A gyógyszertechnológia reológiai alapjai Bevezetés. Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A gyógyszertechnológia reológiai alapjai Bevezetés. Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet"

Átírás

1 A gyógyszertechnológia reológiai alapjai Bevezetés Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet

2 Az előadás rövid vázlata - A reológia fontossága a gyógyszerészetben - Bevezetés a reológiába - A reológiai szemlélet Newtoni (anyagtípus) TEST (ideálisan viszkózus) Nem-newtoni (anyagtípus) TEST időtől független: - időtől függő: tixotrópia reopexia plasztikus (ideális,reális,pszeudo) gyógyszerészi gyakorlatban dilatáns - Reológiai vizsgáló módszerek

3 A reológia fontossága a gyógyszerészetben 3

4 Deformáció - műveletek gyógyszerformák előállításakor: Aprítás, folyadékszállítás, folyadékkeverés, tablettapréselés gyógyszerformák alkalmazásakor: aeroszol oldatok porlasztása, kenőcsök felkenése, kenőcs kinyomás tubusból 4

5 Bevezetés a reológiába Fizika - Mechanika: a testek mint egészek MOZGÁSának törvényeit tárgyalja NEM AD VÁLASZT arra, hogy az egyes testeken Reológia: ez utóbbi kérdésre válaszol. milyen ALAKVÁLTOZÁSOK lépnek fel. A reológia elnevezés Eugene Binghamtól ( ) származik és az anyagok külső erő hatására bekövetkező alakváltozásával (deformációjával) és folyásával foglalkozó tudományágat értjük alatta. Reológiai anyagtípusok (TESTek) szilárd, folyadék, gáz lehet A reológia folyadékok folyását és szilárd anyagok deformációját írja le (reo folyni, logos tudomány )

6 Bevezetés a reológiába ERŐ ERŐ FESZÜLT SÉG FESZÜLT SÉG Swarbrick J.: Encyclopedia of Pharmaceutical Technology, Informa Healtcare, ERŐ F (N) FESZÜLT SÉG N 2 m 6

7 7

8 Elasztikus(rugalmas) deformáció (szilárd) (apróbetűs) 8

9 Nyírási deformáció (szilárd) (apróbetűs) 9

10 FOLYADÉK Bevezetés a reológiába IDEÁLIS VISZKÓZUS Newton viszkozitás=folyással szembeni ellenállás FÉLSZILÁRD VISZKOELASZTIKUS REÁLIS Kis deformációsebességnél: viszkózus Nagy deformációsebességnél: elasztikus SZILÁRD IDEÁLIS ELASZTIKUS Hooke a rugó feszítőereje és megnyúlása között arányosság áll fenn MÉG: IDEÁLIS PLASZTIKUS viszkoplasztikus REÁLIS PLASZTIKUS FOLYÁSHATÁR!!! 0 10

11 Bevezetés a reológiába Szilárd testek deformációja IDEÁLIS SZILÁRD testek rugalmasan (elasztikusan) deformálódnak - REVERZIBILIS deformáció A deformálásra fordított energiát a külső erő megszűnése után teljesen visszakapjuk 11

12 Bevezetés a reológiába SZILÁRD test deformációja τ = Y m dl/dy = Y m tan γ Y m γ τ = nyírófeszültség = erő/felület, N/m 2 = Pa Y m = Young modulus, a szilárd anyag merevsége, rigiditása, N/m 2 =Pa γ = dl/y = torzulás (dimenziómentes) y = a szilárd test magassága [m] ΔL = a szilárd test elmozdulása (deformációja) a nyírás eredményeként [m]. 12

13 SZILÁRD testek Y * m A Y m Young modulus ebben az egyenletben egy korreláló faktor, mely jelzi a rigiditást, mely a szilárd anyag fizikai kémiai természetét foglalja magába Ez a szilárd anyag ELLENÁLLÁSÁT mutatja a DEFORMÁCIÓVAL SZEMBEN. 13

14 Nem tévesztendő össze! SZILÁRD FOLYADÉK 14

15 Bevezetés a reológiába Fluidumok deformációja IDEÁLIS FLUIDUMOK (folyadékok,gázok) irreverzibilis deformáció FOLYÁS A deformációra fordított energia a folyadékban hővé alakul, szétszóródik - a külső erő megszűnése után nem alakul vissza az anyag (IRREVERZIBILIS) A fluidumban a FOLYÁS fenntartásához folyamatosan energiát kell befektetni. 15

16 Szilárd és folyékony testek A szilárd és folyadék közötti alapvető KÜLÖNBSÉG: A nyírófeszültség hatására a szilárd testek RUGALMASAN (ELASZTIKUSan) DEFORMÁLÓDNAK, míg a folyadékok ÁRAMLANAK,folynak. (vagyis a folyadékoknál a deformáló erők nem vezetnek valódi sztatikus egyensúly kialakulásához, hanem az eredmény állandó deformáció, azaz FOLYÁS.)

17 Szilárd és folyadék közti ALAPVETŐ KÜLÖNBSÉG Deformáló erő Szilárd rugalmas deformáció Folyadék ÁLLANDÓ deformáció, azaz FOLYÁS 17

18 Nem tévesztendő össze! SZILÁRD FOLYADÉK 18

19 Viszkózus és elasztikus folyadék példája 19

20 A reológiai szemlélet 20

21 Az alaptörvény A folyadék viszkozitás méréséhez először definiálni kell a folyás során alkalmazott paramétereket Megfelelő vizsgálati körülményeket kell biztosítani a reprodukálhatóság és objektivitás eléréséhez 21

22 Nyírófeszültség F( erő, newton ) A( felület, 2 m ) A felülettel érintőirányban alkalmazott F erő Érintkezési felület, A N (newton)/m 2 = Pa [Pascal]

23 A párhuzamos lemez modell segít definiálni a nyírófeszültséget(ʈ) és a nyírási sebességet(g) (v max /y 1, v max /y 2 ) FOLYADÉK KIS nyírási sebesség NAGY nyírási sebesség Nyirásnak kitett FOLYADÉK Mozgó lemez, a folyadékkal érintkező A nyírási felület Álló lemez Álló lemez 23

24 Nyírási sebesség (a nyírófeszültség sebességgradiense) A maximális áramlási sebességet V max a felső lemez alatt találhatjuk A sebesség csökken az y irányban lefelé, V min = 0 sebességet ér el az álló lemezzel érintkező alsó rétegnél

25 Nyírási sebesség FOLYADÉKOK SZILÁRD anyagok viszkozitás G nyírási sebesség Y m Y m Y m Young modulus torzulás

26 Szilárd anyagok és folyadékok összehasonlítása Y * m Young modulus * torzulás *G viszkozitás * nyírási sebesség A nyírófeszültség ( )a szilárdban torzulást a folyadákban nyírási sebeséget hoz létre. 26

27 Szilárd és folyadék közti ALAPVETŐ KÜLÖNBSÉG Deformáló erő Szilárd rugalmas deformáció Folyadék ÁLLANDÓ deformáció, azaz FOLYÁS Az Y m és az η ugyanazt a célt szolgálja, egy ELLENÁLLÁSI tényezőt kapcsol a feszültségnek kitett testekhez. 27

28 Az alaptörvény Newton elsőként írta le IDEÁLISan viszkózus folyadékokra a folyást. Ez a viszkozimetria alaptörvénye *G nyírófeszültség=viszkozitás*nyírási sebesség

29 (dy) 29

30 Viszkozitás A viszkozitás fogalma A viszkozitás a folyással vagy mozgással szembeni ELLENÁLLÁS; belső súrlódás Folyadék lemezek egymáshoz képest, külső erő hatására fellépő elmozdulását jellemzi 30

31 A viszkozitás mértékegységei Dinamikai viszkozitás szilárd testek 10 18, folyadékoké , gázoké pedig Pas Ns 1Pas 1 10P( poise) 2 m Kinematikai viszkozitás SI egysége: m 2 s -1 = 10 4 St=10 6 cst (centistokes) η ρ dinamikai viszkozitás, sűrűség 31

32 Tipikus viszkozitás értékek 20 C-on [mpa s] A viszkozitás az élő szervezetekben lejátszódó mozgások egyik meghatározó tényezője. A vér viszkozitása férfiaknál magasabb(47), mint nőknél(43). A cukorbetegek vérének viszkozitása alacsonyabb, mint a normális érték.

33 Diszperz rendszerek Oldott, emulgált, szuszpendált részek rel o f o o red f c RELATÍV FAJLAGOS REDUKÁLT viszkozitá (viszkozitásszám) 0 OLDÓSZER vagy DISZPERZIÓS közeg viszkozitását jelenti 33

34 Viszkozitás függése Valódi oldatok: hőmérséklet Ae E RT Arrhenius- Andrade összefüggés koncentráció Makromolekulás oldatok: hőmérséklet koncentráció móltömeg molekula felépítés oldószer 34

35 A viszkozitás hőmérséklet függése E Ae RT Arrhenius-Andrade összefüggés A ΔE állandó, a folyadékmolekulák mozgékonyságának 1 mólra vonatkoztatott aktiválási energiája [kj mol -1 ], R egyetemes gázállandó (8,314 J K mol -1 ), T abszolút hőmérséklet. HŐMÉRSÉKLET NÖVELÉSÉNEK HATÁSÁRA a szilárd testek és folyadékok viszkozitása csökken, A GÁZOKÉ NŐ. 35

36 A részecskeméret eloszlás hatása a rendszer reológiai tulajdonságaira 36

37 Diszperz rendszerek Oldott, emulgált, szuszpendált részek rel o f o o red f c RELATÍV FAJLAGOS REDUKÁLT viszkozitá (viszkozitásszám) 0 OLDÓSZER vagy DISZPERZIÓS közeg viszkozitását jelenti 37

38 Mark-Houwing molekulatömeg (méret) meghatározás /polimerek/ red hat Határviszkozitás (=lim η red ) C 0 hat KM K : empirikus α : oldószer-polimer kölcsönhatás 38

39 Viszkózus és elasztikus folyadék WEISSENBERG hatás 39

40 Newtoni testek (ideálisan viszkózus) A viszkozitás állandó (anyagi minőségre jellemző) F dv dv G A dl dl FOLYÁS GÖRBE VISZKOZITÁS

41 KÜLÖNBSÉG a viszkózus és plasztikus testek között Viszkózus testek - NINCS FOLYÁSHATÁR Plasztikus testek- FOLYÁSHATÁRral rendelkeznek 0 41

42 PLASZTIKUS Nem-newtoni testek IDŐtől FÜGGETLEN reológiai viselkedésű IDEÁLISAN ~ * o G Pl. HÍG SZUSZPENZIÓK, REÁLISAN ~ * o G PSZEUDO ~ * n n G SZERKEZETI VISZKOZITÁS (η*) pl. paszták, keno csök és keno csalapanyagok, kúpok és kúpalapanyagok, fogkrémek, ömény emulziók, szuszpenziók, gélek). (pl. nyákok, szuszpenziók, emulziók). 42

43 Ideálisan plasztikus 0 0 PÉLDÁK: víz, glicerin, szerves oldószerek olvasztott vazelin - newtoni szobahőn vazelin - nem-newtoni Sok folyadék newtoni folyást mutat, de keverékben alkalmazva a keverék nem-newtoni viselkedésű lesz. 43

44 Reálisan plasztikus 0 ALSÓ, EGYENSÚLYI, FELSŐ! 0 44

45 Pszeudoplasztikus ALSÓ NINCS 45

46 Pszeudoplasztikus folyás (viszkozitáscsökkenéssel járó szerkezeti változások SZERKEZETI VISZKOZITÁS, η*) FOLYÁS IRÁNYA VISZKOZITÁS CSÖKKENÉS 46

47 Pseudoplastic Liquids G G * n G

48 Nem-newtoni anyagok IDŐtől FÜGGETLEN reológiai viselkedésű DILATÁNS (nyírásra töményedés ) * n>1 n G A gyógyszerészi gyakorlatban ritkán fordul elő. (>50%, pl. pigment-szuszpenziók) 48

49 Dilatáns (apróbetűs megjegyzés) 49

50 Különféle folyadékok (angol nyelvű összegzés)

51 Nem-newtoni anyagok IDŐtől FÜGGŐ reológiai viselkedésű 51

52 Nem-newtoni anyagok IDŐtől FÜGGŐ reológiai viselkedésű TIXOTRÓPIA A viszkozitás CSÖKKENés nemcsak a nyíróerő nagyságától, hanem a hatás IDEJÉTŐL is függ. Pl. ZSELATIN oldat, egyéb: ketchup, joghurt, festékek stb. Jól definiált szilárd térhálós szerkezetű rendszereknél fordul elő Jellemző a HISZTERÉZIS hurok. (Nagyobb terület, több idő az újrarendeződéshez) 52

53 TIXOTRÓPIA

54 TIXOTRÓPIA 4 kritérium kell (MINDEGYIK egyidejűleg!): - η csökken, növekvő intenzitású nyíróerő hatására, - η csökken, ha az állandó igénybevétel idő tartama növekszik, - η végső határérték felé tart tartós és intenzív igénybevételkor, - az anyag visszatér eredeti állapotába, ha az igénybevétel után, izoterm körülmények között magára hagyjuk. 54

55 55

56 PSZEUDOPLASZTIKUS vagy REÁLIS PLASZTIKUS 56

57 57

58 58

59 59

60 TIXOTRÓPIA (angol nyelvű összegzés)

61 Apróbetűs megjegyzés 61

62 Nem-newtoni anyagok IDŐtől FÜGGŐ REOPEXIA Gyakorlatban ritkán Ritka: pl. gipsz pép, printer tinta A reopex folyásgörbéket kritikusan kell mérlegelni, ugyanis a jelenséget a legtöbb esetben nem valódi reopexia, hanem egyéb változások szedimentáció,párolgás, utópolimerizáció, ero s műszercsillapítás -- okozhatják. 62

63 Mechanikai reológiai modellek 1. A reverzibilis deformáció modellje a rúgó HOOKE - test ideálisan rugalmas testek 2. A viszkózus folyás modellje a dugattyú NEWTON test Newtoni folyadékok 3. A plasztikus folyás modellje a súrlódó elem ST. VENANT test 63

64 Reológiai vizsgáló módszerek A szilárd, félszilárd és fluidumok viszkoelasztikus tulajdonságait mérik az ún. REOMÉTEREK Azok a készülékek, melyek a fluidumok viszkózus folyásának meghatározására korlátozódnak, a VISZKOZIMÉTEREK.

65 Ellenőrzött nyírófeszültség (CS - Controlled Stress) reométerek (változtatjuk: mérjük: G (ω) ) (M ) (M ) G (ω) CR módba átalakítható A KÜLSŐ henger vagy az alsó lemez ÁLL

66 Ellenőrzött nyírási sebesség (CR - Controlled Rate) reométerek/ viszkoziméterek(változtatjuk: G (ω) mérjük: ) (M ) (M ) A KÜLSŐ henger vagy az alsó lemez ÁLL A KÜLSŐ henger vagy az alsó lemez FOROG

67 VISZKOZITÁS Mikor, melyiket? NYÍRÁSI SEBESSÉG

68 Reológiai vizsgáló módszerek Kapilláris viszkoziméterek V t ghr 8 l 4 Hagen-Poiseuille Ostwald-Fenske rel t t

69 69

70 Reológiai vizsgáló módszerek Esőtestes viszkoziméterek Höppler-féle ejtőgolyós viszkoziméter k ( ) g f t Höppler-féle reoviszkoziméter Terhelés, mert az ejtőgolyó szerkezetviszkózus közegben nem tud lesüllyedni kpt 70

71 71

72 k ( ) g f t 72

73 Reológiai vizsgáló módszerek ROTÁCIÓS reométer (Searle, belső henger forog Couette, külső henger forog) M 1 4h Rb Rk k M M G Bármely anyaghoz, dinamikai viszkozitás 73

74 M 4h 2 2 Rb Rk M a henger felületén ható forgatónyomaték, ω szögsebesség, h a belső henger merülési mélysége a folyékony közegben, R b a belső henger sugara, R k a külső henger sugara, k a készülék műszerállandója. Keskeny rés esetén a forgatónyomaték(m) és a nyíróerő( ), valamint a szögsebesség és a nyírási sebesség( G ) között egyenes arányosság áll fenn: 1 1 k M M G α és β műszerállandók 74

75 Reológiai vizsgáló módszerek OSZCILLÁCIÓS Pl viszkoelasztikus anyagokra 75

76 76

77 Kúp és lap reométer

78 Kúp és lap reométer M d : motor forgatónyomaték ~ Ω: szögsebesség ~ G

79 Párhuzamos lapok reométer M d : motor forgatónyomaték ~ Ω: szögsebesség ~ G

80 ÖSSZEFOGLALÁS 1. A reológia fontossága a gyógyszerészetben - deformációk a műveletek során - gyógyszerformák alkalmazásakor: kenőcs kinyomhatósága tubusból - készítmény stabilitása (kenőcsök, szuszpenziók, emulziók) biofarmácia (HA leadás,pl. kenőcsök,tapaszok) Bevezetés a reológiába FOLYADÉK FÉLSZILÁRD SZILÁRD VISZKÓZUS VISZKOELASZTIKUS ELASZTIKUS PLASZTIKUS 0 FOLYÁSHATÁR!! *G Kis deformációsebességnél: viszkózus Nagy deformációsebességnél: elasztikus IDEÁLIS SZILÁRD testek rugalmasan (elasztikusan) reverzibilis deformáció IDEÁLIS FLUIDUMOK (folyadékok,gázok) irreverzibilis deformáció FOLYÁS

81 ÖSSZEFOGLALÁS 2. A reológiai szemlélet - newtoni anyagok (ideálisan viszkózus) - nem-newtoni anyagok időtől független: plasztikus (ideális,reális,pszeudo) *,SZERKEZETI VISZKOZITÁS gyógyszerészi gyakorlatban dilatáns időtől függő: tixotrópia (a nyíróerő hatásának IDEJE is számít, 4 kritérium, hiszterézis) reopexia

82 ÖSSZEFOGLALÁS 3. Vizsgáló módszerek A szilárd, félszilárd és fluidumok viszkoelasztikus tulajdonságait mérik REOMÉTEREK rotációs (bármelyre) oszcillációs (viszkoelasztikusakra), fluidumok viszkózus folyásának meghatározására korlátozódnak, a VISZKOZIMÉTEREK kapilláris, esőtestes (newtonira) rotációs (bármelyre), kúp-lap rendszerű,párhuzamos lapok stb.

83 Viszkózus és elasztikus folyadék keverés példája 83

84 A normál erők túlkompenzálják a centrifugális erőket 84

85 Ideálisan plasztikus (Bingham ) Összefoglaló tixotróp VISZKÓZUS (newtoni) plasztikus reopex pszeudoplasztikus pszeudodilatáns 85

86 86

87 ugróragacs, varázsgyurma 87

88 Köszönöm a megtisztelő figyelmet! 88

89 Bevezetés a reológiába A REÁLIS testek is irreverzibilisen deformálódnak megfelelő nagyságú erő hatására CSÚSZÁS, FOLYÁS A reális testeket sem ideális szilárdnak, sem ideális fluidumnak nem tekintjük. Példa: acél ez tipikus szilárd anyag mely folyásra kényszeríthető abban az esetben, ha az acéllemezt formába préseljük (pl. autóalkatrész előállítás) 89

90 90

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Reológia, a koherens rendszerek tulajdonságai

Reológia, a koherens rendszerek tulajdonságai Reológia, a koherens rendszerek tulajdonságai Bányai István http://dragon.unideb.hu/~kolloid/ Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,

Részletesebben

Reológia, a koherens (nem-koherens) rendszerek tulajdonságai

Reológia, a koherens (nem-koherens) rendszerek tulajdonságai Reológia, a koherens (nem-koherens) rendszerek tulajdonságai Bányai István kolloid.unideb.hu Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony szilárd Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Apatit Kristályhibák és

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok Molekulák energiaállapotai E molekula E elektron E (A tankönyvben nem található téma!) vibráció E rotáció pl. vibráció 1 ev 0,1 ev 0,01 ev Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti

Részletesebben

Polimerek reológiája

Polimerek reológiája SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka REOLÓGIA Az anyag deformációjának és folyásának a tudománya. rheo -

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2.

Fogorvosi anyagtan fizikai alapjai 2. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Víz és nyál Kristályok - apatit Polimorfizmus Kristályhibák

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,

Részletesebben

Polimerek reológiája

Polimerek reológiája SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka 2011.09.28. REOLÓGIA Az anyag deformációjának és folyásának a tudománya.

Részletesebben

egyetemi tanár Nyugat-Magyarországi Egyetem

egyetemi tanár Nyugat-Magyarországi Egyetem egyetemi tanár Nyugat-Magyarországi Egyetem Folyadékok szerkezeti jellemz i Az el adás témakörei: Mit nevezünk folyadéknak? - részecskék kölcsönhatása, rendezettsége - mechanikai viselkedése alapján A

Részletesebben

Transzportfolyamatok. összefoglalás, általánosítás Onsager egyenlet I V J V. (m/s) áramvonal. turbulens áramlás = kaotikusan gomolygó áramlás

Transzportfolyamatok. összefoglalás, általánosítás Onsager egyenlet I V J V. (m/s) áramvonal. turbulens áramlás = kaotikusan gomolygó áramlás 1 Transzportfolyamatok Térfogattranszport () - alapfogalmak térfogattranszport () Hagen Poiseuille-törény (elektromos) töltéstranszport (elektr. áram) Ohm-törény anyagtranszport (diffúzió) ick 1. törénye

Részletesebben

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018. Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok

Részletesebben

Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok

Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok Dr. Hős Csaba, cshos@hds.bme.hu 2017. október 16. Áttekintés 1 Funkciók 2 Viszkozitás 3 Rugalmassági modulusz 4 Olajtípusok A munkafolyadék...... funkciói

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony nincs saját alakja szilárd van saját alakja (deformálás után úgy marad, nem (deformálás után visszaalakul, mert ébrednek benne visszatérítő nyíróerők) visszatérítő nyíróerők léptek

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport Transzportjelenségek az élő szervezetben II. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.com

Részletesebben

Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet

Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Gyógyszertechnológiai alapműveletek Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Szűrésnek nevezzük azt a műveletet, amelynek során egy heterogén keverék, különböző

Részletesebben

2.2.10. VISZKOZITÁS MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMÉTERREL

2.2.10. VISZKOZITÁS MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMÉTERREL 2.2.10. Vszkztás meghatárzása Ph. Hg. VIII. Ph. Eur. 5.3. - 1 01/2006:20210 2.2.10. VISZKOZITÁS MEGHATÁOZÁSA OTÁCIÓS VISZKOZIMÉTEEL A módszer annak az erőnek a mérésén alapul, amely egy flyadékban állandó

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

POLIMERTECHNIKA Laboratóriumi gyakorlat

POLIMERTECHNIKA Laboratóriumi gyakorlat MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Határfelületi reológia vizsgálata cseppalak analízissel

Határfelületi reológia vizsgálata cseppalak analízissel Határfelületi reológia vizsgálata cseppalak analízissel A reológia alapjai Reológiai folyamatról akkor beszélünk, ha egy anyagra erő hat, mely az anyag (vagy annak egy darabjának) deformációját eredményezi.

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Folyadékok víz Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok 1 saját térfogat nincs saját alak/folyékony nincsenek belső nyíróerők

Részletesebben

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)

Részletesebben

Folyadékáramlás vérkeringés

Folyadékáramlás vérkeringés olyadékáramlás vérkeringés olyadékok fizikájának jelentősége I. Hemodinamika Kellermayer Miklós Milyenek a véráramlási viszonyok az érrendszerben? olyadékok fizikájának jelentősége II. olyadékban történő

Részletesebben

A keverés fogalma és csoportosítása

A keverés fogalma és csoportosítása A keverés A keverés fogalma és csoportosítása olyan vegyipari művelet, melynek célja a homogenizálás (koncentráció-, hőmérséklet-, sűrűség-, viszkozitás kiegyenlítése) vagy a részecskék közvetlenebb érintkezésének

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA )

3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3.1. A GYAKORLAT CÉLJA A gyakorlat célja a dinamikus mechanikai mérések gyakorlati megismerése polimerek hajlító viselkedésének vizsgálata során. 3..

Részletesebben

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor

Részletesebben

Fogorvosi anyagtan fizikai alapjai 6.

Fogorvosi anyagtan fizikai alapjai 6. Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Reológia Nagy, Roland, Pannon Egyetem

Reológia Nagy, Roland, Pannon Egyetem Reológia Nagy, Roland, Pannon Egyetem Reológia írta Nagy, Roland Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon Egyetemen a TÁMOP-4.1.2/A/2-10/1-2010-0012 projekt keretében

Részletesebben

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai 016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.

Részletesebben

Diszperz rendszerek. Kolloid rendszerek. Kolloid rendszerek

Diszperz rendszerek. Kolloid rendszerek. Kolloid rendszerek Diszperz rendszerek 2. hét Többkomponenső - valamilyen folytonos közeg, és a benne eloszlatott részecskék alkotta rendszer Az eloszlatott részecskék mérete alapján: homogén rendszer heterogén rendszer

Részletesebben

4. gyakorlat POLIMER GÉLEK VISZKOZITÁSÁNAK MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMETRIÁVAL

4. gyakorlat POLIMER GÉLEK VISZKOZITÁSÁNAK MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMETRIÁVAL 1 4. gyakorlat POLIMER GÉLEK VISZKOZITÁSÁNAK MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMETRIÁVAL 4.1. Elméleti bevezető 4.1.1. Makromolekulás oldatok, ill. gélek tulajdonságai A makromolekulák kis molekulákból (un.

Részletesebben

PHYWE Fizikai kémia és az anyagok tulajdonságai

PHYWE Fizikai kémia és az anyagok tulajdonságai PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Transzportjelenségek

Transzportjelenségek Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

TÁMOP F-14/1/KONV Élelmiszeripari műveletek gyakorlati alkalmazásai

TÁMOP F-14/1/KONV Élelmiszeripari műveletek gyakorlati alkalmazásai TÁMOP-4.1.1.F-14/1/KONV-015-0006 Éleliszeripari űveletek gyakorlati alkalazásai ÉLELMISZERIPARI MŰVELETEK Éleliszeripari technológiákat felépítő, különböző közegek között létrejövő transzportfolyaatok,

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

20. gyakorlat POLIMER OLDATOK ÉS GÉLEK VISZKOZITÁSÁNAK MEGHATÁROZÁSA KAPILLÁRIS VISZKOZIMÉTERREL ÉS ROTÁCIÓS VISZKOZIMETRIÁVAL

20. gyakorlat POLIMER OLDATOK ÉS GÉLEK VISZKOZITÁSÁNAK MEGHATÁROZÁSA KAPILLÁRIS VISZKOZIMÉTERREL ÉS ROTÁCIÓS VISZKOZIMETRIÁVAL 1 20. gyakorlat POLIMER OLDATOK ÉS GÉLEK VISZKOZITÁSÁNAK MEGHATÁROZÁSA KAPILLÁRIS VISZKOZIMÉTERREL ÉS ROTÁCIÓS VISZKOZIMETRIÁVAL 4.1. Elméleti bevezető 4.1.1. Makromolekulás oldatok, ill. gélek tulajdonságai

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június 1. Méréstechnika 1.1. Méréstechnika alapjai VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK 2019. május - június méréstechnikai alapfogalmak (mérés, mért érték, mérőszám)

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Gyógyszerkészítéstani alapismeretek, gyógyszerformák

Gyógyszerkészítéstani alapismeretek, gyógyszerformák Gyógyszerkészítéstani alapismeretek, gyógyszerformák II. félszilárd készítmények /kenőcs, kúp nevezéktan 2016 Propedeutika Gyógyszertechnológiai és Biofarmáciai Intézet Gyógyszerforma Gyógyszerkészítmény

Részletesebben

Folyadékáramlás vérkeringés

Folyadékáramlás vérkeringés olyadékáramlás érkeringés Kellermayer Miklós olyadékok fizikájának jelentősége I. Hemodinamika Milyenek a éráramlási iszonyok az érrendszerben? olyadékok fizikájának jelentősége II. olyadékban történő

Részletesebben

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

Diffúzió 2003 március 28

Diffúzió 2003 március 28 Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

Fogalom meghatározás A viszkozitás az a nyíróerő, amely az anyag belsejében az alakváltozással szemben hat, tehát tulajdonképpen belső súrlódás.

Fogalom meghatározás A viszkozitás az a nyíróerő, amely az anyag belsejében az alakváltozással szemben hat, tehát tulajdonképpen belső súrlódás. VISZKOZITÁS 1 Fogalom meghatározás A viszkozitás az a nyíróerő, amely az anyag belsejében az alakváltozással szemben hat, tehát tulajdonképpen belső súrlódás. Halmazállapottól függetlenül az anyag alakjának

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1 Fizikai kémia gyakorlat 1 Felületi feszültség mérés és viszkozimetria 2 I. Felületi feszültség mérése 1. Bevezetés Felületi feszültség és viszkozitás mérése A felületi feszültség fázisok határfelületén

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Munka, energia, teljesítmény

Munka, energia, teljesítmény Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,, F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

GÉPSZERKEZETTAN - TERVEZÉS GÉPELEMEK KÁROSODÁSA

GÉPSZERKEZETTAN - TERVEZÉS GÉPELEMEK KÁROSODÁSA GÉPSZERKEZETTAN - TERVEZÉS GÉPELEMEK KÁROSODÁSA 1 Üzemképesség Működésre, a funkció betöltésére való alkalmasság. Az adott gépelem maradéktalanul megfelel azoknak a követelményeknek, amelyek teljesítésére

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER. tétel Anyagvizsgálatok gyakorlat I. Viszkozitás mérése Höppler-féle viszkoziméterrel A mérés megkezdése

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Kvázisztatikus határeset Kritikus állapot Couette-teszt

Kvázisztatikus határeset Kritikus állapot Couette-teszt Wacha András Kvázisztatikus határeset Kritikus állapot Couette-teszt 2006. november 9. Kvázisztatikus határeset GDR_MiDi. On dense granular flows. Eur. Phys. J. E 14. pp 341-365 (2004). Dimenziótlan paraméterek

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

A POLIPROPILÉN TATREN IM

A POLIPROPILÉN TATREN IM TATREN IM 6 56 A POLIPROPILÉN TATREN IM 6 56 blokk kopolimer típust akkumulátor házak, háztartási eszközök, autó - és egyéb műszaki alkatrészek fröccsöntésére fejlesztettük ki, ahol a tartós hőállóság

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

IMI INTERNATIONAL KFT

IMI INTERNATIONAL KFT Épületgépész Szakosztály IMI INTERNATIONAL KFT www.imi-international.hu IMI International, Department, Name Vörös Szilárd okl. épületgépész-mérnök 0//00 Mihez kezdesz egy kazánházban a Bernoulli-egyenlettel?.

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben