Felhasznált dokumentum : Losonczi Lajos - Analog Áramkörök 7 Feszültség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Nagyfrekvenciás rendszerek elektronikája házi feladat

Nagyfrekvenciás rendszerek elektronikája házi feladat Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

ANALÓG ÉS DIGITÁLIS TECHNIKA I

ANALÓG ÉS DIGITÁLIS TECHNIKA I ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐADÁS 2010/2011 tanév 2. félév 1 Aktív szűrőkapcsolások A

Részletesebben

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Ideális műveleti erősítő

Ideális műveleti erősítő Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri

Részletesebben

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 2. rész 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások Losonczi Lajos: Analóg Áramkörök

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák A CMOS inverter, alapfogalmak működés, számitások, layout CMOS kapu áramkörök

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens Teljesítményelektronika szabályozása Összeállította dr. Blága Csaba egyetemi docens Szakirodalom 1. Ferenczi Ödön, Teljesítményszabályozó áramkörök, Műszaki Könyvkiadó, Budapest, 1981. 2. Ipsits Imre,

Részletesebben

11.2. A FESZÜLTSÉGLOGIKA

11.2. A FESZÜLTSÉGLOGIKA 11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti

Részletesebben

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza

Részletesebben

A 2009-es vizsgákon szereplő elméleti kérdések

A 2009-es vizsgákon szereplő elméleti kérdések Kivezérelhetőség és teljesítményfokozatok: A 2009-es vizsgákon szereplő elméleti kérdések 1. Ismertesse a B osztályú teljesítményfokozat tulajdonságait (P fmax, P Tmax, P Dmax(1 tr), η Tmax )! (szinuszos

Részletesebben

Műveleti erősítők alapkapcsolásai A Miller-effektus

Műveleti erősítők alapkapcsolásai A Miller-effektus Műveleti erősítők alapkapcsolásai A Miller-effektus Berta Miklós 1. Elméleti összefoglaló A műveleti erősítő (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére

Részletesebben

Mûveleti erõsítõk I.

Mûveleti erõsítõk I. Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú

Részletesebben

Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék

Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák Az inverter, alapfogalmak Kiürítéses típusú MOS inverter Kapuáramkörök kialakítása

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

Elektronika I. Dr. Istók Róbert. II. előadás

Elektronika I. Dr. Istók Róbert. II. előadás Elektronika I Dr. Istók Róbert II. előadás Tranzisztor működése n-p-n tranzisztor feszültségmentes állapotban p-n átmeneteknél kiürített réteg jön létre Az emitter-bázis réteg között kialakult diódát emitterdiódának,

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

UNIPOLÁRIS TRANZISZTOR

UNIPOLÁRIS TRANZISZTOR UNIPOLÁRIS TRANZISZTOR Az unipoláris tranzisztorok térvezérléső tranzisztorok (Field Effect Transistor). Az ilyen tranzisztorok kimeneti áramának nagyságát a bemeneti feszültséggel létrehozott villamos

Részletesebben

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás 1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! gerjedés Bode hurokerősítés nem-invertáló db pozitív visszacsatolás követő egységnyi Kösse össze a két oszlop egy-egy összetartozó fogalmát!

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,

Részletesebben

Tranzisztoros erősítő alapkapcsolások vizsgálata

Tranzisztoros erősítő alapkapcsolások vizsgálata 5. mérés Tranzisztoros erősítő alapkapcsolások vizsgálata Bevezetés Az analóg elektronika, ezen belül is a tranzisztoros alapkapcsolások egy tipikus példáját jelentik azon villamosmérnöki ismereteknek,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

MAX 250. 160 W-os végerősítő. www.sulitech.com Ingyenes szállítás az egész országban! tel.: 06 22 33 44 55

MAX 250. 160 W-os végerősítő. www.sulitech.com Ingyenes szállítás az egész országban! tel.: 06 22 33 44 55 MAX 250 160 W-os végerősítő PHONIC Jellemzők: A Phonic Max - szériának köszönhetően mindenki megtalálhatja azt a végfokot, amire rendszeréhez szüksége van. Bemenetek szempontjából egyaránt csatlakoztatható

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Különleges analóg kapcsolások. Elmélet Közönséges és precíz egyenirányítók-, mûszer-erõsítõk-, audio erõsítõk, analóg szorzók-, modulátorok és demodulátorok-,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

u ki ) = 2 x 100 k = 1,96 k (g 22 = 0 esetén: 2 k)

u ki ) = 2 x 100 k = 1,96 k (g 22 = 0 esetén: 2 k) lektronika 2 (MVIMIA027 Számpélda a földelt emitteres erősítőre: Adott kapcsolás: =0 µ = k 4,7k U t+ = 0V 2 k 2 = 0µ u u =3 k =00µ U t- =-0V Számított tranzisztor-paraméterek: ezzel: és u ki t =0k Tranzisztoradatok:

Részletesebben

A PC vagyis a személyi számítógép. VII. rész

A PC vagyis a személyi számítógép. VII. rész ismerd meg! A PC vagyis a személyi számítógép MOS logikai integrált áramkörök II. rész A MOS logikai áramkörök kapcsolástechnikai megvalósítását és mûködését egy egyszerû, diszkrét alkatrészekbõl felépített

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Erősítő tanfolyam Keverők és előerősítők

Erősítő tanfolyam Keverők és előerősítők Erősítő tanfolyam Keverők és előerősítők Hol tartunk? Mikrofon Gitár Dob Keverő Végfok Mi az a keverő? Elektronikus eszköz Audio jelek átalakítása, majd keverése Csatornák erősítése (Hangszínszabályozás)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK

MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK Moduláramkörök alapvető építőelemei Gross Péter Hardware fejlesztő, ARH Informatikai Zrt. E-mail: peter.gross@arh.hu Utoljára módosítva: 2016. 10. 09. BUDAPEST UNIVERSITY OF

Részletesebben

Egyszerű tranzisztoros erősítő készítése Írta: Dr. Borivoje Jagodić Az eredeti cikk itt található:

Egyszerű tranzisztoros erősítő készítése Írta: Dr. Borivoje Jagodić Az eredeti cikk itt található: Egyszerű tranzisztoros erősítő készítése Írta: Dr. Borivoje Jagodić Az eredeti cikk itt található: http://www.audiofil.net/how_news_item.asp?newsd25 Egyszerű tranzisztoros végerősítő számítása Ez az egyszerű

Részletesebben

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek

Részletesebben

4. Mérés. Tápegységek, lineáris szabályozók

4. Mérés. Tápegységek, lineáris szabályozók 4. Mérés Tápegységek, lineáris szabályozók 0.04.07. A régi időkben az elektronika szó hallatán mindenki a világításra és a villanymotorokra asszociált egyből, hiszen ebből állt valaha az elektronika. Később

Részletesebben

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása Mechatronika, Optika és Gépészeti Informatika Tanszék M7 A mérés célja: A mérés során felhasznált eszközök: A mérés során elvégzendő feladatok: 1. A mérés tárgya: Műveleti erősítők alkalmazása D524 Analóg

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

T2-CNCUSB vezérlő család hardver segédlet

T2-CNCUSB vezérlő család hardver segédlet T2-CNCUSB vezérlő család hardver segédlet CPU5A Kártyaméret: 100x100mm 3 vagy 4 tengelyes interpoláció, max.125 KHz léptetési frekvencia. Szabványos kimenetek (Főorsó BE/KI, Fordulatszáám: PWM / 0-10V,

Részletesebben

Tantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor

Tantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor Tantárgy: ANALÓG ELEKTRONIKA Tanár: Dr. Burány Nándor 3. félév Óraszám: 2+2 1 2.4. RÉSZ A NEMLINEÁRIS KAPCSOLÁSOK A cél: az átviteli jelleggörbe nemlineáris részének hasznosítása. A feldolgozandó témák:

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai

Részletesebben

DC-DC BUCK ÁTALAKÍTÓ STATIKUS ÉS DINAMIKUS TERHELÉSSEL

DC-DC BUCK ÁTALAKÍTÓ STATIKUS ÉS DINAMIKUS TERHELÉSSEL Budapesti Műszaki és Gazdaságtudományi Egyetem illamosmérnöki és Informatikai Kar DC-DC BUCK ÁTALAKÍTÓ STATIKUS ÉS DINAMIKUS TERHELÉSSEL HÁZI FELADAT ELEKTRONIKUS ÁRAMKÖRÖK SZIMULÁCIÓJÁBÓL Szerző: Neptun

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK TÁVKÖZLÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. Információtechnológia Nyomtatók (gyakorlati) Csoportosítsa és röviden jellemezze a nyomtatókat működési elv szerint! Mutassa

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

1. ábra a három RC-tagból felépített fázistoló

1. ábra a három RC-tagból felépített fázistoló Az RC-oszcillátorok családjában kétség kívül a fázistolós oszcillátor az egyik legegyszerűbb konstrukció. Nevében a válasz arra, hogy mi is lehet a szelektív hálózata, mely az oszcillátor rezonanciafrekvenciáját

Részletesebben

ELEKTRONIKA I. TRANZISZTOROK. BSc Mérnök Informatikus Szak Levelező tagozat

ELEKTRONIKA I. TRANZISZTOROK. BSc Mérnök Informatikus Szak Levelező tagozat ELEKTRONIKA I. TRANZISZTOROK BSc Mérnök Informatikus Szak Levelező tagozat Tranzisztorok Elemi félvezető eszközök Alkalmazásuk Analóg áramkörökben: erősítők Digitális áramkörökben: kapcsolók Típusai BJT

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 1. rész

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 1. rész Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 1. rész Hobbielektronika csoport 2016/2017 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások

Részletesebben