SZIGETELŐANYAGOK VIZSGÁLATA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZIGETELŐANYAGOK VIZSGÁLATA"

Átírás

1 SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető jellemzője az ellenállásuk. Minden hálózati vagy nagyobb feszültségen működő berendezést szükséges érintésvédelmi szempontból szigetelni és azt rendszeresen ellenőrizni is kell. Emellett a szigetelőanyagoknak áramköri funkciójuk is van, elválasztják egymástól a vezetőket, egyéb áramköri elemeket. Szerepük nem teljesen passzív, töltés halmozódhat fel rajtuk és bizonyos csekély áramot is vezetnek. Külön terület, amikor kondenzátor dielektrikumként kerülnek alkalmazásra. Lényegesen különböző a viselkedésük egyenáramú és váltakozó áramú körökben. Kész berendezéseken mérve az adott eszköz konstrukciójának és alkalmazott szigetelő-anyagainak együttes hatását vizsgálhatjuk. Az eredményekből eldönthetjük, hogy használható-e a berendezés, megfelel-e az érintésvédelmi követelményeknek, van-e energiaveszteség, stb. Gyakorlati célokra gyakran elég annak megállapítása, hogy a szigetelés meghalad-e egy adott biztonságosnak ítélt szintet. Ha az egyes anyagokat akarjuk összehasonlítani, laboratóriumi körülmények között, pontosan meghatározott, lehetőleg szabványos méretű minták fajlagos ellenállását kell mérnünk. ρ = R A / l ismert összefüggésből számítható, mértékegysége [Ωm] vagy [Ωcm] A leggyakoribb egyenáramú mérési módszer: adott feszültség rákapcsolása után az átfolyó áram mérése. Ebből az Ohm-törvény alapján számíthatjuk az ellenállást, vagy a műszer már közvetlenül azt jelzi ki. Az alkalmazott feszültség V, vagy, ha adott alkalmazáshoz vizsgáljuk a szigetelőt, a névleges feszültség kb. kétszerese. Az eddig egyszerűnek tűnő helyzet meglehetősen sok méréstechnikai problémát vet fel: 1. Egy jó szigetelőanyag ellenállása Ω, vagy még nagyobb. Ha a mérőműszer szigetelése is ebbe a tartományba esik, az párhuzamosan kapcsolódik a mérendő ellenálláshoz és meghamisítja a mérésünket. Azaz a legkiválóbb anyagok megválasztásával és helyes konstrukció kialakításával biztosítani kell, hogy a mérőberendezésből párhuzamosan kapcsolódó ellenállások értéke nagyságrendekkel nagyobb legyen, mint a mérendő ellenállás. Így a méréshatár felső korlátja kb Ω és ezt közelítve a mérés pontossága is fokozatosan romlik. (Sovány vigasz, hogy néhány kω-os kontakthibákkal nem kell törődnünk.) 2. Egy mérendő minta kapacitív tagként is viselkedik, az ezt figyelembe vevő helyettesítő áramkör az 1a. ábrán látható. Az egyes elemekre jutó áram időbeli lefolyását a 1b. ábra mutatja. 1

2 1. ábra (az a ábrán R A, R L természetesen ellenállás, amely a z abszorpciós ill. a szivárgó áramot engedi át) A kondenzátor töltőárama viszonylag gyorsan, általában 1 másodpercen belül 0-ra csökken (azaz a kezdeti, viszonylag kisebb ellenállás gyorsan megnő). Abszorpciós áram: a dielektrikumban, főképp a fém-szigetelő határfelületen az áthaladó áram hatására polarizáció lép fel, és ennek eredményeképp nő a minta ellenállása. Pl. sok szigetelőben pozitív ionok szállítják a töltéseket, ezek idővel elvándorolnak a pozitív fegyverzet közeléből, és egy lassan vastagodó, töltéshordozókban még jobban kiürített réteg keletkezik, aminek folyamatosan nő az ellenállása. Szivárgási áram: végül ez a szigetelés valós ellenállásából származó áram, azonban beállási ideje határozatlan. Akkor mérhetjük, ha a kapacitív és az abszorpciós áram már 0-ra csökkent. Az összehasonlíthatóság érdekében az 1 perces leolvasást fogadjuk el a minta ellenállásaként. Ugyanakkor sok esetben az ellenállás több tíz percen keresztül folyamatosan nő, sőt azt tekintik jó szigetelésnek, ahol ez a növekedés nagyobb. Ezért újabban az ellenállás időfüggésének mérését is javasolják. Az abszorpciós áram növekedésére két jellemzőt is használnak. Ezek a szigetelés aktuális állapotát is mutatják, a határ alattiak az öregedés, a nedvesség beépülés, szennyeződés jelei. 1. Polarizációs index: PI = 10 perces R / 1 perces R Értéke jó szigetelőkben 5 10 körüli 2. Dielektromos / Abszorpciós arány = 60sec R / 30 sec R A jó érték 1,25 feletti Ellenállásmérések összeállítása. A mérések összeállításánál ügyelni kell arra, hogy a szigetelt vezetékek mindig a levegőben haladjanak és sehol se érhessenek egymáshoz, mert ezek a pontszerű érintkezési helyek is párhuzamosan kapcsolódhatnak a mérendő objektummal. 2

3 Mivel a mérések során viszonylag nagy feszültségek esetén is csak kis áramok folynak, nagy jelentősége van az egyes feszültség alatt álló részek, vezetékek szórt kapacitásainak. Ezért igen gondosan kell árnyékolni a mérőműszer előtti, feszültség alatt álló részeket, mert a környezetben való kis mozgások is szórt kapacitások változásával járnak és - figyelembe véve a körben folyó áram nagyságát - az ezzel előidézett töltőáram befolyásolhatja a mérési eredményeket, ill. megnehezíti a műszerek leolvasását. A táplálófeszültség csak igen sima egyenfeszültség lehet. Már kismértékű (1%-on belüli) változások is jelentős eltéréseket okozhatnak. A fellépő kapacitív áram: dq d( CU ) dc I c = = = U + dt dt dt Azaz akár a környezet kapacitásának változása (pl. ε változása) akár a mérőfeszültség ingadozása jelentősen megzavarhatják a mérési eredményeket. (A kapacitív áram természetesen majdnem mindig elhanyagolhatóan kicsi, de jó szigetelők esetén a mérőáram is csak néhány pa) Fontos még, hogy a méréskor kis ellenállású földelővezetéket alkalmazzunk és valamennyi objektum földelését egy helyről végezzük. Ezzel elkerülhetjük, hogy földelővezetékből hurok alakuljon ki, amiben olyan feszültség indukálódhat, ami a különböző berendezések földelt pontjainak potenciálját egymáshoz képest eltolja. du dt C Fajlagos térfogati ellenálláson az 1 cm élhosszúságú kocka két szemben fekvő lapja között mérhető ellenállást értjük, ha áram csak az anyag belsejében folyik, és a tér homogén. A definícióban említett feltételeket ún. védőgyűrűs elektródelrendezés segítségével lehet biztosítani. A 2. ábra Védőgyűrűs elektróda a fajlagos ellenállás mérésére lehet biztosítani. védőgyűrű szerepe az, hogy a felületen és a tér inhomogén részén átfolyó áramot a műszer megkerülésével vezesse el. Nagyon fontos, hogy az elektródok egész felületükkel tökéletesen felfeküdjenek a szigetelőanyagra. A tökéletlen fölfekvés következtében ui. egyrészt a felület nagysága határozatlan lesz, másrészt diszkrét érintkezési helyek esetén a tér elveszti homogenitását. A minél tökéletesebb érintkezést esetenként higanyelektródokkal, fémbeszórással stb., A szigetelési ellenállást jelentősen befolyásolják a mérési körülmények (hőmérséklet, a levegő páratartalma stb.), ezért csak olyan ellenállásértékeket szabad mértékadónak tekinteni, aminél ezek tisztázottak. 3

4 A felületi ellenállás elsősorban áramköri modulok hordozóinál fontos adat, hiszen ezeken a vezetőpályák között esetleg csak 0,1mm szigetelőcsík marad, sőt hibrid IC-kben még kevesebb. Ennek a vékony sávnak kell a megfelelő szigetelést biztosítani. A felületi ellenállás nem egyértelmű anyagi jellemző, ui. semmilyen elektródelrendezéssel nem tudjuk kiküszöbölni, hogy a felületen kívül az anyag belsejében is folyjék áram. A felületi ellenállásra igen nagy hatással vannak a külső tényezők. Erősen függ az anyag hőmérsékletétől, a felület állapotától, tisztaságától, a környező levegő nedvességtartalmától. Ezért csak gondosan megtisztított, szárított felületen lehet mérni, a levegő 65 ± 5% relatív nedvességtartalma mellett. A szabvány szerint felületi ellenálláson a szigetelőanyagra fektetett 2 db 100 mm hosszúságú, egymástól 10 mm távolságra levő párhuzamos elektród között mért ellenállásértéket értjük. A gyakorlaton, hogy a mért ellenállásunk kisebb legyen, egymáshoz közelebbi és hosszabb elektródcsíkokon mérünk. (A 3. ábrához hasonló mintákat használunk, a fekete csík az elektród, fehér a szigetelő felülete. A könnyebb kezelés érdekében a szigetelőcsíkot szerpentin alakra feltekertük.) Ebből az un. négyzetes ellenállást számíthatjuk. (Belátható, hogy egy, a felületen kijelölt négyzet ellenállása független a négyzet nagyságától, feltéve, hogy a vezető réteg vastagsága állandó.) A rajz szerinti elektródokkal tulajdonképpen n db párhuzamosan kapcsolt négyzet ellenállását mérjük, ahol n = l/d Veszteségi tényező és permittivitás vizsgálata Váltakozófeszültség rákapcsolása esetén a kialakuló térerősség hatására a töltéshordozók elmozdulnak, vándorlásba kezdenek. A szigetelőanyagban váltakozófeszültségen is létrejön a vezetés valamint a polarizáció. Egy-egy félperiódus alatt a vezetés és a polarizáció is olyan mértékig alakulhat ki, amire az adott idő alatt lehetőség van. Mind a vezetés, mind a polarizáció energiát fogyaszt, ezáltal a szigetelésben veszteség keletkezik. Definíció szerint tgδ veszteségi tényező (más néven D: disszipációs faktor) a hatásos és a meddő áram-komponensek hányadosa. Fizikailag a kondenzátor feltöltése majd kisütése során a villamos energia egy része hővé alakul, ennek jellemzésére alkalmas a veszteségi tényező. A veszteségi teljesítmény P = U I tgδ = U ω C ε tgδ 2 v c 0 Ahol C 0 az eszköz geometriai kapacitása. Ebben az összefüggésben szétválasztható az egyenlet az anyagi minőségtől független (U 2 ω C 0 ), és egy attól függő részre (ε tgδ). 3. ábra Vezetőhálózat a felületi ellenállás méréséhez 4. ábra A veszteségi szög 4

5 A veszteségi tényezőt jelentősen befolyásoló tényezők közül a frekvencia, és a hőmérséklet hatását vizsgáljuk részletesebben. Mint ismert, a polarizációfajták kialakulásához jellegüktől függően különböző idő szükséges. A frekvencia növekedését tehát nem minden polarizáció tudja követni, hanem különböző frekvenciákon, egy-egy rezonanciához hasonló jelenség után már eltűnnek. Olyan anyagoknál, ahol a veszteség létrejöttében a polarizáció dominál, ez a jelenség a veszteségi tényező és a permittivitás változásában is tükröződik. 5. ábra A polarizáció frekvenciafüggése A veszteségi tényező vizsgálata felvilágosítást nyújthat a veszteségek eredetéről, a frekvencia függvényében végzett vizsgálatok képet adhatnak az anyagszerkezettel összefüggő kérdésekről, tehát a szigetelés állapotáról. Kerámia dielektrikumok A kerámia kondenzátorokban dielektrikumként döntően un. titanát kerámiákat használnak. Természetesen egyik fő alapanyag a TiO 2, de a különböző igények kielégítésére még néhány jellegzetes oxidot alkalmaznak. A kondenzátorokat alapanyagaik tulajdonságai miatt két fő csoportba oszthatjuk: Az I típus jellemzői: A II típus jellemzői: közepesen nagy relatív permittivitás ( ) kis veszteségi tényező (tgδ< , 1 MHzen mérve) hőmérsékletfüggése lineáris, a TK értéke +150 és között változik. fajlagos ellenállásuk nagyobb Ωcm-nél a fenti paraméterek nagy stabilitással rendelkeznek Ezek a kondenzátorok kiváló nagyfrekvenciás tulajdonságaik miatt elsősorban rezgőkörökben alkalmazhatók, kb. 100 Mhz frekvenciáig. A igen magas relatív permittivitás ( ) közepes veszteségi tényező (tg δ < ) a permittivitás jelentősen függ a hőmérséklettől, és a kapcsolat nem lineáris a fajlagos ellenállás nagyobb Ωcm-nél a névleges adatok körül jelentős szórás tapasztalható ( % tűrés is lehet) ε r függ a feszültségtől a kristály doménszerkezete miatt az anyagok ferroelektromos tulajdonságúak. Legismertebb képviselőik: BaTiO 3 (bárium- 5

6 polikristályos TiO 2 -nek kb. 110-es ε mellett ppm- es TK-ja van. Ha javítani akarunk a hőmérsékletfüggésen, általában MgO-t adagolunk hozzá, amelynek pozitív a TK-ja, de ezzel ε is lecsökken alá. titanát), SrTiO 3 (stroncium-titanát), PbZrO 3 (ólom-cirkonát). A BaTiO 3 permittivitásának hőmérsékletfüggéséből látszik, miért nem várható lineáris TK ezektől az anyagoktól. A permittivitás és a veszteségi tényező hőmérséklet-, frekvencia- és feszültségfüggése a két dielektrikum típusra vonatkozóan. 6

7 Ellenőrző kérdések Sorolja fel és értelmezze a szigetelőanyagok jellemző tulajdonságait. Hol van szerepe a felületi ellenállásnak, és milyen tényezők csökkenthetik az értékét? Mi a négyzetes ellenállás? Mi a polarizációs index, mi az eredete, mit tudhatunk meg belőle? Melyek a legfontosabb méréstechnikai szempontok a szigetelési ellenállás mérésekor? Mi a kapacitív áram, mi az eredete? Mi a permittivitás és a veszteség anyagszerkezeti oka? Milyen típusai vannak a dielektromos veszteségnek? Melyek a polarizáció alaptípusai? Mi a veszteségi teljesítmény, mitől függ? Jellemezze az I. és II. típusú kerámia dielektrikumokat villamos tulajdonságok és jellemző összetétel szerint! Mi a ferroelektromosság? 1/ Fajlagos ellenállás Mérési feladat A kapott minták műanyag lapok, NYHL hordozók, üveg-, kerámia lapok. Ezek közül 6 db ellenállásának mérése közvetlen leolvasású műszerrel, ebből ρ kiszámítása (a belső elektróda = 73,5mm, így minden itt mért mintánknál A = 42,43 cm 2 ) (1 táblázat 1 4 oszlop) 2/ Polarizációs index Az előző minták közül kiválasztanak kettőt, olyanokat, amelyeknél az 1 perces mérés során különböző volt az ellenállás-növekedés. Ezeknek 10 percig folyamatosan mérjük az ellenállását, grafikonon ábrázoljuk és kiszámítjuk a polarizációs indexet. 3/ Felületi ellenállás Üveghordozóra párologtatott vezetőhálózat és NYHL-re maratott rajzolaton. A két elektródra egy tűs mérőfejjel csatlakozunk. R -et számítjuk a geometriai arányok ismeretében. 4/Dielektromos állandó és veszteségi tényező az 1/ feladatban megmért mintákat használjuk. (1. táblázat, oszlop) Mérés 100 khz-es mérőhíddal. A műszerről közvetlenül leolvasható a kapacitás (C) és a veszteségi tényező (D). A relatív permittivitás kiszámítása: Elvileg Canyag ε rel = A mérőszonda elektródái közé C befogjuk a mintadarabot, C anyag -ot leolvassuk. A minta vastagságát a mérőfejen levő mikrométeren megjegyezzük és a levegő-kondenzátor (C levegő ) mérésnél ugyanoda állítjuk vissza. (További mérési tanácsok a műszerismertetőben.) A mérés során nem tudjuk kiküszöbölni a mérőfej saját kapacitását. Ezt egy párhuzamosan kapcsolt kondenzátornak tekintjük, és értékét ki kell vonnunk mindkét mért adatból (C anyag, C levegő ) levego 7

8 Mivel nagysága kicsit változik a vastagsággal, ezért értékét méréssel kell meghatároznunk, a következőképpen: Ismerve a geometriai adatokat, C levegő számítható is, és a mért adattal összehasonlítva, a kettő különbsége lesz a mérőfej aktuális kapacitása ( C korr ). Ezzel a korrekcióval már számítható a minta permittivitása: ε rel = C C anyag levego C C korr korr (A számított értékek a jegyzőkönyvi táblázat alatt megtalálhatók, ha az adott mintánk vastagsága épp két kerek érték között van, mérjük meg C levegő -t a legközelebbi kerek értéknél is és az itt kapott C korr -t használjuk.) 5/ Kerámia tárcsakondenzátor A kikészített kondenzátorok közül (korábbi hallgatói munkák) 2-3 db-nak megmérjük a kapacitását és veszteségi tényezőjét, számítjuk ε rel -ot. választhatóan: ugyanezen kondenzátorokon a/ ε rel és tgδ hőmérsékletfüggését b/ ε rel és tgδ frekvenciafüggését. A hőmérsékletfüggés mérése: a fűthető mintatartóban kb 100 o C ra melegítjük a kondenzátorokat, majd lehűlés közben (közel egyensúlyi állapotban) 10 fokonként mérjük a C-t és tgδ-t, számítjuk ε-t. (Ez a mérés jelenleg nem végezhető el.) A frekvenciafüggés mérése: a rendelkezésre álló műszer 100Hz-től 10 khz-ig képes dekádonként mérni. A kapacitás ezalatt gyakorlatilag állandó, veszteségi tényező változása általában így is jól látható. A rend kedvéért a képlet: C = ε 0 ε r A d 8

9 Jegyzőkönyv Szigetelőanyagok vizsgálata Mérést végezte: (név, neptun kód, laborcsoport Gyakorlatvezető: Mérés ideje: Érdemjegy: 1. és 4. feladat: dielektromos jellemzők minta neve d(mm) (vastagság) R(MΩ) ρ(ωm) C(pF) C lev mért C lev számított C korr ε rel D ( tgδ) A számításhoz használt összefüggések: (Az ismert adatokat, nagyságrendi átszámításokat helyettesítse be, az állandókat vonja össze, csak d -t (mm-ben) és R - t MΩ-ban) kelljen behelyettesíteni!) ρ = (Ωm) Tapasztalatok, az eredmények értékelése A C lev számított értékei: Vastagság mm 0,5 0,6 0,7 0,8 1,0 1,2 1,4 1,5 1,6 1,8 2,0 2,5 3,0 3,5 4 C számított pf , , ,4 19,2 15,4 12,8 11 9,6 3. feladat: Felületi ellenállás Minta neve l/d R mért MΩ R négyzet MΩ Tapasztalatok, az eredmények értékelése 9

10 2. feladat: Polarizációs index idő 10s 20s 30s 40s 50s 1p 2p 3p 4p 5p 6p 7p 8p 9p 10p R 1 R 2 1-es minta neve: polarizációs index PI 1 = 2-es minta neve: ellenállás PI 2 = idő (perc) 5/b feladat: Kerámia kondenzátorok: ε és tgδ frekvenciafüggése Minta neve Átmérő (mm) Vastagság (mm) Frekvencia C ε rel tgδ 0,1kHz 1kHz 10kHz 0,1kHz 1kHz 10kHz 10

11 Műszerek kezelése (Az alábbi műszerleírások megtalálhatók a mérőhelyen, a fotókat kinyomtatni nem szükséges) Megohmmeter IM 6 (Radiometer) Ezen mérjük a fajlagos ellenállást a védőgyűrűs elektródokkal. A mérés menete: 1. A minta csatlakoztatása az ábra szerinti helyekre 2. Az árnyékoló doboz fedelének feltétele 3. A méréshatárt a széles tartományra kapcsolva a jobb oldali (test voltage) kapcsolót lefele nyomva megállapítjuk a mintánk ellenállásának nagyságrendjét 4. A méréshatárt erre a nagyságrendre állítjuk és a test kapcsolót felkapcsolva megkezdjük a mérést, és az előírás szerinti időben leolvassuk az ellenállást 5. Ha a polarizáció miatt annyira megnő az ellenállás, hogy méréshatárt kell váltani, ezt megtehetjük a mérés megszakítása nélkül is 6. A minta lemérése után test kapcsolót középállásba kapcsoljuk, ekkor a mérőfeszültség már nincs a kimeneten, és csak ezután emeljük le az árnyékoló fedelét és cserélhetünk mintát A felületi ellenállást az MCP 2683 digitális szigetelési ellenállásmérőn mérjük tűs érintkezők segítségével. A műszer kezelése különösebb felkészülést nem igényel. A jobb összehasonlíthatóság érdekében a mintákat mérés előtt alkohollal mossuk le és szárítsuk meg. 11

12 Kapacitásmérők: A szigetelőanyag minták dielektromos jellemzőit az MCP CT 2817-es precíziós LCR mérőn határozzuk meg. A műszer bekapcsolás után azonnal mérőkész, és a C és a tgδ közvetlenül leolvasható. A mérés menete: 1. Bekapcsolás előtt szorítsuk össze a mérőszonda elektródjait, és ellenőrizzük, hogy a mirométeróra nullán van-e. Ha kell, állítsuk be. Nyissuk szét az elektródákat. 2. Csatlakoztassuk a mérőszondát a műszerhez 3. A mintát csúsztassuk az elektródok közé, és kíméletesen szorítsuk össze az elektródokat 4. Leolvassuk a kapacitást és a veszteségi tényezőt 5. Megjelöljük a szondán levő mikrométer állását, kilazítjuk a szorítócsavart, kivesszük a mintát és visszaállítjuk a szorítócsavart. Ezzel ugyanolyan vastag levegőkondenzátort állítottunk elő, mint az anyagvastagság volt. Az így leolvasott érték lesz a C lev. 6. Ha szükséges, az anyagvastagsághoz legközelebbi kerek értéknél újra lemérjük C lev értékét a C korr meghatározásához. RLC tűrésmérő híd Bruel & Kjaer Ezen mérjük a kerámia kondenzátorok kapacitását, veszteségi tényezőjét. A mérés elve: a műszer egy mérőhíd, három frekvencián működik, használható kapacitás mellett ellenállás és induktivitás mérésére is. Külső összehasonlító dekád szükséges hozzá (jelen esetben a kis kapacitások miatt egy precíziós forgókondenzátort használunk). A műszert eredetileg gyártósor végi kézi sorozatmérésre tervezték. Beállítható az alkatrész tervezett tűréshatára (100%, 20%, 5%, 1%.0,2%), és egy gyors csatlakoztatással a három lámpa egyike jelzi, hogy az eszköz belül van-e a határon, nagyobb vagy kisebb a megengedett értéknél. Mi a forgókondenzátorral pontosan kiegyenlítjük a hidat, így tudjuk meg a mérendő kapacitást, ezután a jobb alsó kapcsoló lenyomásával megmérjük a veszteségi tényezőt, amely az alsó skáláról olvasható. 12

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Szigetelés- vizsgálat

Szigetelés- vizsgálat Szigetelésvizsgálat 1 Szigetelés vizsgálata DC vizsgálat elmélet Vizsgáló feszültségszintek Diagnosztikai eljárások 2 Elmélet 3 Mit okoz a szigetelés meghibásodása? Öt alaptényező ami a szigetelés letöréséhez

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

6 az 1-ben digitális multiméter AX-190A. Használati útmutató

6 az 1-ben digitális multiméter AX-190A. Használati útmutató 6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

1. Az előlap bemutatása

1. Az előlap bemutatása AX-T2200 1. Az előlap bemutatása 1, 2, 3, 4. Feszültségválasztó kapcsolók (AC750V/500V/250V/1000V) 5. ellenállás tartomány kiválasztása (RANGE) 6. Főkapcsoló: auto-lock főkapcsoló (POWER) 7. Magasfeszültség

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft.

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft. Újdonságok XII. Szigetelésdiagnosztikai Konferencia Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft. új MIT 5kV és 10kV-os szigetelésvizsgáló család MIT515 jellemzői (belépő modell): IR, IR(t),

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata

FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Nagyfeszültségű Laboratórium FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Cselkó Richárd Dr. Berta István, Dr. Kiss István, Dr. Németh Bálint,

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 5101A, 5102A, 5103A, 5104A, 5105A Digitális szigetelési ellenállásmérő TARTALOMJEGYZÉK ÁLTALÁNOS INFORMÁCIÓK...3 BIZTONSÁGI FIGYELMEZTETÉSEK... 3 FUNKCIÓK... 3 MŰSZAKI JELLEMZŐK...

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 990B Digitális SMD Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági megjegyzések... 2 3. A készülék felépítése, kezelőszervek... 2 4. Műszaki jellemzők... 3 5. Mérési tulajdonságok...

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy.

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy. Az alábbiakban néhány példát mutatunk a CMR számítására. A példák egyrészt tanulságosak, mert a zavarelhárítással kapcsolatban fontos, általános következtetések vonhatók le belőlük, másrészt útmutatásul

Részletesebben

DIGITÁLIS MULTIMÉTER AUTOMATIKUS MÉRÉSHATÁR TARTOMÁNY KIVÁLASZTÁSSAL AX-201

DIGITÁLIS MULTIMÉTER AUTOMATIKUS MÉRÉSHATÁR TARTOMÁNY KIVÁLASZTÁSSAL AX-201 DIGITÁLIS MULTIMÉTER AUTOMATIKUS MÉRÉSHATÁR TARTOMÁNY KIVÁLASZTÁSSAL AX-201 HASZNÁLATI ÚTMUTATÓ KÉRJÜK FIGYELMESEN OLVASSA EL A JELEN HASZNÁLATI ÚTMUTATÓT A KÉSZÜLÉK HASZNÁLATA ELŐTT JÓTÁLLÁS Garantáljuk,

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 990A Digitális SMD Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági megjegyzések... 2 3. A készülék felépítése, kezelőszervek... 2 5. Mérési tulajdonságok... 4 6. Mérési

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Roncsolásmentes részleges kisülés diagnosztika

Roncsolásmentes részleges kisülés diagnosztika Roncsolásmentes részleges kisülés diagnosztika Tevékenységeink 1. Roncsolásmentes helyszíni diagnosztikai vizsgálatok Generátorok Transzformátorok Túlfeszültséglevezetők Mérőváltók Kábelek (olajpapír és

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

KTV koaxiális kábelek mérése

KTV koaxiális kábelek mérése KTV koaxiális kábelek mérése Összeállította: Mészáros István tanszéki mérnök 1 Koaxiális kábelek Ez a széles körben használt átviteli közeg egy tömör belső érből áll, amely körül szigetelő van. A szigetelőt

Részletesebben

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés Mérnöki Szolgáltató Kft. ELEKTROSZTATIKUS feltöltődés robbanás veszélyes térben ESC- ESD Dr. Fodor István EOS E M ESC C ESD ESC AKTÍV PASSZÍV Anyag Tűz- és Reprográfia Mechanikai szeparálás robbanásveszély

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Az Ovit ZRt. által végzett egyéb diagnosztikai és állapotfelmérési vizsgálatok

Az Ovit ZRt. által végzett egyéb diagnosztikai és állapotfelmérési vizsgálatok Az Ovit ZRt. által végzett egyéb diagnosztikai és állapotfelmérési vizsgálatok Nagy Gábor Ovit ZRt. Központi Szakszolgálati Üzem Egerszalók, 2008. április 24. Hőmérsékletmérés, hőmérsékletmérő eszközök

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató A biztonsággal kapcsolatos információk Model AX-C850 Használati útmutató Áramütés vagy testi sérülések elkerülése érdekében: Sosem csatlakoztasson két bemeneti csatlakozó aljzatra vagy tetszőleges bemeneti

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Komplex igénybevétel, komplex szigetelésdiagnosztika a Műegyetemen

Komplex igénybevétel, komplex szigetelésdiagnosztika a Műegyetemen Budapesti Műszaki és Gazdaságtudományi Egyetem Komplex igénybevétel, komplex szigetelésdiagnosztika a Műegyetemen Tamus Ádám Németh Bálint 2007. április 25. Az előadás fő témái Szigetelésdiagnosztika Szigetelésdiagnosztika

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

HASZNÁLATI UTASÍTÁS. TIF 1000 DC digitális lakatárammérő

HASZNÁLATI UTASÍTÁS. TIF 1000 DC digitális lakatárammérő HŰTŐTECHNIKAI ÁRUHÁZAK 1163. Budapest, Kövirózsa u. 5. Tel.: 403-4473, Fax: 404-1374 3527. Miskolc, József Attila u. 43. Tel.: (46) 322-866, Fax: (46) 347-215 5000. Szolnok, Csáklya u. 6. Tel./Fax: (56)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Váltakozó áramú rendszerek 4.zh

Váltakozó áramú rendszerek 4.zh Váltakozó áramú rendszerek 4.zh 1.) Milyen célt szolgál a szigeteléstechnikában a biztonsági tényez ő? Szigetelésekben a szigetelőanyagokat csak a tényleges villamos szilárdságuknál, teherbírásuknál kisebb

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

12. Zavarjelek a mérőkörben

12. Zavarjelek a mérőkörben avarjelek a mérőkörben 1 12. avarjelek a mérőkörben avarjel (zaj): hasznos információt nem tartalmazó, mérési hibát okozó jel. Típusai: a.) időbeli lefolyás alapján: - egyenfeszültségű, - váltakozó feszültségű

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika Dunaújvárosi Főiskola Anyagtudományi és Gépészeti Intézet Mérnöki alapismeretek és biztonságtechnika Mechanikai anyagvizsgálat 2. Dr. Palotás Béla palotasb@mail.duf.hu Készült: Dr. Krállics György (BME,

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

Felhasználói kézikönyv 33D Digitális multiméter

Felhasználói kézikönyv 33D Digitális multiméter HoldPeak Felhasználói kézikönyv 33D Digitális multiméter TARTALOMJEGYZÉK 1. BEVEZETÉS... 2 2. ELŐLAP ÉS KEZELŐSZERVEK... 2 3. BIZTONSÁGI INFORMÁCIÓK... 3 4. SPECIÁLIS HASZNÁLATI FIGYELMEZTETÉSEK... 3 5.

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

2. VILLAMOS SZIGETELÉSTECHNIKA. 2.1. Szigetelések üzemi igénybevételei

2. VILLAMOS SZIGETELÉSTECHNIKA. 2.1. Szigetelések üzemi igénybevételei 2. VILLAMOS SZIGETELÉSTECHNIKA 2.1. Szigetelések üzemi igénybevételei A szigetelések legfontosabb feladata a villamos gépekben, berendezésekben, elektronikus eszközökben különböző potenciálon levő fémalkatrészek

Részletesebben

Brüel & Kjaer 2238 Mediátor zajszintmérő

Brüel & Kjaer 2238 Mediátor zajszintmérő Brüel & Kjaer 2238 Mediátor zajszintmérő A leírást készítette: Deákvári József, intézeti mérnök Az FVM MGI zajszintméréseihez a Brüel & Kjaer gyártmányú 2238 Mediátor zajszintmérőt és frekvenciaanalizálót

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

MaxiCont. MOM690 Mikroohm mérő

MaxiCont. MOM690 Mikroohm mérő MOM690 Mikroohm mérő A nagyfeszültségű megszakítók és szakaszolók karbantartásának fontos része az ellenállás mérése. A nagy áramú kontaktusok és egyéb átviteli elemek ellenállásának mérésére szolgáló

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Kábeldiagnosztikai vizsgálatok a BME-n

Kábeldiagnosztikai vizsgálatok a BME-n Budapesti i Műszaki és Gazdaságtudományi Egyetem Kábeldiagnosztikai vizsgálatok a BME-n Tamus Zoltán Ádám tamus.adam@vet.bme.hu TARTALOM Szigetelőanyagok öregedése Kábelek öregedése Szigetelésdiagnosztika

Részletesebben

Digitális hőmérő Modell DM-300

Digitális hőmérő Modell DM-300 Digitális hőmérő Modell DM-300 Használati útmutató Ennek a használati útmutatónak a másolásához, terjesztéséhez, a Transfer Multisort Elektronik cég írásbeli hozzájárulása szükséges. Bevezetés Ez a készülék

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása Összeállította: dr. Szuhay Péter Budapest, 2013 Filename, 1 Hang és zaj 1. rész Dr. Szuhay Péter B & K Components Kft

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Elsőként ellenőrizzük, hogy a 2,5mm átmérőjű golyóval vizsgálható-e az adott vastagságú próbadarab.

Elsőként ellenőrizzük, hogy a 2,5mm átmérőjű golyóval vizsgálható-e az adott vastagságú próbadarab. 1 Keménységmérés minta példa Brinell keme nyse gme re s minta pe lda A Feladat: Határozza meg a kapott próbadarab Brinell keménységét HPO 250-es típusú keménység mérőgép segítségével. A méréssorán a próbadarab

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Kábeldiagnosztika. Homok Csaba VEIKI-VNL Kft. Tel.: 417-3154 Fax: 417-3163. E-mail: homok@vnl.hu 503/0243

Kábeldiagnosztika. Homok Csaba VEIKI-VNL Kft. Tel.: 417-3154 Fax: 417-3163. E-mail: homok@vnl.hu 503/0243 Kábeldiagnosztika Homok Csaba VEIKI-VNL Kft. Tel.: 417-3154 Fax: 417-3163 503/0243 E-mail: homok@vnl.hu SZAQkrKVM (ROUNDAL) 3x240mm 2 keresztmetszetű, 6/10kV-os kábel vizsgálata Hosszú időtartamú vizsgálat

Részletesebben

KOMPLEX RONCSOLÁSMENTES HELYSZÍNI SZIGETELÉS- DIAGNOSZTIKA

KOMPLEX RONCSOLÁSMENTES HELYSZÍNI SZIGETELÉS- DIAGNOSZTIKA Budapesti i Műszaki és Gazdaságtudományi Egyetem KOMPLEX RONCSOLÁSMENTES HELYSZÍNI SZIGETELÉS- DIAGNOSZTIKA MEE VÁNDORGYŰLÉS 2010. Tamus Zoltán Ádám, Cselkó Richárd tamus.adam@vet.bme.hu, cselko.richard@vet.bme.hu

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 6302 Digitális Gépjárműdiagnosztikai Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Tulajdonságok... 2 4. Működési leírás... 4 5. Karbantartás...

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben