SZIGETELŐANYAGOK VIZSGÁLATA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZIGETELŐANYAGOK VIZSGÁLATA"

Átírás

1 SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető jellemzője az ellenállásuk. Minden hálózati vagy nagyobb feszültségen működő berendezést szükséges érintésvédelmi szempontból szigetelni és azt rendszeresen ellenőrizni is kell. Emellett a szigetelőanyagoknak áramköri funkciójuk is van, elválasztják egymástól a vezetőket, egyéb áramköri elemeket. Szerepük nem teljesen passzív, töltés halmozódhat fel rajtuk és bizonyos csekély áramot is vezetnek. Külön terület, amikor kondenzátor dielektrikumként kerülnek alkalmazásra. Lényegesen különböző a viselkedésük egyenáramú és váltakozó áramú körökben. Kész berendezéseken mérve az adott eszköz konstrukciójának és alkalmazott szigetelő-anyagainak együttes hatását vizsgálhatjuk. Az eredményekből eldönthetjük, hogy használható-e a berendezés, megfelel-e az érintésvédelmi követelményeknek, van-e energiaveszteség, stb. Gyakorlati célokra gyakran elég annak megállapítása, hogy a szigetelés meghalad-e egy adott biztonságosnak ítélt szintet. Ha az egyes anyagokat akarjuk összehasonlítani, laboratóriumi körülmények között, pontosan meghatározott, lehetőleg szabványos méretű minták fajlagos ellenállását kell mérnünk. ρ = R A / l ismert összefüggésből számítható, mértékegysége [Ωm] vagy [Ωcm] A leggyakoribb egyenáramú mérési módszer: adott feszültség rákapcsolása után az átfolyó áram mérése. Ebből az Ohm-törvény alapján számíthatjuk az ellenállást, vagy a műszer már közvetlenül azt jelzi ki. Az alkalmazott feszültség V, vagy, ha adott alkalmazáshoz vizsgáljuk a szigetelőt, a névleges feszültség kb. kétszerese. Az eddig egyszerűnek tűnő helyzet meglehetősen sok méréstechnikai problémát vet fel: 1. Egy jó szigetelőanyag ellenállása Ω, vagy még nagyobb. Ha a mérőműszer szigetelése is ebbe a tartományba esik, az párhuzamosan kapcsolódik a mérendő ellenálláshoz és meghamisítja a mérésünket. Azaz a legkiválóbb anyagok megválasztásával és helyes konstrukció kialakításával biztosítani kell, hogy a mérőberendezésből párhuzamosan kapcsolódó ellenállások értéke nagyságrendekkel nagyobb legyen, mint a mérendő ellenállás. Így a méréshatár felső korlátja kb Ω és ezt közelítve a mérés pontossága is fokozatosan romlik. (Sovány vigasz, hogy néhány kω-os kontakthibákkal nem kell törődnünk.) 2. Egy mérendő minta kapacitív tagként is viselkedik, az ezt figyelembe vevő helyettesítő áramkör az 1a. ábrán látható. Az egyes elemekre jutó áram időbeli lefolyását a 1b. ábra mutatja. 1

2 1. ábra (az a ábrán R A, R L természetesen ellenállás, amely a z abszorpciós ill. a szivárgó áramot engedi át) A kondenzátor töltőárama viszonylag gyorsan, általában 1 másodpercen belül 0-ra csökken (azaz a kezdeti, viszonylag kisebb ellenállás gyorsan megnő). Abszorpciós áram: a dielektrikumban, főképp a fém-szigetelő határfelületen az áthaladó áram hatására polarizáció lép fel, és ennek eredményeképp nő a minta ellenállása. Pl. sok szigetelőben pozitív ionok szállítják a töltéseket, ezek idővel elvándorolnak a pozitív fegyverzet közeléből, és egy lassan vastagodó, töltéshordozókban még jobban kiürített réteg keletkezik, aminek folyamatosan nő az ellenállása. Szivárgási áram: végül ez a szigetelés valós ellenállásából származó áram, azonban beállási ideje határozatlan. Akkor mérhetjük, ha a kapacitív és az abszorpciós áram már 0-ra csökkent. Az összehasonlíthatóság érdekében az 1 perces leolvasást fogadjuk el a minta ellenállásaként. Ugyanakkor sok esetben az ellenállás több tíz percen keresztül folyamatosan nő, sőt azt tekintik jó szigetelésnek, ahol ez a növekedés nagyobb. Ezért újabban az ellenállás időfüggésének mérését is javasolják. Az abszorpciós áram növekedésére két jellemzőt is használnak. Ezek a szigetelés aktuális állapotát is mutatják, a határ alattiak az öregedés, a nedvesség beépülés, szennyeződés jelei. 1. Polarizációs index: PI = 10 perces R / 1 perces R Értéke jó szigetelőkben 5 10 körüli 2. Dielektromos / Abszorpciós arány = 60sec R / 30 sec R A jó érték 1,25 feletti Ellenállásmérések összeállítása. A mérések összeállításánál ügyelni kell arra, hogy a szigetelt vezetékek mindig a levegőben haladjanak és sehol se érhessenek egymáshoz, mert ezek a pontszerű érintkezési helyek is párhuzamosan kapcsolódhatnak a mérendő objektummal. 2

3 Mivel a mérések során viszonylag nagy feszültségek esetén is csak kis áramok folynak, nagy jelentősége van az egyes feszültség alatt álló részek, vezetékek szórt kapacitásainak. Ezért igen gondosan kell árnyékolni a mérőműszer előtti, feszültség alatt álló részeket, mert a környezetben való kis mozgások is szórt kapacitások változásával járnak és - figyelembe véve a körben folyó áram nagyságát - az ezzel előidézett töltőáram befolyásolhatja a mérési eredményeket, ill. megnehezíti a műszerek leolvasását. A táplálófeszültség csak igen sima egyenfeszültség lehet. Már kismértékű (1%-on belüli) változások is jelentős eltéréseket okozhatnak. A fellépő kapacitív áram: dq d( CU ) dc I c = = = U + dt dt dt Azaz akár a környezet kapacitásának változása (pl. ε változása) akár a mérőfeszültség ingadozása jelentősen megzavarhatják a mérési eredményeket. (A kapacitív áram természetesen majdnem mindig elhanyagolhatóan kicsi, de jó szigetelők esetén a mérőáram is csak néhány pa) Fontos még, hogy a méréskor kis ellenállású földelővezetéket alkalmazzunk és valamennyi objektum földelését egy helyről végezzük. Ezzel elkerülhetjük, hogy földelővezetékből hurok alakuljon ki, amiben olyan feszültség indukálódhat, ami a különböző berendezések földelt pontjainak potenciálját egymáshoz képest eltolja. du dt C Fajlagos térfogati ellenálláson az 1 cm élhosszúságú kocka két szemben fekvő lapja között mérhető ellenállást értjük, ha áram csak az anyag belsejében folyik, és a tér homogén. A definícióban említett feltételeket ún. védőgyűrűs elektródelrendezés segítségével lehet biztosítani. A 2. ábra Védőgyűrűs elektróda a fajlagos ellenállás mérésére lehet biztosítani. védőgyűrű szerepe az, hogy a felületen és a tér inhomogén részén átfolyó áramot a műszer megkerülésével vezesse el. Nagyon fontos, hogy az elektródok egész felületükkel tökéletesen felfeküdjenek a szigetelőanyagra. A tökéletlen fölfekvés következtében ui. egyrészt a felület nagysága határozatlan lesz, másrészt diszkrét érintkezési helyek esetén a tér elveszti homogenitását. A minél tökéletesebb érintkezést esetenként higanyelektródokkal, fémbeszórással stb., A szigetelési ellenállást jelentősen befolyásolják a mérési körülmények (hőmérséklet, a levegő páratartalma stb.), ezért csak olyan ellenállásértékeket szabad mértékadónak tekinteni, aminél ezek tisztázottak. 3

4 A felületi ellenállás elsősorban áramköri modulok hordozóinál fontos adat, hiszen ezeken a vezetőpályák között esetleg csak 0,1mm szigetelőcsík marad, sőt hibrid IC-kben még kevesebb. Ennek a vékony sávnak kell a megfelelő szigetelést biztosítani. A felületi ellenállás nem egyértelmű anyagi jellemző, ui. semmilyen elektródelrendezéssel nem tudjuk kiküszöbölni, hogy a felületen kívül az anyag belsejében is folyjék áram. A felületi ellenállásra igen nagy hatással vannak a külső tényezők. Erősen függ az anyag hőmérsékletétől, a felület állapotától, tisztaságától, a környező levegő nedvességtartalmától. Ezért csak gondosan megtisztított, szárított felületen lehet mérni, a levegő 65 ± 5% relatív nedvességtartalma mellett. A szabvány szerint felületi ellenálláson a szigetelőanyagra fektetett 2 db 100 mm hosszúságú, egymástól 10 mm távolságra levő párhuzamos elektród között mért ellenállásértéket értjük. A gyakorlaton, hogy a mért ellenállásunk kisebb legyen, egymáshoz közelebbi és hosszabb elektródcsíkokon mérünk. (A 3. ábrához hasonló mintákat használunk, a fekete csík az elektród, fehér a szigetelő felülete. A könnyebb kezelés érdekében a szigetelőcsíkot szerpentin alakra feltekertük.) Ebből az un. négyzetes ellenállást számíthatjuk. (Belátható, hogy egy, a felületen kijelölt négyzet ellenállása független a négyzet nagyságától, feltéve, hogy a vezető réteg vastagsága állandó.) A rajz szerinti elektródokkal tulajdonképpen n db párhuzamosan kapcsolt négyzet ellenállását mérjük, ahol n = l/d Veszteségi tényező és permittivitás vizsgálata Váltakozófeszültség rákapcsolása esetén a kialakuló térerősség hatására a töltéshordozók elmozdulnak, vándorlásba kezdenek. A szigetelőanyagban váltakozófeszültségen is létrejön a vezetés valamint a polarizáció. Egy-egy félperiódus alatt a vezetés és a polarizáció is olyan mértékig alakulhat ki, amire az adott idő alatt lehetőség van. Mind a vezetés, mind a polarizáció energiát fogyaszt, ezáltal a szigetelésben veszteség keletkezik. Definíció szerint tgδ veszteségi tényező (más néven D: disszipációs faktor) a hatásos és a meddő áram-komponensek hányadosa. Fizikailag a kondenzátor feltöltése majd kisütése során a villamos energia egy része hővé alakul, ennek jellemzésére alkalmas a veszteségi tényező. A veszteségi teljesítmény P = U I tgδ = U ω C ε tgδ 2 v c 0 Ahol C 0 az eszköz geometriai kapacitása. Ebben az összefüggésben szétválasztható az egyenlet az anyagi minőségtől független (U 2 ω C 0 ), és egy attól függő részre (ε tgδ). 3. ábra Vezetőhálózat a felületi ellenállás méréséhez 4. ábra A veszteségi szög 4

5 A veszteségi tényezőt jelentősen befolyásoló tényezők közül a frekvencia, és a hőmérséklet hatását vizsgáljuk részletesebben. Mint ismert, a polarizációfajták kialakulásához jellegüktől függően különböző idő szükséges. A frekvencia növekedését tehát nem minden polarizáció tudja követni, hanem különböző frekvenciákon, egy-egy rezonanciához hasonló jelenség után már eltűnnek. Olyan anyagoknál, ahol a veszteség létrejöttében a polarizáció dominál, ez a jelenség a veszteségi tényező és a permittivitás változásában is tükröződik. 5. ábra A polarizáció frekvenciafüggése A veszteségi tényező vizsgálata felvilágosítást nyújthat a veszteségek eredetéről, a frekvencia függvényében végzett vizsgálatok képet adhatnak az anyagszerkezettel összefüggő kérdésekről, tehát a szigetelés állapotáról. Kerámia dielektrikumok A kerámia kondenzátorokban dielektrikumként döntően un. titanát kerámiákat használnak. Természetesen egyik fő alapanyag a TiO 2, de a különböző igények kielégítésére még néhány jellegzetes oxidot alkalmaznak. A kondenzátorokat alapanyagaik tulajdonságai miatt két fő csoportba oszthatjuk: Az I típus jellemzői: A II típus jellemzői: közepesen nagy relatív permittivitás ( ) kis veszteségi tényező (tgδ< , 1 MHzen mérve) hőmérsékletfüggése lineáris, a TK értéke +150 és között változik. fajlagos ellenállásuk nagyobb Ωcm-nél a fenti paraméterek nagy stabilitással rendelkeznek Ezek a kondenzátorok kiváló nagyfrekvenciás tulajdonságaik miatt elsősorban rezgőkörökben alkalmazhatók, kb. 100 Mhz frekvenciáig. A igen magas relatív permittivitás ( ) közepes veszteségi tényező (tg δ < ) a permittivitás jelentősen függ a hőmérséklettől, és a kapcsolat nem lineáris a fajlagos ellenállás nagyobb Ωcm-nél a névleges adatok körül jelentős szórás tapasztalható ( % tűrés is lehet) ε r függ a feszültségtől a kristály doménszerkezete miatt az anyagok ferroelektromos tulajdonságúak. Legismertebb képviselőik: BaTiO 3 (bárium- 5

6 polikristályos TiO 2 -nek kb. 110-es ε mellett ppm- es TK-ja van. Ha javítani akarunk a hőmérsékletfüggésen, általában MgO-t adagolunk hozzá, amelynek pozitív a TK-ja, de ezzel ε is lecsökken alá. titanát), SrTiO 3 (stroncium-titanát), PbZrO 3 (ólom-cirkonát). A BaTiO 3 permittivitásának hőmérsékletfüggéséből látszik, miért nem várható lineáris TK ezektől az anyagoktól. A permittivitás és a veszteségi tényező hőmérséklet-, frekvencia- és feszültségfüggése a két dielektrikum típusra vonatkozóan. 6

7 Ellenőrző kérdések Sorolja fel és értelmezze a szigetelőanyagok jellemző tulajdonságait. Hol van szerepe a felületi ellenállásnak, és milyen tényezők csökkenthetik az értékét? Mi a négyzetes ellenállás? Mi a polarizációs index, mi az eredete, mit tudhatunk meg belőle? Melyek a legfontosabb méréstechnikai szempontok a szigetelési ellenállás mérésekor? Mi a kapacitív áram, mi az eredete? Mi a permittivitás és a veszteség anyagszerkezeti oka? Milyen típusai vannak a dielektromos veszteségnek? Melyek a polarizáció alaptípusai? Mi a veszteségi teljesítmény, mitől függ? Jellemezze az I. és II. típusú kerámia dielektrikumokat villamos tulajdonságok és jellemző összetétel szerint! Mi a ferroelektromosság? 1/ Fajlagos ellenállás Mérési feladat A kapott minták műanyag lapok, NYHL hordozók, üveg-, kerámia lapok. Ezek közül 6 db ellenállásának mérése közvetlen leolvasású műszerrel, ebből ρ kiszámítása (a belső elektróda = 73,5mm, így minden itt mért mintánknál A = 42,43 cm 2 ) (1 táblázat 1 4 oszlop) 2/ Polarizációs index Az előző minták közül kiválasztanak kettőt, olyanokat, amelyeknél az 1 perces mérés során különböző volt az ellenállás-növekedés. Ezeknek 10 percig folyamatosan mérjük az ellenállását, grafikonon ábrázoljuk és kiszámítjuk a polarizációs indexet. 3/ Felületi ellenállás Üveghordozóra párologtatott vezetőhálózat és NYHL-re maratott rajzolaton. A két elektródra egy tűs mérőfejjel csatlakozunk. R -et számítjuk a geometriai arányok ismeretében. 4/Dielektromos állandó és veszteségi tényező az 1/ feladatban megmért mintákat használjuk. (1. táblázat, oszlop) Mérés 100 khz-es mérőhíddal. A műszerről közvetlenül leolvasható a kapacitás (C) és a veszteségi tényező (D). A relatív permittivitás kiszámítása: Elvileg Canyag ε rel = A mérőszonda elektródái közé C befogjuk a mintadarabot, C anyag -ot leolvassuk. A minta vastagságát a mérőfejen levő mikrométeren megjegyezzük és a levegő-kondenzátor (C levegő ) mérésnél ugyanoda állítjuk vissza. (További mérési tanácsok a műszerismertetőben.) A mérés során nem tudjuk kiküszöbölni a mérőfej saját kapacitását. Ezt egy párhuzamosan kapcsolt kondenzátornak tekintjük, és értékét ki kell vonnunk mindkét mért adatból (C anyag, C levegő ) levego 7

8 Mivel nagysága kicsit változik a vastagsággal, ezért értékét méréssel kell meghatároznunk, a következőképpen: Ismerve a geometriai adatokat, C levegő számítható is, és a mért adattal összehasonlítva, a kettő különbsége lesz a mérőfej aktuális kapacitása ( C korr ). Ezzel a korrekcióval már számítható a minta permittivitása: ε rel = C C anyag levego C C korr korr (A számított értékek a jegyzőkönyvi táblázat alatt megtalálhatók, ha az adott mintánk vastagsága épp két kerek érték között van, mérjük meg C levegő -t a legközelebbi kerek értéknél is és az itt kapott C korr -t használjuk.) 5/ Kerámia tárcsakondenzátor A kikészített kondenzátorok közül (korábbi hallgatói munkák) 2-3 db-nak megmérjük a kapacitását és veszteségi tényezőjét, számítjuk ε rel -ot. választhatóan: ugyanezen kondenzátorokon a/ ε rel és tgδ hőmérsékletfüggését b/ ε rel és tgδ frekvenciafüggését. A hőmérsékletfüggés mérése: a fűthető mintatartóban kb 100 o C ra melegítjük a kondenzátorokat, majd lehűlés közben (közel egyensúlyi állapotban) 10 fokonként mérjük a C-t és tgδ-t, számítjuk ε-t. (Ez a mérés jelenleg nem végezhető el.) A frekvenciafüggés mérése: a rendelkezésre álló műszer 100Hz-től 10 khz-ig képes dekádonként mérni. A kapacitás ezalatt gyakorlatilag állandó, veszteségi tényező változása általában így is jól látható. A rend kedvéért a képlet: C = ε 0 ε r A d 8

9 Jegyzőkönyv Szigetelőanyagok vizsgálata Mérést végezte: (név, neptun kód, laborcsoport Gyakorlatvezető: Mérés ideje: Érdemjegy: 1. és 4. feladat: dielektromos jellemzők minta neve d(mm) (vastagság) R(MΩ) ρ(ωm) C(pF) C lev mért C lev számított C korr ε rel D ( tgδ) A számításhoz használt összefüggések: (Az ismert adatokat, nagyságrendi átszámításokat helyettesítse be, az állandókat vonja össze, csak d -t (mm-ben) és R - t MΩ-ban) kelljen behelyettesíteni!) ρ = (Ωm) Tapasztalatok, az eredmények értékelése A C lev számított értékei: Vastagság mm 0,5 0,6 0,7 0,8 1,0 1,2 1,4 1,5 1,6 1,8 2,0 2,5 3,0 3,5 4 C számított pf , , ,4 19,2 15,4 12,8 11 9,6 3. feladat: Felületi ellenállás Minta neve l/d R mért MΩ R négyzet MΩ Tapasztalatok, az eredmények értékelése 9

10 2. feladat: Polarizációs index idő 10s 20s 30s 40s 50s 1p 2p 3p 4p 5p 6p 7p 8p 9p 10p R 1 R 2 1-es minta neve: polarizációs index PI 1 = 2-es minta neve: ellenállás PI 2 = idő (perc) 5/b feladat: Kerámia kondenzátorok: ε és tgδ frekvenciafüggése Minta neve Átmérő (mm) Vastagság (mm) Frekvencia C ε rel tgδ 0,1kHz 1kHz 10kHz 0,1kHz 1kHz 10kHz 10

11 Műszerek kezelése (Az alábbi műszerleírások megtalálhatók a mérőhelyen, a fotókat kinyomtatni nem szükséges) Megohmmeter IM 6 (Radiometer) Ezen mérjük a fajlagos ellenállást a védőgyűrűs elektródokkal. A mérés menete: 1. A minta csatlakoztatása az ábra szerinti helyekre 2. Az árnyékoló doboz fedelének feltétele 3. A méréshatárt a széles tartományra kapcsolva a jobb oldali (test voltage) kapcsolót lefele nyomva megállapítjuk a mintánk ellenállásának nagyságrendjét 4. A méréshatárt erre a nagyságrendre állítjuk és a test kapcsolót felkapcsolva megkezdjük a mérést, és az előírás szerinti időben leolvassuk az ellenállást 5. Ha a polarizáció miatt annyira megnő az ellenállás, hogy méréshatárt kell váltani, ezt megtehetjük a mérés megszakítása nélkül is 6. A minta lemérése után test kapcsolót középállásba kapcsoljuk, ekkor a mérőfeszültség már nincs a kimeneten, és csak ezután emeljük le az árnyékoló fedelét és cserélhetünk mintát A felületi ellenállást az MCP 2683 digitális szigetelési ellenállásmérőn mérjük tűs érintkezők segítségével. A műszer kezelése különösebb felkészülést nem igényel. A jobb összehasonlíthatóság érdekében a mintákat mérés előtt alkohollal mossuk le és szárítsuk meg. 11

12 Kapacitásmérők: A szigetelőanyag minták dielektromos jellemzőit az MCP CT 2817-es precíziós LCR mérőn határozzuk meg. A műszer bekapcsolás után azonnal mérőkész, és a C és a tgδ közvetlenül leolvasható. A mérés menete: 1. Bekapcsolás előtt szorítsuk össze a mérőszonda elektródjait, és ellenőrizzük, hogy a mirométeróra nullán van-e. Ha kell, állítsuk be. Nyissuk szét az elektródákat. 2. Csatlakoztassuk a mérőszondát a műszerhez 3. A mintát csúsztassuk az elektródok közé, és kíméletesen szorítsuk össze az elektródokat 4. Leolvassuk a kapacitást és a veszteségi tényezőt 5. Megjelöljük a szondán levő mikrométer állását, kilazítjuk a szorítócsavart, kivesszük a mintát és visszaállítjuk a szorítócsavart. Ezzel ugyanolyan vastag levegőkondenzátort állítottunk elő, mint az anyagvastagság volt. Az így leolvasott érték lesz a C lev. 6. Ha szükséges, az anyagvastagsághoz legközelebbi kerek értéknél újra lemérjük C lev értékét a C korr meghatározásához. RLC tűrésmérő híd Bruel & Kjaer Ezen mérjük a kerámia kondenzátorok kapacitását, veszteségi tényezőjét. A mérés elve: a műszer egy mérőhíd, három frekvencián működik, használható kapacitás mellett ellenállás és induktivitás mérésére is. Külső összehasonlító dekád szükséges hozzá (jelen esetben a kis kapacitások miatt egy precíziós forgókondenzátort használunk). A műszert eredetileg gyártósor végi kézi sorozatmérésre tervezték. Beállítható az alkatrész tervezett tűréshatára (100%, 20%, 5%, 1%.0,2%), és egy gyors csatlakoztatással a három lámpa egyike jelzi, hogy az eszköz belül van-e a határon, nagyobb vagy kisebb a megengedett értéknél. Mi a forgókondenzátorral pontosan kiegyenlítjük a hidat, így tudjuk meg a mérendő kapacitást, ezután a jobb alsó kapcsoló lenyomásával megmérjük a veszteségi tényezőt, amely az alsó skáláról olvasható. 12

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Szigetelés- vizsgálat

Szigetelés- vizsgálat Szigetelésvizsgálat 1 Szigetelés vizsgálata DC vizsgálat elmélet Vizsgáló feszültségszintek Diagnosztikai eljárások 2 Elmélet 3 Mit okoz a szigetelés meghibásodása? Öt alaptényező ami a szigetelés letöréséhez

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

6 az 1-ben digitális multiméter AX-190A. Használati útmutató

6 az 1-ben digitális multiméter AX-190A. Használati útmutató 6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

1. Az előlap bemutatása

1. Az előlap bemutatása AX-T2200 1. Az előlap bemutatása 1, 2, 3, 4. Feszültségválasztó kapcsolók (AC750V/500V/250V/1000V) 5. ellenállás tartomány kiválasztása (RANGE) 6. Főkapcsoló: auto-lock főkapcsoló (POWER) 7. Magasfeszültség

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE

A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE MTA-MMSZ Kft. Kalibráló Laboratóriuma A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE 1. Egyenfeszültség-mérés 1.1 Egyenfeszültség-mérők 0...3 mv 1,5 µv 1.2 Egyenfeszültségű jelforrások - kalibrátorok,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben

FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata

FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Nagyfeszültségű Laboratórium FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Cselkó Richárd Dr. Berta István, Dr. Kiss István, Dr. Németh Bálint,

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft.

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft. Újdonságok XII. Szigetelésdiagnosztikai Konferencia Gárdony, 2012. X. 10-12. Bessenyei Gábor Maxicont Kft. új MIT 5kV és 10kV-os szigetelésvizsgáló család MIT515 jellemzői (belépő modell): IR, IR(t),

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

a NAT /2006 számú akkreditálási okirathoz

a NAT /2006 számú akkreditálási okirathoz Nemzeti Akkreditáló Testület MELLÉKLET a számú akkreditálási okirathoz Az AEROPLEX Közép-Európai Légijármû Mûszaki Központ Kft. tevékenységi területe: nagyfrekvenciás paraméterek (frekvencia, teljesítmény,

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 4100 Digitális Földelési Ellenállás Mérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. Műszaki jellemzők... 2 4. Mérési tulajdonságok... 3 5. Előlap és

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 990B Digitális SMD Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági megjegyzések... 2 3. A készülék felépítése, kezelőszervek... 2 4. Műszaki jellemzők... 3 5. Mérési tulajdonságok...

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-2-0294/2015 nyilvántartási számú akkreditált státuszhoz A C+D AUTOMATIKA Kft. Kalibráló laboratórium (1191 Budapest, Földváry u. 2.) akkreditált területe

Részletesebben

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy.

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy. Az alábbiakban néhány példát mutatunk a CMR számítására. A példák egyrészt tanulságosak, mert a zavarelhárítással kapcsolatban fontos, általános következtetések vonhatók le belőlük, másrészt útmutatásul

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 5101A, 5102A, 5103A, 5104A, 5105A Digitális szigetelési ellenállásmérő TARTALOMJEGYZÉK ÁLTALÁNOS INFORMÁCIÓK...3 BIZTONSÁGI FIGYELMEZTETÉSEK... 3 FUNKCIÓK... 3 MŰSZAKI JELLEMZŐK...

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

DIGITÁLIS MULTIMÉTER AUTOMATIKUS MÉRÉSHATÁR TARTOMÁNY KIVÁLASZTÁSSAL AX-201

DIGITÁLIS MULTIMÉTER AUTOMATIKUS MÉRÉSHATÁR TARTOMÁNY KIVÁLASZTÁSSAL AX-201 DIGITÁLIS MULTIMÉTER AUTOMATIKUS MÉRÉSHATÁR TARTOMÁNY KIVÁLASZTÁSSAL AX-201 HASZNÁLATI ÚTMUTATÓ KÉRJÜK FIGYELMESEN OLVASSA EL A JELEN HASZNÁLATI ÚTMUTATÓT A KÉSZÜLÉK HASZNÁLATA ELŐTT JÓTÁLLÁS Garantáljuk,

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 6688F Digitális Szigetelési Ellenállás Mérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. Műszaki jellemzők... 2 4. Előlap és kezelőszervek... 3 5. Mérési

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés Mérnöki Szolgáltató Kft. ELEKTROSZTATIKUS feltöltődés robbanás veszélyes térben ESC- ESD Dr. Fodor István EOS E M ESC C ESD ESC AKTÍV PASSZÍV Anyag Tűz- és Reprográfia Mechanikai szeparálás robbanásveszély

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 990A Digitális SMD Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági megjegyzések... 2 3. A készülék felépítése, kezelőszervek... 2 5. Mérési tulajdonságok... 4 6. Mérési

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

KTV koaxiális kábelek mérése

KTV koaxiális kábelek mérése KTV koaxiális kábelek mérése Összeállította: Mészáros István tanszéki mérnök 1 Koaxiális kábelek Ez a széles körben használt átviteli közeg egy tömör belső érből áll, amely körül szigetelő van. A szigetelőt

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

E27 laboratóriumi mérés Fizikai Tanszék

E27 laboratóriumi mérés Fizikai Tanszék E27 laboratóriumi mérés Fizikai Tanszék Soros rezgőkör rezonancia-görbéjének felvétele 1. A mérés célja, elve Váltóáramú áramkörök esetén kondenzátort, illetve tekercset iktatva a körbe az abban folyó

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Roncsolásmentes részleges kisülés diagnosztika

Roncsolásmentes részleges kisülés diagnosztika Roncsolásmentes részleges kisülés diagnosztika Tevékenységeink 1. Roncsolásmentes helyszíni diagnosztikai vizsgálatok Generátorok Transzformátorok Túlfeszültséglevezetők Mérőváltók Kábelek (olajpapír és

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Az Ovit ZRt. által végzett egyéb diagnosztikai és állapotfelmérési vizsgálatok

Az Ovit ZRt. által végzett egyéb diagnosztikai és állapotfelmérési vizsgálatok Az Ovit ZRt. által végzett egyéb diagnosztikai és állapotfelmérési vizsgálatok Nagy Gábor Ovit ZRt. Központi Szakszolgálati Üzem Egerszalók, 2008. április 24. Hőmérsékletmérés, hőmérsékletmérő eszközök

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

E1 laboratóriumi mérés Fizikai Tanszék

E1 laboratóriumi mérés Fizikai Tanszék E1 laboratóriumi mérés Fizikai Tanszék Konduktív ellenállás és fémszálas izzó feszültségáram karakterisztikája 1. A mérés célja, elve Az izzólámpa fajlagos ellenállása működés közben nagy mértékben függ

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz Nemzeti kkreditáló Testület RÉSZLETEZŐ OKIRT a NT--016/ nyilvántartási sú akkreditált státuszhoz z EROPLEX Közép-Európai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Komplex igénybevétel, komplex szigetelésdiagnosztika a Műegyetemen

Komplex igénybevétel, komplex szigetelésdiagnosztika a Műegyetemen Budapesti Műszaki és Gazdaságtudományi Egyetem Komplex igénybevétel, komplex szigetelésdiagnosztika a Műegyetemen Tamus Ádám Németh Bálint 2007. április 25. Az előadás fő témái Szigetelésdiagnosztika Szigetelésdiagnosztika

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-2-0263/2015 nyilvántartási számú akkreditált státuszhoz A COMMED TRADE Kft. Kalibráló Laboratórium (1074 Budapest, Vörösmarty u. 3. A. ép.) akkreditált

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató A biztonsággal kapcsolatos információk Model AX-C850 Használati útmutató Áramütés vagy testi sérülések elkerülése érdekében: Sosem csatlakoztasson két bemeneti csatlakozó aljzatra vagy tetszőleges bemeneti

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Váltakozó áramú rendszerek 4.zh

Váltakozó áramú rendszerek 4.zh Váltakozó áramú rendszerek 4.zh 1.) Milyen célt szolgál a szigeteléstechnikában a biztonsági tényez ő? Szigetelésekben a szigetelőanyagokat csak a tényleges villamos szilárdságuknál, teherbírásuknál kisebb

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

12. Zavarjelek a mérőkörben

12. Zavarjelek a mérőkörben avarjelek a mérőkörben 1 12. avarjelek a mérőkörben avarjel (zaj): hasznos információt nem tartalmazó, mérési hibát okozó jel. Típusai: a.) időbeli lefolyás alapján: - egyenfeszültségű, - váltakozó feszültségű

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben