Department of Software Engineering

Hasonló dokumentumok
Department of Software Engineering

Department of Software Engineering

2012 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

2016 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Számítógép hálózatok gyakorlat

Számítógép hálózatok 3. gyakorlat Packet Tracer alapok M2M Statusreport 1

2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Vezetéknélküli technológia

WLAN router telepítési segédlete

Vezeték nélküli hálózatok. Készítette: Károly Gabriella

WLAN router telepítési segédlete

WLAN router telepítési segédlete

WLAN router telepítési segédlete

7. Feszítőfa protokoll Spanning-tree protocol

1. Kapcsolók konfigurálása

Gyors telepítési útmutató AC1200 Gigabit kétsávos WLAN hatótávnövelő

Wi-Fi alapok. Speciális hálózati technológiák. Date


MAC címek (fizikai címek)

Használati útmutató a Székács Elemér Szakközépiskola WLAN hálózatához

WS 2013 elődöntő ICND 1+ teszt

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004

III. előadás. Kovács Róbert

Cisco Teszt. Question 2 Az alábbiak közül melyek vezeték nélküli hitelesítési módok? (3 helyes válasz)

Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat

Netis Vezetékes ADSL2+, N Modem Router Gyors Telepítési Útmutató

Magyar Gyors felhasználói útmutató A GW-7100PCI driver telepítése Windows 98, ME, 2000 és XP operációs rendszerek alatt

Hálózati ismeret I. c. tárgyhoz Szerkesztette: Majsa Rebeka

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Megjegyzés vezeték nélküli LAN felhasználóknak

Tájékoztató. Használható segédeszköz: -

IP: /24 Jelszó: Titok123 SSID: Otthoni Titkosítás: WPA-PSK TKIP Kulcs: Titkos1234. Hálózati ismeretek

Gyakorlati vizsgatevékenység

Wi-Fi Direct útmutató

Bevezető... 3 Hálózati referenciamodellek, réteges tervezés... 3 Hálózati alapfogalmak... 4 Fizikai réteg... 6 Vezeték nélküli technológia...

Gyors üzembe helyezési kézikönyv

2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Újdonságok Nexus Platformon

A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.

Vezeték nélküli eszközök (csak egyes típusokon) Felhasználói útmutató

Gyors Telepítési Útmutató N típusú, Vezeték Nélküli, ADSL2+ Modem DL-4305, DL-4305D

Felhasználói kézikönyv

Department of Software Engineering

Gyors Elindulási Útmutató

WorldSkills HU 2008 döntő Packet Tracer

IP alapú kommunikáció. 3. Előadás Switchek 3 Kovács Ákos

NWA1100. Rövid kezelési útmutató g Üzleti WLAN access pont ALAPÉRTELMEZETT BEJELENTKEZÉSI ADATOK.

A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.

Department of Software Engineering

3.5.2 Laborgyakorlat: IP címek és a hálózati kommunikáció

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN)

Wi-Fi Direct útmutató

Vezeték nélküli hálózat

Az RSVP szolgáltatást az R1 és R3 routereken fogjuk engedélyezni.

T-Mobile Communication Center Készülékek telepítése a TMCC segítségével

Hálózati alapismeretek

Netis vezeték nélküli, N típusú Router Gyors Telepítési Útmutató

FELHASZNÁLÓI KÉZIKÖNYV. WF-2322 Vezetéknélküli Hozzéférési Pont

ROUTER beállítás otthon

Számítógép hálózatok gyakorlat

Gyors telepítési kézikönyv

Hálózati alapismeretek

A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja.

Thomson Speedtouch 780WL

2012 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Az EV3. Az EV3 technológia csatlakoztatása. LEGO.com/mindstorms. Az EV3 Brick (Tégla) csatlakoztatása a számítógéphez

Az alábbi útmutató ahhoz nyújt segítséget, hogy hogyan üzemelje be a TP-Link TL-WR740N eszközt.

EDUROAM WI-FI beállítása

G Data MasterAdmin 9 0 _ 09 _ _ # r_ e p a P ch e T 1

1. Rendszerkövetelmények

A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.

A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.

Informatikai hálózattelepítő és - Informatikai rendszergazda

3. Kapcsolás vállalati hálózatokban

Külső eszközök. Felhasználói útmutató

Netis vezeték nélküli, N típusú USB adapter

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

IP alapú komunikáció. 2. Előadás - Switchek 2 Kovács Ákos

A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze

Netis 150Mbps vezeték nélküli, N típusú Hordozható Router Gyors Telepítési Útmutató

Az alábbi állítások közül melyek a forgalomirányító feladatai és előnyei?

EW-7416APn v2 & EW-7415PDn

Oktatás. WiFi hálózati kapcsolat beállítása Windows XP és Windows 7-es számítógépeken. SZTE Egyetemi Számítóközpont

Köszönjük, hogy a MELICONI termékét választotta!

Számítógépes Hálózatok és Internet Eszközök

Kommunikációs rendszerek programozása. Switch-ek

Kameleon Light Bootloader használati útmutató

(1) 10/100/1000Base-T auto-sensing Ethernet port (2) 1000Base-X SFP port (3) Konzol port (4) Port LED-ek (5) Power LED (Power)

DI-624+ AirPlus G+ 2,4GHz

Vezeték nélküli eszközök (csak egyes típusoknál) Felhasználói útmutató

Számítógép-hálózat fogalma (Network)

M2M Pro3 450MHz LTE Telepítési útmutató - kivonat

Roger UT-2. Kommunikációs interfész V3.0

2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

Internetkonfigurációs követelmények. A számítógép konfigurálása. Beállítások Windows XP alatt

DWL-700AP. Előfeltételek. Ellenőrizze a doboz tartalmát

Termék azonosító (ID) címke

Vezeték nélküli eszközök (csak egyes típusoknál) Felhasználói útmutató

2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED

AirPrint útmutató. 0 verzió HUN

Átírás:

Ősz 2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 11. gyakorlat Feszítőfa protokoll (STP) Vezetéknélküli hálózatok (WLAN) Bordé Sándor S z e g e d i T u d o m á n y e g y e t e m

Tartalomjegyzék Bevezetés... 4 Redundáns hálózat... 4 Feszítőfa protokoll... 5 Gyökérponti híd... 5 Választási folyamat... 6 Gyökérponti port (root)... 7 Kijelölt port (designated)... 7 Lezárt port (closed)... 8 STP tervezése... 8 Feszítőfa egy hierarchikus hálózatban... 9 Az STP továbbfejlesztései... 9 Portfast... 9 PVST... 9 Utasítások... 10 STP konfigurálása Packet Tracerben... 11 A vezeték nélküli technológia... 13 Áttekintés... 13 Infravörös... 13 Rádiófrekvencia... 14 Előnyök és korlátok... 14 A vezeték nélküli hálózatok típusai és kötöttségei... 14 WPAN... 15 WLAN... 15 WWAN... 15 Vezeték nélküli helyi hálózatok (WLAN)... 15 Szabványok... 15 WLAN összetevői... 15 Hozzáférési pont (AP)... 16 Vezeték nélküli kliensek (STA)... 16 2012-2017 Bordé Sándor 2

Vezeték nélküli híd... 16 Antennák... 16 SSID... 16 WLAN kiépítési módok... 16 Ad-hoc... 16 Infrastruktúra mód... 17 Csatornák... 17 A hálózat felépítése... 18 Hostok konfigurálása... 18 Hozzáférési pont konfigurálása... 19 Laptopok konfigurálása... 20 Modul beépítése... 20 Konfiguráció... 21 Videós segédletek... 22 STP... 22 WiFi... 22 2012-2017 Bordé Sándor 3

Bevezetés Az előző órán megtanultuk, hogyan lehet egy jól strukturált helyi hálózatot megtervezni, felépíteni és konfigurálni. Azonban bármikor előfordulhat, hogy egy kapcsolat meghibásodik, ilyenkor minél gyorsabban egy másik kapcsolatnak kell átvenni a helyét. Ez redundáns kapcsolatok kialakításával érhető el legkönnyebben, ekkor viszont újabb problémák merülnek fel. A jegyzet első része az STP (Spanning-Tree Protocol) alapjairól fog szólni, amely a fent említett kihívásokat hivatott megoldani. Redundáns hálózat Napjainkban egyre nagyobb mértékben támaszkodunk a számítógépes hálózatokra. A vállalatok és a felhasználók elvárják az állandó rendelkezésre állást. Ehhez olyan hálózati topológiát kell terveznünk, amely egy-egy eszköz meghibásodása esetén továbbra is működőképes marad. A hibatűrés redundanciával érhető el legkönnyebben, azaz a nagy megbízhatóságú hálózatokba a szükségesnél több útvonalat és készüléket helyezünk el. Egy így kialakított topológiában egyetlen elem meghibásodása nem okoz teljes körű leállást. Amint egy eszköz vagy vonal meghibásodik egy másik eszköz vagy útvonal veszi át a helyét. 1. ábra Egy STP nélküli hálózat A redundáns kapcsolatok viszont felvetnek egy újabb kérdést: irányítási hurkok keletkezhetnek a hálózatban, amelyek szórási viharokhoz és így végső soron a szolgáltatások leállásához vezethetnek. A broadcast kereteket a switchek az öszszes portjukon kiküldik, (kivéve amelyen beérkezett). A redundáns vonalakon keresztül a switchek újra és újra megkapják egymástól a szórási üzeneteket. Ezt a jelenséget szórási viharnak (broadcast storm) nevezzük, és mindaddig folytatódik, amíg egy eszköz ki nem száll a hálózat működéséből. A switchek és a végponti esz- 2012-2017 Bordé Sándor 4

közök egyre terheltebbé válnak a szórásos keretek feldolgozása miatt. A túlterheltség miatt az eszközök nem lesznek képesek a felhasználói adatforgalom továbbítására. Ezért a hálózat látszólag leáll vagy drasztikusan lelassul. Feszítőfa protokoll Az irányítási hurkok azért jönnek létre, mert a redundáns kapcsolók nem foglalkoznak egymás jelenlétével. Ennek kiküszöbölésére fejlesztették ki a feszítőfa protokollt. Segítségével ki tudjuk használni a redundáns kapcsolatok előnyeit azok hátrányai nélkül. A STP célja egyrészt egy hurokmentes topológia kialakítása, másrészt pedig szakadás esetén a redundáns tartalék kapcsolat mielőbbi felélesztése. Az STP egy minimális konfigurálást igénylő, lényegében önállóan működő protokoll. Azok a switchek - melyeken engedélyezett az STP - az első bekapcsoláskor ellenőrzik a kapcsolt hálózatok esetleges hurkait. Hurok észlelésekor letiltják az érintett portok valamelyikét, míg a többi porton aktív marad a kerettovábbítás. Gyökérponti híd 2. ábra: Egy hálózat STP-vel A problémát az okozta, hogy két hálózati szegmens között kettő vagy több fizikai útvonal is létezik. Az STP feladata, hogy egy időben csak egy útvonal legyen használatban. Az STP a hálózat összes kapcsolóját egy faszerkezetű, kiterjesztett csillag topológiájú hálózattal kapcsolja össze. Ezek a kapcsolók folyamatosan ellenőrzik a hálózatot annak érdekében, hogy ne alakulhassanak ki hurkok és a portok megfelelően működjenek. A topológia csúcsán az ún. gyökérponti híd (root bridge) áll. Hogy melyik switch lesz az, egy választási folyamat során dől el. Minden hálózatban csak egy gyökérponti híd létezik, melyet a kapcsolók a hídazonosító (bridge ID, BID) alapján vá- 2012-2017 Bordé Sándor 5

lasztanak ki. Minél kisebb a hídazonosító, annál magasabb a prioritás, tehát a gyökérponti híd a legkisebb hídazonosítóval rendelkező kapcsoló lesz. A hídazonosító alapértelmezett értéke 32,768. Ha két vagy több kapcsoló hídazonosítója azonos, akkor a legkisebb MAC-című kapcsoló lesz a root bridge. Választási folyamat A switchek egymással BPDU (Bridge Protocol Data Unit) keretekkel kommunikálnak, melyekkel feltérképezik a hálózatot és megtalálják a root bridge felé vezető összes útvonalat. 3. ábra: a BPDU keret felépítése A folyamat elején minden eszköz úgy veszi, hogy ő a root bridge és elkezdi hirdetni saját magát a hálózaton. Ha érkezik hozzá egy BPDU, akkor megvizsgálja, hogy a kapott vagy az általa hirdetett root id a jobb (azaz kisebb). Ha a kapott jobb, akkor elfogadja azt és többé nem hirdeti a sajátját. Egy idő után mindenki értesülni fog arról, hogy ki lett a gyökérponti híd. Miután megtörtént a választás, a gyökérponti híd veszi át az irányítást és ő vezényli a továbbiakat. A célja az lesz, hogy őt mindenki a legrövidebb úton érje el. 4. ábra: költségek a hálózatban Ehhez először kiszámítja minden switchhez minden odavezető útvonal költségét. Egy útvonal költsége az útvonalat alkotó szakaszok költségeinek összege (4. ábra). Egy szakasz költségét szabványban lefektetett értékek határozzák meg, ami 2012-2017 Bordé Sándor 6

összefüggésben áll az átviteli közeg sávszélességével (Ezek a költségek az 1. táblázatban láthatók). Ezek alapján minden switch eldönti, hogy ő melyik útvonalon keresztül jut el a root bridgehez, ez lesz a root port (gyökérponti port). A gyökérponti port kiválasztása is egy többlépcsős döntési folyamat eredménye lesz: 1. Az a port lesz a gyökérponti port, ami a root felé vezető legrövidebb út felé néz. 2. Ha több azonos költségű út is van, akkor ezek közül azt választja, amelyik szomszédjának kisebb a hídazonosítója (Bridge ID) 3. Ha több olyan útvonal is van, amelyik azonos költségű és azonos a BID, akkor a legkisebb port ID-t választja. 1. táblázat Költségek Sávszélesség (Mbps) 4 10 16 45 100 155 622 1000 10000 STP költség 250 100 62 39 19 14 6 4 2 A szükséges portok lezárása után kialakul a hálózat feszítőfája. Ez egészen addig állandó marad, amíg valami változás nem történik a hálózatban (meghibásodás vagy eszköz cseréje). Ekkor a gyökérponti híd felel azért, hogy újra optimális útvonalak legyenek aktívak. Az STP fa kialakulása után minden switchnek háromfajta portja lesz: gyökérponti port, kijelölt port és lezárt port. Gyökérponti port (root) Egy kapcsoló azon portja amelyből a legkisebb költségű útvonal vezet a gyökérponti kapcsolóhoz. A kapcsolók a gyökérponti switchhez vezető útvonal összeköttetéseinek eredő költségértéke alapján határozzák meg a legkisebb költségű útvonalat. Kijelölt port (designated) Egy hálózatszegmens azon portja amelyen át az adott szegmens és gyökérponti híd közötti adatforgalom halad, de nem tartozik a legkisebb költségű útvonalhoz. 2012-2017 Bordé Sándor 7

Lezárt port (closed) Olyan port, mely nem továbbít adatforgalmat. STP tervezése 5.ábra: 3 különböző port típus Egy helyi hálózatban a legkisebb hídazonosítóval rendelkező switch lesz a gyökérponti híd, egyenlőség esetén pedig a legalacsonyabb MAC cím dönt. Azonban egy hálózatban kezdetben minden switchnek megegyezik a bridge IDja, tehát egy automatikus elrendezés lép életbe. Ez azonban nem biztos (sőt, nagyon valószínű), hogy a legoptimálisabb kialakítást jelenti. Ezért az STP konfigurálása előtt a hálózati rendszergazda elemzi és teszteli a hálózatot, hogy megtalálja a legalkalmasabb switchet a gyökérponti híd szerepére. Általában egy központi elhelyezkedésű kapcsoló alkalmas leginkább a gyökérponti híd szerepére. A hálózat szélén elhelyezkedő gyökérponti híd ugyanis azt eredményezheti, hogy az adatok hosszabb útvonalon jutnak el a célállomásig, mintha a gyökérponti híd központi elhelyezkedésű lenne. Mivel a választási folyamat automatikus, ezért csak úgy tudjuk befolyásolni a választás eredményét, hogy a kívánt switchnek alacsony hídprioritást állítunk be. 6. ábra Prioritások 2012-2017 Bordé Sándor 8

Feszítőfa egy hierarchikus hálózatban A gyökérponti híd, a gyökér-, a kijelölt- és a lezárt portok megválasztása után a gyökérponti híd két másodpercenként BPDU csomagokat küld a hálózaton keresztül minden kapcsolónak. Az STP folyamatosan figyeli ezeket a BPDUkat az összeköttetés hibáinak és újabb hurkok keletkezésének elkerülése érdekében. Ha egy összeköttetés meghibásodik, akkor az STP újból elvégzi a számításokat. Ennek eredményeként: Bizonyos lezárt portokat továbbító módba helyez Bizonyos továbbító portokat lezárt állapotba helyez Új feszítőfát készít a hurokmentes hálózat fenntartása érdekében Az STP nem azonnal reagál a változásokra. Ha egy összeköttetés meghibásodik, akkor az STP észreveszi a hibát és kiszámolja a legjobb útvonalakat a hálózaton. Ez a számítás akár 30-50 másodpercet is igénybe vehet. Ezen idő alatt nincs adatforgalom az újraszámításban érintett portokon. Bizonyos felhasználói alkalmazások esetében ez várakozás időtúllépést eredményezhet, ami a termelékenység és ezzel együtt a bevétel csökkenését eredményezheti. Gyakori STP újraszámolások negatív hatást gyakorolnak a hálózat működésére. Az STP továbbfejlesztései Portfast Az STP PortFast egy hozzáférési port számára lehetővé teszi, hogy a figyelő és tanuló állapotok kihagyásával rögtön továbbító módba kerüljön. A csupán egyetlen állomás vagy kiszolgáló kapcsolódását biztosító hozzáférési portokon beállított PortFast móddal elérhető, hogy ezen eszközök még az STP konvergálása előtt csatlakozzanak a hálózathoz. PVST A PVST segítségével egy kapcsolón különböző STP példányokat hozhatunk létre minden egyes VLANnak. A kapcsolók azonosítójához hozzáadódik egy VLAN ID, amely lehetővé teszi, hogy minden VLANnak saját Root Bridge, root portjai és egyéb STP eszközei legyenek. A fejlesztéssel optimalizálhatjuk az adatforgalmat és terhelés eloszlást valósíthatunk meg a kapcsolók STP működése között. 2012-2017 Bordé Sándor 9

Utasítások A kialakult feszítőfa tulajdonságainak listázása: Switch# show spanning-tree [detail summary vlan x ] Üzemmód beállítása (normál / gyors) Switch(config)#spanning-tree mode pvst rapid-pvst Hídprioritás beállítása (az érték 0-61440 között lehet, 4096-os lépésekkel): Switch(config)#spanning-tree vlan 1 priority 4096 Vagy: Switch(config)#spanning-tree vlan 1 root [ primary secondary ] Hozzáférési portok gyorstovábbító üzemmódba állítása: Switch(config)#spanning-tree portfast default interfészenként: Switch(config-if)#spanning-tree portfast 2012-2017 Bordé Sándor 10

STP konfigurálása Packet Tracerben Építsük fel a következő hálózatot, majd vizsgáljuk meg: Láthatjuk, hogy a port színei különböző színnel villognak. A kapcsoló elindítása után minden port végighalad a következő négy állapot sorozatán: lezárt, figyelő, tanuló és továbbító. Az ötödik, letiltott állapot jelzi, hogy a rendszergazda a portot letiltotta. Megfigyelhető, hogy a Switch0 és a Switch2 között a Switch0 mind a két portja Lezáró állapotban van: borostyán sárgán világít, az adatkereteket eldobja. A Switch1 összes portja továbbító: zölden villogó, továbbítja a kereteket. Valószínű, hogy a Switch1 lett a gyökér híd (megj: otthoni kialakítás során nem biztos, hogy ugyanez a végeredmény várható), ellenőrizzük le. Nyissuk meg a Switch1 konfigurációs ablakát, majd váltsunk át a CLI fülre. Switch>enable Switch#show spanning-tree A parancs kiadása után láthatjuk a költségeket, ami mind a 4 interface esetében 19 (a 100Mbps kapcsolat miatt). Megfigyelhetjük mindhárom VLAN-hoz tartozó prioritásokat (VLAN10, VLAN20, illetve VLAN1 a switchek közötti trunk miatt) valamint azt, hogy ez a gyökérponti híd: This bridge is the root. Mivel ez a gyökérponti híd, az összes csomag keresztülhalad ezen a switchen. Változtassuk meg, hogy a Switch0 legyen a gyökér híd. Lépjünk a Switch0 konfigurációs ablakába, majd váltsunk át a CLI fülre: 2012-2017 Bordé Sándor 11

Switch>enable Switch#configure terminal Switch(config)#spanning-tree vlan 1,10,20 priority 4096 Switch(config)#end Beállítottuk mind a 3 VLAN-hoz tartozó prioritást a legkisebbre, az STP újból elvégzi a számításokat, majd a központi híd a Switch0 lesz. Végeredmény: 2012-2017 Bordé Sándor 12

A vezeték nélküli technológia A jegyzet második részében a vezetéknélküli összeköttetésről lesz szó. Először egy rövid elméleti áttekintő a vezetéknélküli technológiákról, majd megnézzük ennek megvalósítását Packet Tracerben. Áttekintés A vezeték nélküli eszközök elektromágneses hullámokat használnak az egymással történő kommunikációhoz. Ugyanez a közeg szállítja a rádiójeleket is az éteren keresztül. A lenti ábrán látható az elektromágneses frekvenciaspektrum, amelyen megfigyelhetjük, hogy melyik hullámhosszú elektromágneses hullámot mire használjuk. Bizonyos típusú elektromágneses hullámok nem alkalmasak az adatátvitelre, míg mások állami szabályozás alatt vannak és használatukat csak adott szervezeteknek egy bizonyos célra engedélyezik (pl. mobilszolgáltatók). A tartomány más részeit közhasználatra tartják fenn (ilyen például a következőkben tárgyalt rádiófrekvenciás és infravörös tartományok is). Érdekes megjegyezni, hogy az emberi szemmel érzékelhető spektrum a teljes tartománynak csupán egy elenyésző részét képezi. A következő részekben átvesszünk két vezetékmentes technológiát. Infravörös 9. ábra - az elektromágneses spektrum Az angol terminológia szerint IRnek, azaz InfraRednek nevezik. Ez egy igen gyakran használt technológia, amely főként a mobil eszközökben, PDA-kban, távirányítókban, vezeték nélküli egerekben és billentyűzetekben terjedt el. Viszonylag alacsony energiaszintű, kis hatótávolságú, így a jelei nem képesek áthatolni a falakon vagy egyéb akadályokon. Az eszközök az egymás közötti információcseréhez egy IrDA (Infrared Direct Access, Infravörös Közvetlen Hozzáférés) nevű különleges kommunikációs portot használnak. A technológia csak pont-pont típusú kapcsolatot tesz lehetővé, tehát az eszközök csak közvetlenül egymáshoz kapcsolódhatnak. 2012-2017 Bordé Sándor 13

Rádiófrekvencia A rádiófrekvenciás hullámok nagyobb energiájúak, mint az előbb említett infravörös technológia, így ezek már képesek a falakon is áthatolni, ezáltal sokkal több alkalmazási lehetősége van, főként a telekommunikáció területén. A rádiófrekvenciás tartomány bizonyos részeit szabad felhasználásra tartják fenn, mint például vezeték nélküli helyi hálózatoknak és egyéb számítógépes perifériáknak. Ilyen frekvenciák a 900MHz, 2,4GHz és a 5GHz sávok. Ezen frekvenciák az ISM (Industry, Science and Medicine azaz Ipari, Tudományos és Orvosi) sávokként ismertek és csekély megszorítások mellett használhatók. A Bluetooth egy ilyen kommunikációs technika, amely a 2,4GHz-es sávon működik. Korlátozott sebességű és rövid hatótávolságú, de megvan az az előnye, hogy egyidejűleg több eszköz kommunikációját teszi lehetővé ez a tulajdonsága emelte az IR fölé (pl. számítógépes perifériák, mobiltelefonok közötti átvitel). Egyéb technológiák, amelyek a 2.4GHz és 5GHz tartományt használják a különböző IEEE 802.11-es szabványnak megfelelő vezeték nélküli hálózatok. Ezek abban különböznek a Bluetoothtól, hogy magasabb teljesítményszinten továbbítanak, ez nagyobb hatótávolságot tesz elérhetővé számukra. Előnyök és korlátok Bizonyos esetekben előnyösebbek a hagyományos vezetékes hálózatokkal szemben: Egyszerűbb csatlakozást tesz lehetővé a mobilis felhasználók számára. Egyszerűen bővíthető több felhasználó fogadása és a lefedettségi terület bővítése esetén. Hatókörön belül bárhol, bármikor kapcsolódhatunk. Egyetlen eszköz telepítése számos felhasználó kapcsolódását teszi lehetővé. Egyszerűen beüzemelhetők veszélyes és ellenséges környezetben is. Ott is használható, ahol a hagyományos vezetékes kapcsolat nem (vagy csak nagyon drágán) alakítható ki. Ezen jó tulajdonságokon felül viszont hátrányai is vannak a rendszernek. Ezek pedig a következők: A vezeték nélküli technológia érzékeny a többi elektromágneses erőteret keltő eszközöktől származó interferenciára. A vezeték nélküli LAN technológiát (Wireless LAN) az átvitelre kerülő adatok hozzáférésére és nem azok védelmére tervezték. Ebből kifolyólag védtelen bejáratot biztosíthat a hálózatba. Bár a vezeték nélküli technológia folyamatosan fejlődik, jelenleg nem biztosítja a vezetékes hálózatok által nyújtott sebességet és megbízhatóságot. A vezeték nélküli hálózatok típusai és kötöttségei A vezeték nélküli hálózatokat fizikai kiterjedésük alapján három csoportba szokták sorolni. A hálózat hatókörét viszonylag nehéz pontosan meghatározni, mivel 2012-2017 Bordé Sándor 14

az átvitel hatótávolságát számos körülmény (mind környezeti, mind mesterséges) befolyásolhatja. Pl.: hőmérsékletingadozás, páratartalom változása. WPAN Ez a legkisebb kiterjedésű hálózattípus. Ezt általában a számítógéphez tartozó perifériák (nyomtató, egér, billentyűzet) csatlakoztatására használják. Ide tartozik a korábban említett IR és a Bluetooth. WLAN A WLAN-t általában a vezetékes helyi hálózatok határainak kiterjesztése érdekében használják. Ez rádiófrekvenciás technológiát használ, és megfelel az IEEE 802.11-es szabványnak. Sok felhasználó számára egy csatlakozási ponton keresztül (AP, Access Point) biztosít kapcsolatot a hálózat többi része felé. A jegyzet további részében ezzel a csoporttal fogunk foglalkozni. WWAN Ezen hálózatok óriási méretű területeken biztosítanak lefedettséget, mint például a mobiltelefon hálózatok. Olyan technológiákat használnak, mint például a GSM (Global System for Mobile Communication), vagy a CDMA (Code Division Multiple Access azaz Kódosztásos Többszörös Hozzáférés). Vezeték nélküli helyi hálózatok (WLAN) Szabványok Ahogy korábban is említettük, a WLAN hálózatokat felépítését az IEEE 802.11-es szabvány határozza meg. Ennek négy fő ajánlása van, amely különböző jellemzőket szolgáltat a vezeték nélküli hálózatok számára. Összefoglaló néven ezeket a technológiákat Wi-Fi-nek (Wireless Fidelity) nevezzük. Létezik egy Wi-Fi szövetség nevű szervezet is, amely a különböző gyártók WLAN eszközeinek teszteléséért felelős, és egy emblémát helyez az eszközre, ha az megfelel a szabványoknak. A fentebb említett négy ajánlás: 802.11a: max 54 Mb/s sávszélesség, az 5GHz-es frekvenciát használja 802.11b: max 5,5 Mb/s vagy 11 MB/s, a 2,4GHz-es tartományt használja 802.11g: max 54 Mb/s, és a2,4ghz-es tartományt használja 802.11n: a legújabb szabvány, max 600Mb/s sávszélességet képes elérni, valamint a 2,4GHz-es frekvenciát használja. Ezen kívül lefelé kompatibilis az a, b és g jelű ajánlásokkal. WLAN összetevői Egy vezeték nélküli hálózatnak több összetevőre is szüksége van ahhoz, hogy megfelelően működhessen. Most ezeket fogjuk röviden áttekinteni. 2012-2017 Bordé Sándor 15

Hozzáférési pont (AP) Az első, és talán legfontosabb eszköz. Ez biztosítja a vezetékes és a vezeték nélküli hálózatok összekapcsolását, tehát lehetővé teszi a vezeték nélküli kliensek számára, hogy hozzáférjenek a vezetékes hálózatokhoz és viszont. Továbbá átviteli közeg átalakítóként is működik, mivel a vezetékes Ethernet hálózat kereteit fogadja, és mielőtt továbbítaná a WLANra, átalakítja a 802.11-es szabványnak megfelelő keretekké, illetve ezt fordítva is megcsinálja, amennyiben a vezeték nélküli kliensek (STA) felől érkezik a forgalom. Ezek az eszközök egy korlátozott területen biztosítanak hozzáférést, melyet vezeték nélküli cella, vagy BSS néven (Basic Service Set, Alapvető Szolgáltatás Készletként) ismerünk. Vezeték nélküli kliensek (STA) Ezek lényegében bármely eszközt jelenthetik, amelyek részt vesznek a hálózatban. A legtöbb eszköz, amely képes vezetékes hálózatra csatlakozni, ellátható vezeték nélküli hálózati kártyával és szoftverrel, amely segítségével képes lesz kapcsolódni a WLAN-okhoz is. Vezeték nélküli híd Ezeket két vezetékes hálózat vezeték nélküli összekötésére használják, és nagy távolságú pont-pont kapcsolatot biztosítanak a két hálózat között. Engedélyt nem igénylő frekvenciát használva egymástól 40 km-re, vagy távolabb fekvő hálózatokat tudunk kábelek nélkül összekapcsolni. Antennák Ezeket az APk és a vezeték nélküli hidak esetében használják. Hasznuk, hogy megnövelik az eszköz által kibocsájtott jel erősségét, ami általában nagyobb hatótávolságot jelent. Ezek fogadni is tudják a kliensek jeleit. Általában az erősségük alapján osztályozzuk őket. Alapvetően kétfajtát különböztetünk meg; azokat, amelyek minden irányba egyenletes erősséggel sugároznak, illetve azokat, amelyek egy kifejezett irányba sugároznak. Ez utóbbiakat nagy távolságok áthidalására használják, míg az egyenletesen szórót az APk esetében alkalmazzák. SSID Nagyon fontos momentum, hogy amennyiben több vezeték nélküli hálózat átfedi egymás területét, akkor az egyes kliensek a megfelelő hálózathoz csatlakozzanak. Erre használják az SSIDt (Service Set IDentifier, Szolgáltatáskészlet azonosító). Az SSID érzékeny a kis- és nagybetűkre, illetve maximum 32 alfanumerikus karakterből állhat. Ez az azonosító megtalálható minden WLAN keret fejlécében. WLAN kiépítési módok Ad-hoc Ez a vezeték nélküli hálózatok legegyszerűbb formája, amikor két vagy több eszközt kapcsolunk össze úgy, hogy azok egyenrangú hálózatot alkossanak. Ezek nem 2012-2017 Bordé Sándor 16

tartalmaznak hozzáférési pontot, minden résztvevője egyenrangú. Ez akkor előnyös, ha például független eszközök egyszeri információcserét akarnak végrehajtani, mivel ilyenkor felesleges lenne egy AP beszerzése és konfigurálása. A hálózat által lefedett terület az IBSS (Independent Basic Service Set, független alapvető szolgáltatáskészlet). Infrastruktúra mód Az előző módszer működhet kis körben, de amikor például egy épület vezeték nélküli hálózattal való ellátásáról van szó, akkor gondok adódhatnak. Ekkor már be kell szerezni egy AP-t, hogy a nagy mennyiségű forgalmat kezelni tudjuk és megbízhatóvá tegyük a hálózatunkat. Egy ilyen típusú hálózatban az eszközök nem képesek egymással közvetlenül kommunikálni, minden forgalom az APn keresztül történik. A hozzáférési pont törekszik arra, hogy minden eszköznek egyenlő joga legyen a közeghez való hozzáféréshez. Az AP által lefedett terület az alapvető szolgáltatáskészlet, más néven cella, avagy az angol terminológiával élve BSS. Ez a vezeték nélküli hálózatok legkisebb építőeleme. A lefedett terület bővítéséhez több BSS is összeköthető egymással egy elosztórendszer (Distribution System DS) segítségével. Ezzel egy Extended Service Set (ESS) jön létre, ahol az egyes AP-k a különböző BSS-ekben vannak. Azért, hogy a cellák között a jelek elvesztése nélkül biztosítsuk a kapcsolatot, az egyes BSS-ek között megközelítőleg 10%-os átfedésnek kell lennie. Ez lehetővé teszi a kliensek számára, hogy csatlakozzanak azelőtt az egyik AP-ról a másikra, anélkül, hogy a jelet elveszítenék. Csatornák Ha egy IBSS, ESS vagy BSS kliensei kommunikálnak egymással, a küldő és a fogadó állomások közötti kommunikációt irányítani kell. Erre egy módszer a csatornák használata. Ezek a rendelkezésre álló rádiófrekvencia tartomány részekre osztásával jönnek létre. Hasonló ahhoz, mint amikor több televíziós csatornát szolgáltatnak egy átviteli közegen keresztül. Sajnos az egyes frekvenciák átfedésben lehetnek a mások által használt csatornákkal, így a párbeszédeknek egymást nem érintő csatornákon kell zajlaniuk. Néhány újabb technológia képes arra, hogy több csatornát együtt kezeljen, így egy szélesebb átviteli csatornát hoz létre, amely nagyobb sávszélességet, megnövekedett átviteli sebességet eredményez. Egy WLANon belül, a cellák közötti határvonal elmosódása miatt lehetetlen a csomagütközéseket pontosan érzékelni, ezért olyan közeghozzáférési módszert használnak a vezeték nélküli hálózatokban, amely biztosítja, hogy ne forduljanak elő ütközések. Ez a technológia az úgynevezett CSMA/CA (Carrier Sense Multiple Access with Collosion Avoidance, azaz Vivőjel-érzékeléses többszörös hozzáférés ütközés elkerüléssel). A CSMA/CA lefoglalja a párbeszédre használandó csatornát, és amíg ez a foglalás érvényben van, más eszköz nem használhatja adásra. 2012-2017 Bordé Sándor 17

A hálózat felépítése Az előző fejezetekben megismertük a vezeték nélküli számítógépes hálózatok elméleti alapjait. Most fel fogunk építeni egy egyszerű hálózatot, amelyben mindöszsze egy hozzáférési pont van. Ehhez kapcsolódik két laptop, illetve egy switch, amihez egy harmadik eszköz (PC) csatlakozik. A hálózati topológia a következő ábrán látszik. Ahogy a képen is látható, az AccessPoint-PT típusú hozzáférési pontot használjuk. Ezen kívül két laptop csatlakozik a hálózatra. A feladatban mindenhol statikus IP cím kiosztást fogunk használni. Ez rendre 192.168.1.1 a PC4-en, 192.168.1.2 a Laptop0-n, és 192.168.1.3 a Laptop1-en. A hálózati maszk mindenhol az alapértelmezett 255.255.255.0 érték legyen. Hostok konfigurálása 10. ábra az elkészítendő hálózat A hostok összekötése legegyszerűbben úgy oldható meg, ha az összeköttetés típusánál az korábban említett villámjelre kattintunk. Ha ezután sorban, egymás után rákattintunk a két összekötni kívánt gépre, akkor a program kiválasztja számunkra a megfelelő összeköttetést. A hostokat úgy tudjuk konfigurálni, hogy bal egérgombbal rákattintunk az eszközre, majd a felugró ablakban kiválasztjuk a Config fület. Bal oldalt kategorizálva vannak az elérhető beállítások, minket most a FastEthernet0 fog érdekelni. 2012-2017 Bordé Sándor 18

Itt jelenleg csak a középen található IP Configuration című blokkra van szükségünk. Első lépésben, állítsuk Staticra az IP címet (ha eleve így volt, akkor ez a lépés kihagyható). Ezután az IP Address mezőbe írjuk be a kívánt IP címet. Ha átkattintunk máshova, akkor a PT kitölti a Subnet mask mezőt az alapértelmezett értékkel. Mivel a feladat most az alapértelmezett, 255.255.255.0 értéket kéri, ezzel nincs tennivalónk. Az alábbi képen látható a konfiguráció eredménye. Hozzáférési pont konfigurálása 11. ábra - Host konfiguráció Az elméleti ismertető alapján tudhatjuk, hogy két dolgot kell beállítanunk az APnél: Az SSID-t, tehát egy azonosítót, amivel a hálózatunknak egy egyedi nevet adunk A csatornát, hogy ne interferáljon más hálózatokkal Ez így viszont még nem a teljes igazság. Korábban elhangzott, hogy nem biztonságosak ezek a hálózatok, hiszen a jel nem egy zárt kábelben halad, hanem a levegőn keresztül. Ezért az idők során különböző titkosítási módok fejlődtek ki. A legrégibb a WEP (Wired Equivalent Privacy), amelyet a vezetékes hálózatok biztonságával egyenértékűnek terveztek, viszont elég komoly biztonsági rések voltak benne, így könnyen feltörhető lett. Ezért ma nem ajánlatos a használata. Egy erre adott gyors válasz volt a WPA, amely már biztonságosabb elődjénél. A legújabb technológia viszont a WPA2, amelyet jelenleg ajánlatos használni. Mi is ezt követjük. Ezen kívül még be lehet állítani a biztonsági protokollokat is, ezek lehetnek az AES, illetve a TKIP. Az előbbi a fejlettebb, és ezt ajánlatos használni. 2012-2017 Bordé Sándor 19

A lenti ábrán látszik a hozzáférési pontunk konfigurációja, amely összefoglalva: A wireless1 SSID-t kapta A 6-os csatornát használja WPA2-PSK titkosítást használ, AES biztonsági protokollal, és kötelező hozzá egy jelszót is megadni Laptopok konfigurálása A laptopok esetén három dolgot kell megtennünk: Beépíteni egy vezeték nélküli hálózati csatlakozásra alkalmas modult Az AP-nak megfelelően konfigurálni magát az előbb beépített interfészt Beállítani a kívánt IP címet (a vezetékes géphez hasonlóan) Modul beépítése 2. ábra - 3. ábra: a hozzáférési pont konfigurációja Egy modul beépítése egyszerűen megoldható. Nyissuk meg a laptop konfigurációs ablakát, majd a Physical fülön kapcsoljuk ki az eszközt, távolítsuk el a jelenlegi Ethernet modult (kattintsunk bal egérgombbal és a gombot nyomva tartva húzzuk rá a listára a modult), majd válasszuk ki a PT-LAPTOP-NM-1W interfészt, és építsük bele a laptopba. Ezután kapcsoljuk vissza az eszközt. Ha ezzel végeztünk, az Config fülön az eddigi FastEthernet port helyett megjelenik egy Wireless nevű interfész. Itt tudjuk megadni a vezetéknélküli hálózat adatait. 2012-2017 Bordé Sándor 20

Konfiguráció Ez a lépés is igen egyszerű, hiszen az előbb beállított hozzáférési pont beállításait kell alkalmazni minden egyes hozzá csatlakozó kliensre is. Tehát: Az SSID-t állítsuk be wireless1 re A titkosítás legyen WPA2-PSK, AES titkosítási protokollal, illetve abcdabcd1234 jelszóval. Alul, az IP Configuration részben kattintsunk a Static opcióra, és az IP Address mezőben adjuk meg a laptop IP címét, alatta pedig hagyjuk alapértelmezetten a maszkot 255.255.255.0 értéken. Az alábbi ábrán látható az előbb leírt folyamat eredménye. Amennyiben ezekkel készen vagyunk, az ötödik ábrán látható módon kell a hálózatnak kinéznie. 12. ábra - az eszköz konfigurációja 2012-2017 Bordé Sándor 21

Videós segédletek STP https://youtu.be/jgs1zegt_fy https://youtu.be/rj3oyjyqu7c WiFi https://youtu.be/ppbdkpmphja https://youtu.be/wxg7kuymfma https://youtu.be/a0qlqqljcok 2012-2017 Bordé Sándor 22