SZIGETELŐANYAGOK VIZSGÁLATA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZIGETELŐANYAGOK VIZSGÁLATA"

Átírás

1 SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető jellemzője az ellenállásuk. Minden hálózati vagy nagyobb feszültségen működő berendezést szükséges érintésvédelmi szempontból szigetelni és azt rendszeresen ellenőrizni is kell. Emellett a szigetelőanyagoknak áramköri funkciójuk is van, elválasztják egymástól a vezetőket, egyéb áramköri elemeket. Szerepük nem teljesen passzív, töltés halmozódhat fel rajtuk és bizonyos csekély áramot is vezetnek. Külön terület, amikor kondenzátor dielektrikumként kerülnek alkalmazásra. Lényegesen különböző a viselkedésük egyenáramú és váltakozó áramú körökben. Kész berendezéseken mérve az adott eszköz konstrukciójának és alkalmazott szigetelő-anyagainak együttes hatását vizsgálhatjuk. Az eredményekből eldönthetjük, hogy használható-e a berendezés, megfelel-e az érintésvédelmi követelményeknek, van-e energiaveszteség, stb. Gyakorlati célokra gyakran elég annak megállapítása, hogy a szigetelés meghalad-e egy adott biztonságosnak ítélt szintet. Ha az egyes anyagokat akarjuk összehasonlítani, laboratóriumi körülmények között, pontosan meghatározott, lehetőleg szabványos méretű minták fajlagos ellenállását kell mérnünk. ρ = R A / l ismert összefüggésből számítható, mértékegysége [Ωm] vagy [Ωcm] A leggyakoribb egyenáramú mérési módszer: adott feszültség rákapcsolása után az átfolyó áram mérése. Ebből az Ohm-törvény alapján számíthatjuk az ellenállást, vagy a műszer már közvetlenül azt jelzi ki. Az alkalmazott feszültség V, vagy, ha adott alkalmazáshoz vizsgáljuk a szigetelőt, a névleges feszültség kb. kétszerese. Az eddig egyszerűnek tűnő helyzet meglehetősen sok méréstechnikai problémát vet fel: Egy jó szigetelőanyag ellenállása Ω, vagy még nagyobb. Ha a mérőműszer szigetelése is ebbe a tartományba esik, az párhuzamosan kapcsolódik a mérendő ellenálláshoz és meghamisítja a mérésünket. 1. Azaz a legkiválóbb anyagok megválasztásával és helyes konstrukció kialakításával biztosítani kell, hogy a mérőberendezésből párhuzamosan kapcsolódó ellenállások értéke nagyságrendekkel nagyobb legyen, mint a mérendő ellenállás. Így a méréshatár felső korlátja kb Ω és ezt közelítve a mérés pontossága is fokozatosan romlik. (Sovány vigasz, hogy néhány kω-os kontakthibákkal nem kell törődnünk.) 2. Egy mérendő minta kapacitív tagként is viselkedik, az ezt figyelembe vevő helyettesítő áramkör az 1a. ábrán látható. Az egyes elemekre jutó áram időbeli lefolyását a 1b. ábra mutatja. 1

2 1. ábra (az a ábrán R A, R L természetesen ellenállás, amely a z abszorpciós ill. a szivárgó áramot engedi át) A kondenzátor töltőárama viszonylag gyorsan, általában 1 másodpercen belül 0-ra csökken (azaz a kezdeti, viszonylag kisebb ellenállás gyorsan megnő). Abszorpciós áram: a dielektrikumban, főképp a fém-szigetelő határfelületen az áthaladó áram hatására polarizáció lép fel, és ennek eredményeképp nő a minta ellenállása. Pl. sok szigetelőben pozitív ionok szállítják a töltéseket, ezek idővel elvándorolnak a pozitív fegyverzet közeléből, és egy lassan vastagodó, töltéshordozókban még jobban kiürített réteg keletkezik, aminek folyamatosan nő az ellenállása. Szivárgási áram: végül ez a szigetelés valós ellenállásából származó áram, azonban beállási ideje határozatlan. Akkor mérhetjük, ha a kapacitív és az abszorpciós áram már 0-ra csökkent. Az összehasonlíthatóság érdekében az 1 perces leolvasást fogadjuk el a minta ellenállásaként. Ugyanakkor sok esetben az ellenállás több tíz percen keresztül folyamatosan nő, sőt azt tekintik jó szigetelésnek, ahol ez a növekedés nagyobb. Ezért újabban az ellenállás időfüggésének mérését is javasolják. Az abszorpciós áram növekedésére két jellemzőt is használnak. Ezek a szigetelés aktuális állapotát is mutatják, a határ alattiak az öregedés, a nedvesség beépülés, szennyeződés jelei. 1. Polarizációs index: PI = 10 perces R / 1 perces R Értéke jó szigetelőkben 5 10 körüli 2. Dielektromos / Abszorpciós arány = 60sec R / 30 sec R A jó érték 1,25 feletti Ellenállásmérések összeállítása. A mérések összeállításánál ügyelni kell arra, hogy a szigetelt vezetékek mindig a levegőben haladjanak, és sehol se érhessenek egymáshoz, mert ezek a pontszerű érintkezési helyek is párhuzamosan kapcsolódhatnak a mérendő objektummal. 2

3 Mivel a mérések során viszonylag nagy feszültségek esetén is csak kis áramok folynak, nagy jelentősége van az egyes feszültség alatt álló részek, vezetékek szórt kapacitásainak. Ezért igen gondosan kell árnyékolni a mérőműszer előtti, feszültség alatt álló részeket, mert a környezetben való kis mozgások is szórt kapacitások változásával járnak és - figyelembe véve a körben folyó áram nagyságát - az ezzel előidézett töltőáram befolyásolhatja a mérési eredményeket, ill. megnehezíti a műszerek leolvasását. A táplálófeszültség csak igen sima egyenfeszültség lehet. Már kismértékű (1%-on belüli) változások is jelentős eltéréseket okozhatnak. A fellépő kapacitív áram: I c dq dt d( U ) dt d U dt du dt Azaz akár a környezet kapacitásának változása (pl. ε változása) akár a mérőfeszültség ingadozása jelentősen megzavarhatják a mérési eredményeket. (A kapacitív áram természetesen majdnem mindig elhanyagolhatóan kicsi, de jó szigetelők esetén a mérőáram is csak néhány pa) Fontos még, hogy a méréskor kis ellenállású földelő vezetéket alkalmazzunk és valamennyi objektum földelését egy helyről végezzük. Ezzel elkerülhetjük, hogy földelő vezetékből hurok alakuljon ki, amiben olyan feszültség indukálódhat, ami a különböző berendezések földelt pontjainak potenciálját egymáshoz képest eltolja. Fajlagos térfogati ellenálláson az 1 cm élhosszúságú kocka két szemben fekvő lapja között mérhető ellenállást értjük, ha áram csak az anyag belsejében folyik, és a tér homogén. A definícióban említett feltételeket ún. védőgyűrűs elektródelrendezés segítségével lehet biztosítani. A védőgyűrű szerepe az, hogy a felületen és a tér inhomogén részén átfolyó áramot a műszer megkerülésével vezesse el. Nagyon fontos, hogy az elektródok egész felületükkel tökéletesen felfeküdjenek a szigetelőanyagra. A tökéletlen fölfekvés következtében ui. egyrészt a felület nagysága határozatlan lesz, másrészt diszkrét érintkezési helyek esetén a tér elveszti homogenitását. A minél tökéletesebb 2. ábra Védőgyűrűs elektróda a fajlagos ellenállás mérésére érintkezést esetenként higanyelektródokkal, fémbeszórással, grafitozásal stb., lehet biztosítani. A szigetelési ellenállást jelentősen befolyásolják a mérési körülmények (hőmérséklet, a levegő páratartalma stb.), ezért csak olyan ellenállásértékeket szabad mértékadónak tekinteni, aminél ezek tisztázottak. 3

4 A felületi ellenállás elsősorban áramköri modulok hordozóinál fontos adat, hiszen ezeken a vezetőpályák között esetleg csak 0,1mm szigetelőcsík marad, sőt hibrid I-kben még kevesebb. Ennek a vékony sávnak kell a megfelelő szigetelést biztosítani. A felületi ellenállás nem egyértelmű anyagi jellemző, ui. semmilyen elektródelrendezéssel nem tudjuk kiküszöbölni, hogy a felületen kívül az anyag belsejében is folyjék áram. A felületi ellenállásra igen nagy hatással vannak a külső tényezők. Erősen függ az anyag hőmérsékletétől, a felület állapotától, tisztaságától, a környező levegő nedvességtartalmától. Ezért csak gondosan megtisztított, szárított felületen lehet mérni, a levegő 65 ± 5% relatív nedvességtartalma mellett. A szabvány szerint felületi ellenálláson a szigetelőanyagra fektetett 2 db 100 mm hosszúságú, egymástól 10 mm távolságra levő párhuzamos elektród között mért ellenállásértéket értjük. A gyakorlaton, hogy a mért ellenállásunk kisebb legyen, egymáshoz közelebbi és hosszabb 3. ábra Vezetőhálózat elektródcsíkokon mérünk. (A 3. ábrához hasonló mintákat használunk, a a felületi ellenállás fekete csík az elektród, fehér a szigetelő felülete. A könnyebb kezelés érdekében méréséhez a szigetelőcsíkot szerpentin alakra feltekertük.) Ebből az un. négyzetes ellenállást számíthatjuk. Ezt az elrendezés úgy tekinthetjük, mintha több négyzet alakú felületrészt egymás mellé helyeznénk és párhuzamosan kapcsolva mérnénk az ellenállásukat. (Belátható, hogy egy, a felületen kijelölt négyzet ellenállása független a négyzet nagyságától, feltéve, hogy a vezető réteg vastagsága állandó.) A rajz szerinti mintán d a szigetelőcsík szélessége, mérés szempontjából a vezető hossza, 7l pedig vezető keresztmetszete (feltételezve egy állandó felületi rétegvastagságot). Így a négyzetes ellenállás a mért érték l/d-szerese, pl. az említett szabványos mérésnél a 10-szerese. Veszteségi tényező és permittivitás vizsgálata Váltakozófeszültség rákapcsolása esetén a kialakuló térerősség hatására a töltéshordozók elmozdulnak, vándorlásba kezdenek. A szigetelőanyagban váltakozófeszültségen is létrejön a vezetés valamint a polarizáció. Egy-egy félperiódus alatt a vezetés és a polarizáció is olyan mértékig alakulhat ki, amire az adott idő alatt lehetőség van. Mind a vezetés, mind a polarizáció energiát fogyaszt, ezáltal a szigetelésben veszteség keletkezik. Definíció szerint tgδ veszteségi tényező (más néven D: disszipációs faktor) a hatásos és a meddő áram-komponensek hányadosa. Fizikailag a kondenzátor feltöltése majd kisütése során a villamos energia egy része hővé alakul, ennek jellemzésére alkalmas a veszteségi tényező. A veszteségi teljesítmény P U I tg U 2 v c 0 tg 4. ábra A veszteségi szög 4

5 Ahol 0 az eszköz geometriai kapacitása. Ebben az összefüggésben szétválasztható az egyenlet az anyagi minőségtől független (U 2 ω 0), és egy attól függő részre (ε tgδ). A veszteségi tényezőt jelentősen befolyásoló tényezők közül a frekvencia, és a hőmérséklet hatását vizsgáljuk részletesebben. Mint ismert, a polarizációfajták kialakulásához jellegüktől függően különböző idő szükséges. A frekvencia növekedését tehát nem minden polarizáció tudja követni, hanem különböző frekvenciákon, egy-egy rezonanciához hasonló jelenség után már eltűnnek. Olyan anyagoknál, ahol a veszteség létrejöttében a polarizáció dominál, ez a jelenség a veszteségi tényező és a permittivitás változásában is tükröződik. A veszteségi tényező vizsgálata felvilágosítást nyújthat a veszteségek veszteségek eredetéről, a frekvencia függvényében végzett vizsgálatok képet adhatnak az anyagszerkezettel összefüggő kérdésekről, tehát a szigetelés állapotáról. Kerámia dielektrikumok A kerámia kondenzátorokban dielektrikumként döntően un. titanát kerámiákat használnak. Természetesen egyik fő alapanyag a TiO 2, de a különböző igények kielégítésére még néhány jellegzetes oxidot alkalmaznak. A kondenzátorokat alapanyagaik tulajdonságai miatt két fő csoportba oszthatjuk: Az I típus jellemzői: közepesen nagy relatív permittivitás ( ) kis veszteségi tényező (tg< , 1 MHz-en mérve) hőmérsékletfüggése lineáris, a TK értéke +150 és között változik. fajlagos ellenállásuk nagyobb Ωcm-nél a fenti paraméterek nagy stabilitással rendelkeznek Ezek a kondenzátorok kiváló nagyfrekvenciás tulajdonságaik miatt elsősorban rezgőkörökben alkalmazhatók, kb. 100 Mhz frekvenciáig. A polikristályos TiO 2-nek kb. 110-es mellett -800 ppm- es TK-ja van. Ha javítani akarunk a hőmérsékletfüggésen, általában MgO-t adagolunk hozzá, amelynek pozitív a TK-ja, de ezzel is lecsökken alá. A II típus jellemzői: igen magas relatív permittivitás ( ) közepes veszteségi tényező (tg < ) 5. ábra A polarizáció frekvenciafüggése a permittivitás jelentősen függ a hőmérséklettől, és a kapcsolat nem lineáris 5

6 a fajlagos ellenállás nagyobb Ωcm-nél a névleges adatok körül jelentős szórás tapasztalható ( % tűrés is lehet) r függ a feszültségtől a kristály doménszerkezete miatt az anyagok ferroelektromos tulajdonságúak. Legismertebb képviselőik: BaTiO 3(báriumtitanát), SrTiO 3(stroncium-titanát), PbZrO 3(ólom-cirkonát). A BaTiO 3 permittivitásának hőmérsékletfüggéséből látszik, miért nem várható lineáris TK ezektől az anyagoktól 6. ábra A permittivitás és a veszteségi tényező hőmérséklet-, frekvencia- és feszültségfüggése a két dielektrikum típusra vonatkozóan. Ellenőrző kérdések Sorolja fel és értelmezze a szigetelőanyagok jellemző tulajdonságait. Hol van szerepe a felületi ellenállásnak, és milyen tényezők csökkenthetik az értékét? Mi a négyzetes ellenállás? Egy rajzon mutassa be, hogy nagysága nem függ az oldalhossztól! Mi a polarizációs index, mi az eredete, mit tudhatunk meg belőle? Melyek a legfontosabb méréstechnikai szempontok a szigetelési ellenállás mérésekor? Mi a kapacitív áram, mi az eredete? Mi a permittivitás és a veszteség anyagszerkezeti oka? Milyen típusai vannak a dielektromos veszteségnek? Melyek a polarizáció alaptípusai? Mi a veszteségi teljesítmény, mitől függ? Jellemezze az I. és II. típusú kerámia dielektrikumokat villamos tulajdonságok és jellemző összetétel szerint! Mi a ferroelektromosság? 6

7 Mérési feladat 1/ Fajlagos ellenállás A kapott minták műanyag lapok, NYHL hordozók, üveg-, kerámia lapok. Ezek közül 6 db ellenállásának mérése közvetlen leolvasású műszerrel, ebből ρ kiszámítása (a belső elektróda = 73,5mm, így minden itt mért mintánknál A = 42,43 cm 2 ) (1 táblázat 1 4 oszlop) 2/ Polarizációs index Az előző minták közül kiválasztanak kettőt, olyanokat, amelyeknél az 1 perces mérés során különböző volt az ellenállás-növekedés. Ezeknek 10 percig folyamatosan mérjük az ellenállását, grafikonon ábrázoljuk és kiszámítjuk a polarizációs indexet. 3/ Felületi ellenállás Üveghordozóra párologtatott vezetőhálózat és NYHL-re maratott rajzolaton. A két elektródra egy tűs mérőfejjel csatlakozunk. R -et számítjuk a geometriai arányok ismeretében. 4/Dielektromos állandó és veszteségi tényező az 1/ feladatban megmért mintákat használjuk. (1. táblázat, oszlop) Mérés 100 khz-es mérőhíddal. A műszerről közvetlenül leolvasható a kapacitás () és a veszteségi tényező (D). A relatív permittivitás kiszámítása: Elvileg rel anyag levego A mérőszonda elektródái közé befogjuk a mintadarabot, anyag-ot leolvassuk. A minta vastagságát a mérőfejen levő mikrométeren megjegyezzük és a levegő-kondenzátor ( levegő ) mérésnél ugyanoda állítjuk vissza. (További mérési tanácsok a műszerismertetőben.) A mérés során nem tudjuk kiküszöbölni a mérőfej saját kapacitását. Ezt egy párhuzamosan kapcsolt kondenzátornak tekintjük, és értékét ki kell vonnunk mindkét mért adatból ( anyag, levegő) Mivel nagysága kicsit változik a vastagsággal, ezért értékét méréssel kell meghatároznunk, a következőképpen: Ha csak A és B pont között tudunk mérni, legalább az egyik kapacitást tudnunk kell, hogy a másikat kiszámíthassuk. A levegő a geometriai adatokból számítható és ezt mérve megkapható a ház kapacitása ( ház számítható a minta permittivitása: ). Ezzel a korrekcióval már rel anyag levego ház ház vagy: rel anyag ház levego számitott 7

8 (A számított értékek a jegyzőkönyvi táblázat alatt megtalálhatók, ha az adott mintánk vastagsága épp két kerek érték között van, mérjük meg levegő -t a legközelebbi kerek értéknél is és az itt kapott ház -t használjuk.) 5/ Kerámia tárcsakondenzátor permittivitás és veszteségi tényező frekvenciafüggésének mérése A kikészített kondenzátorok közül (korábbi hallgatói munkák) kettőt kiválasztunk és a HIOKI es műszeren 100 Hz és 5 MHz között megmérjük a kapacitását és a veszteségi tényezőt. A műszer kezelését a gyakorlatvezető mutatja meg. Az 1 MHz-en mért adatokat 0-nak és D 0 tekintve számítjuk és ábrázoljuk a / 0 és a D/D 0 értékeket. Ehhez tervezzék meg önállóan a grafikont! 8

9 Szigetelőanyagok vizsgálata Mérést végezte: (név, neptun kód, laborcsoport Gyakorlatvezető: Mérés ideje: Érdemjegy: 1. és 4. feladat: dielektromos jellemzők minta neve d(mm) (vastags ág) R() (m) (pf) lev mért lev számított ház ε rel D A számításhoz használt összefüggések: (Az ismert adatokat, nagyságrendi átszámításokat helyettesítse be, az állandókat vonja = össze, csak d -t (mm-ben) és R -t M-ban) kelljen behelyettesíteni!) Tapasztalatok, az eredmények értékelése. (m) A lev számított értékei: Vastagság mm 0,5 0,6 0,7 0,8 1,0 1,2 1,4 1,5 1,6 1,8 2,0 2,5 3,0 3,5 4 számított pf , , ,4 19,2 15,4 12,8 11 9,6 2. feladat: Polarizációs index idő 10s 20s 30s 40s 50s 1p 2p 3p 4p 5p 6p 7p 8p 9p 10p R 1 R 2 9

10 ellenállás 1-es minta neve:... PI 1 = polarizációs index 2-es minta neve:.. PI 2 = (ha nagy az eltérés a két ellenállás között, a jobb és bal oldalon különböző skálát alkalmazhat) idő (perc) 1. feladat: Felületi ellenállás Minta neve l/d R mért R négyzet Tapasztalatok, az eredmények értékelése.. 5/b feladat: Kerámia kondenzátorok: és D (tg) frekvenciafüggése Frekvencia D (tg) ε/ε o / 0 D/ D 0 D (tg) ε/ε o / 0 D/ D 0 0,1 khz 1 khz 10 khz 100 khz 1 MHz MHz Megj: A relatív változáshoz nem kell kiszámítanunk a dielektromos állandókat, hiszen ε/ε o = / o A számított adatok grafikus ábrázolása. Tervezze meg, milyen grafikon(ok)on lehet pontosan, szemléletesen ábrázolni az eredményeket! (Mit ábrázol a tengelyeken, milyen léptékben, hány görbe fér egy diagramba, stb.) 10

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Szigetelés- vizsgálat

Szigetelés- vizsgálat Szigetelésvizsgálat 1 Szigetelés vizsgálata DC vizsgálat elmélet Vizsgáló feszültségszintek Diagnosztikai eljárások 2 Elmélet 3 Mit okoz a szigetelés meghibásodása? Öt alaptényező ami a szigetelés letöréséhez

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata

FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Nagyfeszültségű Laboratórium FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Cselkó Richárd Dr. Berta István, Dr. Kiss István, Dr. Németh Bálint,

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

IT-rendszer. avagy védőföldelés földeletlen vagy közvetve földelt rendszerekben

IT-rendszer. avagy védőföldelés földeletlen vagy közvetve földelt rendszerekben IT-rendszer avagy védőföldelés földeletlen vagy közvetve földelt rendszerekben ha a testek csoportosan vagy egyenként vannak földelve. minden test védővezetővel ugyanahhoz a földelési rendszerhez van földelve

Részletesebben

LI 2 W = Induktív tekercsek és transzformátorok

LI 2 W = Induktív tekercsek és transzformátorok Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Tranziens jelenségek rövid összefoglalás

Tranziens jelenségek rövid összefoglalás Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-2-0294/2015 nyilvántartási számú akkreditált státuszhoz A C+D AUTOMATIKA Kft. Kalibráló laboratórium (1191 Budapest, Földváry u. 2.) akkreditált területe

Részletesebben

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH / nyilvántartási számú akkreditált státuszhoz

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH / nyilvántartási számú akkreditált státuszhoz MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH-2-0294/2015 1 nyilvántartási számú akkreditált státuszhoz A C+D AUTOMATIKA Kft. Kalibráló laboratórium (1191 Budapest, Földváry u. 2.) akkreditált területe I. Az

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy.

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy. Az alábbiakban néhány példát mutatunk a CMR számítására. A példák egyrészt tanulságosak, mert a zavarelhárítással kapcsolatban fontos, általános következtetések vonhatók le belőlük, másrészt útmutatásul

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

Váltakozó áramú rendszerek 4.zh

Váltakozó áramú rendszerek 4.zh Váltakozó áramú rendszerek 4.zh 1.) Milyen célt szolgál a szigeteléstechnikában a biztonsági tényez ő? Szigetelésekben a szigetelőanyagokat csak a tényleges villamos szilárdságuknál, teherbírásuknál kisebb

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE

A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE MTA-MMSZ Kft. Kalibráló Laboratóriuma A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE 1. Egyenfeszültség-mérés 1.1 Egyenfeszültség-mérők 0...3 mv 1,5 µv 1.2 Egyenfeszültségű jelforrások - kalibrátorok,

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH /2019 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH /2019 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-2-0294/2019 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: C+D AUTOMATIKA Kft. Kalibráló laboratórium 1191 Budapest, Földváry u. 2. 2)

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége

Részletesebben

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés Mérnöki Szolgáltató Kft. ELEKTROSZTATIKUS feltöltődés robbanás veszélyes térben ESC- ESD Dr. Fodor István EOS E M ESC C ESD ESC AKTÍV PASSZÍV Anyag Tűz- és Reprográfia Mechanikai szeparálás robbanásveszély

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben

Amit a kapacitív gabona nedvességmérésről tudni kell

Amit a kapacitív gabona nedvességmérésről tudni kell Szemestermények korszerű szárítási, tárolási, feldolgozási és mérési technológiái Gödöllő, 2018 Amit a kapacitív gabona nedvességmérésről tudni kell Dr. Gillay Zoltán, adjunktus Szent István Egyetem, Élelmiszertudományi

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

6 az 1-ben digitális multiméter AX-190A. Használati útmutató

6 az 1-ben digitális multiméter AX-190A. Használati útmutató 6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális

Részletesebben

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó. Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft.

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft. Újdonságok XII. Szigetelésdiagnosztikai Konferencia Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft. új MIT 5kV és 10kV-os szigetelésvizsgáló család MIT515 jellemzői (belépő modell): IR, IR(t),

Részletesebben

12. Zavarjelek a mérőkörben

12. Zavarjelek a mérőkörben avarjelek a mérőkörben 1 12. avarjelek a mérőkörben avarjel (zaj): hasznos információt nem tartalmazó, mérési hibát okozó jel. Típusai: a.) időbeli lefolyás alapján: - egyenfeszültségű, - váltakozó feszültségű

Részletesebben

Kábeldiagnosztika. Homok Csaba VEIKI-VNL Kft. Tel.: 417-3154 Fax: 417-3163. E-mail: homok@vnl.hu 503/0243

Kábeldiagnosztika. Homok Csaba VEIKI-VNL Kft. Tel.: 417-3154 Fax: 417-3163. E-mail: homok@vnl.hu 503/0243 Kábeldiagnosztika Homok Csaba VEIKI-VNL Kft. Tel.: 417-3154 Fax: 417-3163 503/0243 E-mail: homok@vnl.hu SZAQkrKVM (ROUNDAL) 3x240mm 2 keresztmetszetű, 6/10kV-os kábel vizsgálata Hosszú időtartamú vizsgálat

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

2. VILLAMOS SZIGETELÉSTECHNIKA. 2.1. Szigetelések üzemi igénybevételei

2. VILLAMOS SZIGETELÉSTECHNIKA. 2.1. Szigetelések üzemi igénybevételei 2. VILLAMOS SZIGETELÉSTECHNIKA 2.1. Szigetelések üzemi igénybevételei A szigetelések legfontosabb feladata a villamos gépekben, berendezésekben, elektronikus eszközökben különböző potenciálon levő fémalkatrészek

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Roncsolásmentes részleges kisülés diagnosztika

Roncsolásmentes részleges kisülés diagnosztika Roncsolásmentes részleges kisülés diagnosztika Tevékenységeink 1. Roncsolásmentes helyszíni diagnosztikai vizsgálatok Generátorok Transzformátorok Túlfeszültséglevezetők Mérőváltók Kábelek (olajpapír és

Részletesebben