Mérési bizonytalanság

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mérési bizonytalanság"

Átírás

1 Oldal: 1 / 12 Érvényes: Szerző: John Ologbosere Jóváhagyta: Holger Kunz 1. A munkautasítás célja Laboratóriumok és vizsgálati szolgáltatások meghatározása, amelyek igénylik a mérési bizonytalanság értékelését. Egységes megközelítés nyújtása a mérési bizonytalanság értékeléséhez. A mérési bizonytalansághoz hozzájáruló tényezők referencia jegyzékének elkészítése. A mérési bizonytalanság kiértékelés becslési rendszerének kidolgozása az új üzleti kapcsolatokban. 2. Meghatározások Fogalmak/rövidítések Leírás ISO/IEC Guide 98-3:2008 (GUM) 3. rész: Útmutató a mérési bizonytalanság kifejezéséhez (GUM: 1995) IEC GUIDE 115 A mérési bizonytalanság alkalmazása a megfelelőség értékelési MU kiterjesztési tényező (coverage factor), k kombinált bizonytalanság mérési hiba kiterjesztett bizonytalanság konfidenciaszint tevékenységekben az elektrotechnikai szektorban. Measurement uncertainy - egy szám, amelyet, ha megszoroznak a kombinált standard bizonytalansággal, akkor egy tartomány adódik, (kiterjesztett mérési bizonytalanság) a mérési eredmény körül, amely várhatóan körülvesz egy nagy, meghatározott töredéket (pl. 95%) az értékek eloszlásából, amely észszerűen a mérendőnek tulajdonítható. az összes standard bizonytalanság összetevő kombinációjának eredménye. a mérés eredményéből a mérendő valódi értékének levonása (nem pontosan határozható meg mennyiségileg, mert a valódi érték a bizonytalansági tartományban valahol ismeretlen helyen fekszik). a kombinált bizonytalanság és a kiterjesztési tényező szorzataként adódik. annak valószínűsége, hogy a mérendő értéke a bizonytalanság adott tartományán belül helyezkedik el.

2 Oldal: 2 / 12 mérendő mérésnek alávetett mennyiség, feltételezett állapotában kiértékelve a mérőrendszerrel a mérésnek során [IEC 60359:2001] mennyiség X i szórás (standard deviation) sokaság szórása minta szórása variancia a bizonytalanság forrása. a variancia pozitív négyzetgyöke. a sokaság varianciájának pozitív négyzetgyöke. a minta varianciájának pozitív négyzetgyöke. a szóródás mérése, amely a megfigyelések átlagértéktől való eltérése négyzetének összege osztva a megfigyelések száma 1-gyel. bizonytalanság (mérési) paraméter, hozzákapcsolva a mérési eredményhez, amely karakterizálja az értékek szóródását, és amely észszerűen a mérendőnek tulajdonítható. a standard bizonytalanság A típusú kiértékelése a mérési bizonytalanság kiértékelésének módszere a megfigyelések sorozatának statisztikai analízisével. Ezt használják a véletlen természetű bizonytalanságok leírására. a standard bizonytalanság B típusú kiértékelése a mérési bizonytalanság kiértékelésének módszere a megfigyelések sorozatának statisztikai analízisétől eltérő eszközzel. A B típusú kiértékelést használják olyan bizonytalanságok leírására, amelyek nem érhetők el megismételt megfigyelések sorozatából vagy a természetben való rendszeres megjelenésből. Például a gyártói specifikációkból vagy a kalibrálási bizonyítványokból. Valószínűségi eloszlás: Normál: u(x i ) = bizonytalanság k Tipikus értékek a kalibrálási bizonyítványból, ahol a kalibrálást szolgáltató megadta a k értéket. A normális a leggyakoribb eloszlás és sokszor használják alap eloszlásként, hacsak ellentmondó információ nem áll rendelkezésre. Négyszög: u ( x ) = i ai 3 A valószínűség sűrűsége állandó az előírt határokon belül, kivéve, ha tartozik hozzá egy konfidenciaszintre vonatkozó közlés, amely az ilyen esetben normális. Ezt tipikusan használják a bizonytalanságok leírására, amelyek vagy egyenletes vagy ismeretlen. Néhány más példa a digitális kiolvasás vagy a kvantálás hibája az analóg-digitális átalakítás miatt.

3 Oldal: 3 / 12 Háromszög: u ( x ) = i ai 6 A háromszög eloszlás olyan függvényt ír le, ahol a valós érték egy ponton fekszik a két előírt határ között, és a valószínűség sűrűsége egyenletesen növekszik nullától a szélsőségekig a középen lévő maximumig. Ezt néha a hőmérsékletre vonatkozó bizonytalansági eloszlások leírására használják. U-alakú: u( x i ) = M 2 Az U-alakú eloszlás olyan függvényt ír le, ahol az előfordulás legnagyobb valószínűsége az ismert minimum vagy maximum határoló értéken vagy annak közelében helyezkedik el. Ezt néha alkalmas az EMC területen használt bizonytalanság nem megfelelő párosítására a gyakran jelentéktelen értékekkel, akár a nagyobb értékekkel, amelyek használata nem megengedett.

4 Oldal: 4 / Alkalmazási terület Minden kiértékelésre vonatkozik, amely fizikai paraméterek mérését foglalja magában és a TÜV Rheinland összes leányvállalataira. 3.1 Ez a munkautasítás a TÜV Rheinland Csoport összes vizsgáló és kalibráló laboratóriumának mérési bizonytalanság becslési tevékenységére vonatkozik. Az MPC MU szakértői csapat, együtt a BF/Laboratórium vezetőkkel meghatározza azokat a tényezőket, amelyek hozzájárulnak minden egyes paraméter mérési bizonytalanságához, amelyet használnak a bizonytalanság számítására, vagy becslésére. 3.2 Amint ez a munkautasítás tartalmazza, a sajátságos mérési munkafolyamatot megelőzi azon tényezők meghatározása, amelyek hozzájárulnak a mérési bizonytalansághoz. 3.3 Azokban az esetekben, amikor a szabvány már szolgáltat tényezőket, értékeket vagy meghatároz határokat a tényezőkre nézve, amelyek hozzájárulnak a mérési bizonytalansághoz, használva a szabványban megadott specifikációkat a teljes számítást úgy kell tekinteni, hogy már elvégezték. 3.4 Minden laboratóriumi szolgáltatást irányító vezető és a témához tartozó szakértő véleményét ki kell kérni azon tényezők eldöntésében, amelyek hozzájárulnak a mérési bizonytalansághoz, beleértve a sajátos paraméterre vonatkozó munkautasítást, amennyiben az vonatkozik a laboratóriumukra. 3.5 A mérési bizonytalanságot ki kell számolni minden egyes egyedi paraméterre az ezen munkautasításhoz csatolt függelékek szerint. 3.6 Csak egy globális mérési bizonytalanság dokumentum legyen minden egyes paraméterre, kivéve amikor azt a helyi szabályozások feltétlenül megkövetelik, illetve, ha azt a TÜV Rheinland Csoport vezetősége (üzleti terület) jóváhagyta.

5 Oldal: 5 / A vizsgálatra használt mérőrendszerek mérési bizonytalanságra vonatkozó nyilatkozat (ezt megkövetelheti a termékszabvány vagy az ügyfél) álljon rendelkezésre. 4. A munkautasítás leírása 4.1 A mérési bizonytalanság kiértékelése a vizsgálatokban (pl. hőmérséklet, hossz, feszültség): A vizsgálati munkautasítás leírja a berendezések kiválasztását, a vizsgálati módszert és a felhasználandó z anyagokat, a lépéseket, amelyeket meg kell tenni, hogy megszüntessék azon tényezőket, amelyek hozzájárulhatnak (befolyásolhatják) a mérési bizonytalansághoz. A mérési összeállítást, beleértve a mérőberendezéseket figyelembe kell venni a mérési bizonytalanság becslésénél. A mérési bizonytalansághoz hozzájáruló kulcsfontosságú tényezők a következők: A mérési bizonytalansághoz hozzájáruló vagy azt befolyásoló tényezők. U TBD1: a vizsgálathoz használt berendezés kalibrálási bizonyítványából származó adatok hozzájárulása U TBD2: a kalibrálási érték és a laboratóriumi berendezés által kijelzett érték közötti különbség kalibrálás alatt U TBD3: a mérőberendezés kijelzésének hozzájárulása U TBD4: a mérések megismételhetőségéből származó hozzájárulás az egymást követő megfigyelések sorozatában U TBD5: a mérőberendezés sodródása (drift), ha van jelentős éves sodródása U TBD6: a mérés reprodukálhatósága, amint azt a különféle mérési feltételek mellett, úgymint környezet, idő, módszer, berendezés és/vagy kezelő, elvégzett megfigyelési mintákban meghatározták, 1. példa táblázat: a mérési bizonytalansághoz hozzájáruló tényezők meghatározása A jelentős befolyásoló tényezők meghatározása: Eldöntendő (U TBD1): a vizsgálathoz használt berendezés kalibrálási bizonyítványából származó adatok hozzájárulása

6 Oldal: 6 / Eldöntendő (U TBD2): a kalibrálási érték és a laboratóriumi berendezés által kijelzett érték közötti különbség kalibrálás alatt (a legrosszabb esetet célszerű választani) *a kalibrálási bizonyítványból véve Eldöntendő (U TBD3): a mérőberendezés kijelzésének hozzájárulása Eldöntendő (U TBD4): a mérések megismételhetőségéből származó hozzájárulás Eldöntendő (U TBD5): a mérőberendezések sodródásának tendenciája, ha van jelentős éves sodródás Eldöntendő (U TBD6): a mérések reprodukálhatóságából fakadó hozzájárulás Egyéb mennyiségeket, amelyek befolyásolják a környezeti feltételeket (hőmérséklet és légnedvesség) a vizsgálat alatt figyelmen kívül hagyhatónak kell tekinteni, amikor az értékek a vonatkozó termékszabványban meghatározott vizsgálati feltételek között vannak, és a laboratóriumban a vizsgálatokat szabályozott körülmények mellett és a laboratóriumban meghatározott munkautasítás szerint végzik A befolyásoló tényezők átalakítása a mért érték egységére: A mérési bizonytalanságot a mért érték mértékegységében kell jelenteni (tömeg, hossz, hőmérséklet: mg, mm és C. Amint az összes befolyásoló tényezőt már a végső mértékegységben kell megadni, átszámítás nem szükséges, egy 1 értékű érzékenységi együtthatóban, kivéve, ha az ügyfél vagy a szabvány mást nem ír elő.

7 Oldal: 7 / példa táblázat: a mérési bizonytalansághoz hozzájáruló tényezők meghatározása. Mennyiség Xi Becsült xi Érzékenységi Mennyiségi hiba sp(xi) együttható U TBD1 200 C 1 ± 0.06 C U TBD2 200 C 1 ± 0.06 C U TBD3 1 C 1 ± 0.80 C U TBD4 300 C 1 ±.05 C U TBD5 100 C 1 ± 0.07 C U TBD6 200 C 1 ± 0.06 C Megjegyzés: azokban az esetekben, ahol a hozzájárulási tényezők különböző egységeket tartalmaznak, pl. feszültség, áram, a hőmérséklet méréséhez, az érzékenységi együtthatót a feszültségből a hőmérsékletre, valamint az áramból a hőmérsékletre ki kell számítani Bizonytalansági halmaz m x: 3. példa táblázat: az értékek kitöltése a táblázatban a számításhoz. (a részleteket lásd a képzési táblázatban) Mennyiség Xi Becsült Xi Típus Mennyiségi hiba sp(xi) Valószínűség eloszlás UTBD1 200 C B ± 0.06 C négyszög Eloszlás osztó tényezője k 3 = standard bizonytalanság u(xi) Érzékenységi együttható Ci Hozzájárulás a bizonytalansághoz ui(y) ± C 1 ± C UTBD2 200 C B ± 0.06 C normális 2 ± 0.03 C 1 ± 0.03 C UTBD3 1 C B ± 0.80 C négyszög 3 = ± 0.46 C 1 ± 0.46 C UTBD4 300 C B ±.05 C normális 3 = ± 0.3 C 1 ±.3 C UTBD5 100 C A ± 0.07 C normális 2 ± 0.04 C 1 ± 0.04 C A kombinált bizonytalanság, Uc u(cx) = Ö (u1 2 + u2 2 + u )

8 Oldal: 8 / 12 Kiterjesztett bizonytalanság, U (kiterjesztési tényező k =2; konfidenciaszint: 95%) U = k u(cx) u(cx) = ± x.y C Um= k x u(cx) = 2 ± x.y = ± (2x.y) C 4.2 A mérési bizonytalanság közlése A vizsgálati jegyzőkönyv tartalmazzon kijelentést a mérési bizonytalanságról az elvégzett vizsgálatokkal összefüggésben, ha ezt a szabvány, az ügyfél vagy más hatóságok megkövetelik. Ezekben az esetekben a következő táblázatot kell használni a mérési bizonytalanság jelentéséhez. A laboratóriumoknak a Word fájlt kell használni a mérési bizonytalanság számítás dokumentálásához és az Excel táblázat szolgál referencia dokumentumként. 4. táblázat: példa arra, hogy miként kell a mérési bizonytalanságot összeállítani IEC szakasz # Paraméter/ Mérés / vizsgálati módszer Követelmény (%) vagy M* számított U-ja (egység) Feszültség, áram vagy teljesítmény ± 0.xx V, I or W 4.5 Hőmérséklet ± 0.xx C 2.10 Méretek ± 0.xx mm 4.2.5/-6 Súly ± 0.xx g

9 Oldal: 9 / Minden laboratórium összeállította a saját mérési bizonytalanságát minden egyes paraméterre, de üresen hagyta a szakasz oszlopot, amelyet csak akkor kell kitölteni, amikor hozzáadják a vizsgálati jegyzőkönyvhöz. A szürke oszlopot a táblázatban nem kell kitölteni. Példa a laboratóriumi összeállításra (a részleteket lásd az oktatási táblázatban) IEC szakasz # 5. táblázat: példa arra, hogy miként kell jelenteni az aktuális mérési bizonytalanságot a vizsgálati jegyzőkönyvben. Paraméter/ Mérés / vizsgálati módszer Felvett teljesítmény (az MTE pontossága alapján) Felvett teljesítmény (az MTE kalibrálása alapján) Követelmény % vagy k M* számított U-ja ± 0.37% ± 0.35% Áramfelvétel (az MTE pontossága alapján) ± 0.38% Áramfelvétel (az MTE pontossága alapján) ± 0.37% Bemenő feszültség (az MTE pontossága alapján) Bemenő feszültség (az MTE pontossága alapján) ± 0.29% ± 0.18% 4.5 Melegedésmérés T típusú hőelemmel ± 1.26 C 4.5 Melegedésmérés K típusú hőelemmel ± 2.29 C 4.5 B és E melléklet Melegedésvizsgálat tekercs-ellenállás módszerrel 5.1 Szivárgóáram mérés az IEC ábrája szerinti hálózattal 5.1 Szivárgóáram mérés az IEC ábrája szerinti hálózattal ± 1.21 C ± 1.58% ± 3.49%

10 Oldal: 10 / Szivárgóáram mérés az IEC ábrája szerinti hálózattal ± 2.47% 4.3 Döntési szabály és a védősáv szabály alkalmazása. A TÜV Rheinland vizsgáló laboratóriumai a Nulla védősáv (guard band) szabályt alkalmazzák, hacsak a szabvány mást nem ír elő vagy az ügyfél mást nem követel meg. Az alkalmazott védősáv szabályt a döntéshozatalban (döntési szabály) kell közvetíteni az ügyfélnek a folyamodások átvizsgálása során, tekintet nélkül arra, hogy a mérési bizonytalanságot megkövetelik vagy sem. Amennyiben a mérési bizonytalanságot védősáv megadásával kellene alkalmazni, akkor ezeket az értékeket a vizsgálati jegyzőkönyvben kell megadni e dokumentum szakasza és az MS jelű dokumentum (A vizsgálati jegyzőkönyv szerkezete) szerint. A Nulla védősáv szabály esetén, ha a mérési bizonytalanságot nem kell figyelembe venni, akkor azt nem is kell kijelenteni a vizsgálati jegyzőkönyvben. Példa az: ILAC-G8:09/2019 Iránymutatás a döntési szabályokról és a megfelelőség kijelentéséről *Ha alkalmaznunk kell a szabályt, kérjük hogy használja az ILAC-G8:09/2019 példáit.

11 Oldal: 11 / 12 Magyarázatok: Aplication of guardband = a védősáv alkalmazása Upper limit = felső határ New limit = új határ Guardband = védősáv Nominal = névleges Lower limit = alsó határ Példa a mérési bizonytalanság alkalmazására a Védősáv szabályban. 4.4 Kalibráló laboratórium Kalibrálási és mérési képesség (CMC) A kalibráló laboratóriumok összeállították a mérési bizonytalanságaikat minden egyes paraméterre, és az értékeket jelenteni kell a Kalibrálási és vizsgálati képesség dokumentumban (CMC). 6. minta táblázat: kalibráló laboratórium kalibrálási és mérési képesség (CMC) Paraméter / Berendezés Tartomány CMC Megjegyzések DC Feszültségforrás 9V 0.04µV/V Eljárás DC Feszültségmérő/Mérés 10V 0.2µV + 0.1µV DC Áramforrás ( ) A 21 ma/a A AC Feszültségforrás ( ) V, 1 Hz -100 khz 44 mv+0.5v AC Áramforrás (20-500) A, (45-65) Hz 6.4 ma/a A Lineáris méretek ( ) mm 522 μm/m μm

12 Oldal: 12 / A vonatkozó belső szabályozások IT 01 IT IT A vizsgálatok végrehajtása Vizsgálatijegyzőkönyv, a vizsgálati eredmények közlése és minőségének biztosítása A jártassági vizsgálatok 6. A vonatkozó külső szabályozások IEC Guide 98-3 IEC Guide 115 EA-4/02 OD 5014:2016 Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) Útmutató a mérési bizonytalanság kifejezéséhez; Application of uncertainty of measurement to conformity assessment activities in the electrotechnical sector A mérési bizonytalanság alkalmazása az elektrotechnikai ágazatban a megfelelőség értékeléséhez; Expession of the Uncertainty of Measurement in Calibration A mérési bizonytalanság meghatározása kalibrálás során. Instrument Accuracy Limits - Mérőeszközök pontossági határai

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész 2011.

Gyártástechnológia alapjai Méréstechnika rész 2011. Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési adatok feldolgozása A mérési eredmény megadása A mérés dokumentálása A vállalati mérőeszközök nyilvántartása 2 A mérés célja: egy

Részletesebben

Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során)

Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során) III. Roncsolásmentes Anyagvizsgáló Konferencia és Kiállítás Eger, 2003. április 7-11. Szóbeli előadás kézirat Előadó: Pintér László tudományos osztályvezető, Építésügyi Minőségellenőrző Innovációs Kht.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

4. A mérések pontosságának megítélése

4. A mérések pontosságának megítélése 4 A mérések pontosságának megítélése 41 A hibaterjedési törvény Ha egy F változót az x 1,x,x 3,,x r közvetlenül mért adatokból számítunk ki ( ) F = F x1, x, x3,, x r (41) bizonytalanságát a hibaterjedési

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

2011. ÓE BGK Galla Jánosné,

2011. ÓE BGK Galla Jánosné, 2011. 1 A mérési folyamatok irányítása Mérésirányítási rendszer (a mérés szabályozási rendszere) A mérési folyamat megvalósítása, metrológiai megerősítés (konfirmálás) Igazolás (verifikálás) 2 A mérési

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: AEROPLEX Közép-Európai Kft. Kalibráló Labor 1185 Budapest Liszt Ferenc Nemzetközi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

A mérési bizonytalanság

A mérési bizonytalanság NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer A mérési bizonytalanság meghatározása kalibrálásnál NAR-EA-4/0 1. kiadás 003. január EA Európai Akkreditálási Együttmûködés EA-4-0 Referencia

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói Etalonok, kalibrálás, rekalibrálás, visszavezethetőség, referencia eljárások Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói etalon Mérték, mérőeszköz, anyagminta vagy

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-2-0170/2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-2-0170/2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT20170/2013 nyilvántartási számú akkreditált státuszhoz A TiszaTeszt Méréstechnikai Kft. Kalibráló Laboratórium (4440 Tiszavasvári, Kabay J. u. 29.) akkreditált

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Digitális hangszintmérő

Digitális hangszintmérő Digitális hangszintmérő Modell DM-1358 A jelen használati útmutató másolása, bemutatása és terjesztése a Transfer Multisort Elektronik írásbeli hozzájárulását igényli. Használati útmutató Óvintézkedések

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT a NAH-2-0330/2016 nyilvántartási számú akkreditált státuszhoz A DUNAFERR LABOR Nonprofit Kft. Vizsgáló- és Kalibrálólaboratóriumok Üzletág Kalibrálólaboratórium (2400 Dunaújváros, Vasmű

Részletesebben

3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján.

3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján. 3 Ellenállás mérés az és az I összehasonlítása alapján 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján. A mérés célja: A feszültségesések összehasonlításával történő ellenállás mérési

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT a NAH-2-0256/ nyilvántartási számú akkreditált státuszhoz D.E.Á.K. Irányítástechnikai Kft. Kalibráló Laboratórium (2400 Dunaújváros, Verebély László utca 8.) akkreditált területe I. Az

Részletesebben

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH / nyilvántartási számú akkreditált státuszhoz

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH / nyilvántartási számú akkreditált státuszhoz MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH-2-0263/2015 1 nyilvántartási számú akkreditált státuszhoz A COMMED TRADE Kft. Kalibráló Laboratórium (1074 Budapest, Vörösmarty u. 3. A. ép.) akkreditált területe

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Akkreditáció. Avagy nem minden arany, ami fénylik Tallósy Judit

Akkreditáció. Avagy nem minden arany, ami fénylik Tallósy Judit Akkreditáció Avagy nem minden arany, ami fénylik Tallósy Judit 2018.01.18. A nagy pecsét és ami mögötte van PCDA ciklus PDCA-ciklus egy ismétlődő, négylépéses menedzsment módszer, amelyet a termékek és

Részletesebben

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Előadások (1.) ÓE BGK Galla Jánosné, 2011.

Előadások (1.) ÓE BGK Galla Jánosné, 2011. Előadások (1.) 2011. 1 Metrológiai alapfogalmak Mérési módszerek Mérési folyamat Mértékegységek Etalonok 2 Metrológiai alapfogalmak 3 A mérendő (mérhető) mennyiség előírt hibahatárokon belüli meghatározása

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Minőségbiztosítás a laboratóriumi munkában - Akkreditáció -

Minőségbiztosítás a laboratóriumi munkában - Akkreditáció - Minőségbiztosítás a laboratóriumi munkában - Akkreditáció - Kulcsszavak - Teljes dokumentáltság, szabályozottság - Visszavezethetőség - Rendszeres külső és belső ellenőrzés - Folyamatos fejlődés - Esetlegesség,

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH /2019 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH /2019 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-2-0294/2019 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: C+D AUTOMATIKA Kft. Kalibráló laboratórium 1191 Budapest, Földváry u. 2. 2)

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-2-0170/2017 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: TiszaTeszt Méréstechnikai Korlátolt Felelősségű Társaság Kalibráló Laboratórium

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Hibaterjedési elemzés (Measurement uncertainty) EURACHEM/CITAC Guide

Hibaterjedési elemzés (Measurement uncertainty) EURACHEM/CITAC Guide Hibaterjedési elemzés (Measurement unertainty) EURACHEM/CITAC Guide Quantifying Unertainty in Analytial Measurement 3rd edition, 0 http://www.measurementunertainty.org https://eurahem.org/images/stories/guides/pdf/quam0_p.pdf

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

5. Témakör TARTALOMJEGYZÉK

5. Témakör TARTALOMJEGYZÉK 5. Témakör A méretpontosság technológiai biztosítása az építőiparban. Geodéziai terv. Minőségirányítási terv A témakör tanulmányozásához a Paksi Atomerőmű tervezési feladataiból adunk példákat. TARTALOMJEGYZÉK

Részletesebben

Minőségirányítási rendszerek 9. előadás

Minőségirányítási rendszerek 9. előadás Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi

Részletesebben

Automatikai műszerész Automatikai műszerész

Automatikai műszerész Automatikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-2-0263/2015 nyilvántartási számú akkreditált státuszhoz A COMMED TRADE Kft. Kalibráló Laboratórium (1074 Budapest, Vörösmarty u. 3. A. ép.) akkreditált

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz Nemzeti kkreditáló Testület RÉSZLETEZŐ OKIRT a NT--016/ nyilvántartási sú akkreditált státuszhoz z EROPLEX Közép-Európai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi

Részletesebben

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató A biztonsággal kapcsolatos információk Model AX-C850 Használati útmutató Áramütés vagy testi sérülések elkerülése érdekében: Sosem csatlakoztasson két bemeneti csatlakozó aljzatra vagy tetszőleges bemeneti

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-2-0244/2017 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: GAMMA-DIGITAL Kft. Kalibráló Laboratórium 1119 Budapest, Petzvál J. u. 5 2)

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Teljesítményparaméterek az akkreditálás és a hatósági eljárás során

Teljesítményparaméterek az akkreditálás és a hatósági eljárás során Teljesítményparaméterek az akkreditálás és a hatósági eljárás során dr. Nagy Attila igazgatóhelyettes Stempelyné Antal Terézia minőségirányítási vezető Sitkei András laboratóriumi mérnök 2017. április

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz MÓDOSÍTOTT RÉSZLETEZŐ OKIRT (1) a NH016/ nyilvántartási számú (4) akkreditált státuszhoz EROPLEX KözépEurópai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi repülőtér)

Részletesebben

A hőmérséklet kalibrálás gyakorlata

A hőmérséklet kalibrálás gyakorlata A hőmérséklet kalibrálás gyakorlata A vezérlőelem lehet egy szelep, ami nyit, vagy zár, hogy több gőzt engedjen a fűtő folyamatba, vagy több tüzelőanyagot az égőbe. A két legáltalánosabban elterjedt érzékelő

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Minőség-képességi index (Process capability)

Minőség-képességi index (Process capability) Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Digitális hőmérő Modell DM-300

Digitális hőmérő Modell DM-300 Digitális hőmérő Modell DM-300 Használati útmutató Ennek a használati útmutatónak a másolásához, terjesztéséhez, a Transfer Multisort Elektronik cég írásbeli hozzájárulása szükséges. Bevezetés Ez a készülék

Részletesebben

Jegyzőkönyv A lágymányosi kampusz területe: Felhasznált eszközök: 3 méteres mérőszalag, papír, ceruza/ toll, vázlatos térkép a területről

Jegyzőkönyv A lágymányosi kampusz területe: Felhasznált eszközök: 3 méteres mérőszalag, papír, ceruza/ toll, vázlatos térkép a területről Jegyzőkönyv A lágymányosi kampusz területe: A mérés ideje: 00.0.. 8.-0.00 óra között Helye: ELTE lágymányosi kampusz Mérők: Adora Nikoletta, Kapos Bálint, Visnovitz Ferenc Felhasznált eszközök: 3 méteres

Részletesebben

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Hőelem kalibrátor. Model AX-C830. Használati útmutató

Hőelem kalibrátor. Model AX-C830. Használati útmutató Hőelem kalibrátor Model AX-C830 Használati útmutató A biztonsággal kapcsolatos információk Ahhoz, hogy elkerülje az áramütést vagy a személyi sérülést: - Soha ne kapcsoljon 30V-nál nagyobb feszültséget

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-2-0306/2013 nyilvántartási számú akkreditált státuszhoz A ROHDE & SCHWARZ Hungária Szolgáltató Kft. Kalibráló laboratóriuma (1138 Budapest,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Circuit breaker control function funkcióhoz block description. Beállítási útmutató az árambemeneti

Circuit breaker control function funkcióhoz block description. Beállítási útmutató az árambemeneti Circuit breaker control function funkcióhoz block description Beállítási útmutató az árambemeneti Document Budapest, ID: PRELIMINARY 2015. január VERSION Felhasználói kézikönyv, változat-információ Változat

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. Útmutató nem szabványos NAR-18-VIII. 2. kiadás. 2002. január

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. Útmutató nem szabványos NAR-18-VIII. 2. kiadás. 2002. január NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer Útmutató nem szabványos kalibrálási eljárások tartalmára és felépítésére NAR-18-VIII 2. kiadás 2002. január 2 / 8 1. Bevezetés A NAT Metrológiai

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Matematika. 1. osztály. 2. osztály

Matematika. 1. osztály. 2. osztály Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,

Részletesebben