7. Feszítőfa protokoll Spanning-tree protocol
|
|
- Alexandra Orbánné
- 8 évvel ezelőtt
- Látták:
Átírás
1 A Cisco kapcsolás Networking alapjai és Academy haladó szintű Program forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 7. Feszítőfa protokoll Spanning-tree protocol Mártha Péter Név
2 1. Redundáns topológiák 2. Feszítőfa protokoll
3 Alapfogalmak Redundancia Napi 100%-os rendelkezésre állás nem biztosítható, de törekedni kell a megközelítésre Bizonyos elemek, vagy a teljes hálózati infrastruktúra többszörözése Általános elvárás a 99.99%-os rendelkezésre állás. Ez évente 1.5 óra leállást jelent A gyors konvergencia alapfeltétel Hibatűrést biztosít Redundáns topológia A redundáns topológiák létrehozásának célja az egyetlen hálózati elem meghibásodásából fakadó leállások kivédése A nagy megbízhatóságú hálózatok mindegyikében szükség van redundanciára
4 Redundáns topológiák hibalehetőségei Szórási viharok Ha nem működik valamilyen hurokelkerülési eljárás, minden kapcsoló szakadatlanul szórásos keretekkel árasztja el a hálózatot Többszörös kerettovábbítás Az egyedi küldésű keretek több példányban juthatnak el a célállomáshoz. Sok protokoll van, amely nincs felkészítve rá, hogy egy-egy üzenet többször jusson el hozzá. Ha ugyanaz a keret több példányban érkezik be, helyrehozhatatlan hibák következhetnek be. Instabil MAC-címtábla Ha ugyanaz a keret a kapcsoló több portjára is beérkezik, instabillá válhat a MAC-címtábla tartalma. Az adattovábbítás károkat szenvedhet, ha a kapcsoló arra használja fel erőforrásainak egy részét, hogy kezelje a MAC-címtábla instabilitásával járó gondokat
5 Redundáns kapcsolt topológia Jellemzők A redundáns topológiában egyetlen elem meghibásodása nem okozhatja a teljes rendszer leállását. Ha egy összeköttetés vagy készülék meghibásodik, a redundáns útvonal vagy készülék képes a meghibásodott feladatának átvételére Veszélyek Egy-egy keretből több másolat is létezhet, ami szórási vihart okozhat MAC-címtáblák instabillá válhatnak
6 Szórási viharok Jellemzők A szórásos és a csoportcímzéses kereteket a kapcsolók összes portjukon kiküldik, kivéve azt, amelyen beérkeztek Akkor beszélünk szórási viharról egy Ethernet ütközési tartományon belül, ha másodpercenként legalább 126 szórásos csomag küldésére kerül sor A szórási viharok meghiúsíthatják a forgalom normális haladását. A kapcsolót vagy hidat tartalmazó hálózat készülékeinek működését is megakadályozhatják. Ez azért van így, mert a szegmensbe tartozó minden készülék processzorának fel kell dolgoznia a szórásokat.
7 Szórási viharok Jellemzők Szórások és csoportcímzések miatt alakulhat ki Szórások és csoportcímzések továbbítás az összes porton megtörténik kivéve a bejövő port
8 Többszörös kerettovábbítás Jellemzők Kapcsolók táblájában nem szereplő MAC értékek Munkaállomások ARP táblájában szereplő értékek Minden készüléken többletterhelés
9 Többszörös kerettovábbítás Tegyük fel, hogy az Y forgalomirányító MAC-címe mindkét kapcsolón lejárt Tegyük fel továbbá, hogy az X állomás ARP-gyorsítótárában továbbra is szerepel az Y forgalomirányító MAC-címe, és az állomás egyedi címzésű keretet küld a forgalomirányítónak A forgalomirányító azonnal megkapja a keretet, mivel az X állomással azonos szegmensben található Az A és B kapcsoló nem ismeri az Y forgalomirányító MAC-címét, ezért szórással az összes portján kiküldi a keretet az Y forgalomirányító több másolatot is kap a keretből
10 MAC adatbázis instabilitása Jellemzők Adott MAC cím más porton érhető el, mint ahogy az az adatbázisban van A kapcsolókon többletterhelés jelentkezik Ha egy-egy keret több példányban, a kapcsoló különböző portjaira érkezik be, instabillá válik a MAC adatbázis. Redundáns kapcsolt hálózatban előfordulhat, hogy a kapcsolók hibás információkat jegyeznek meg. A kapcsoló hibásan tanulhatja meg, hogy melyik MAC-cím melyik porton érhető el.
11 MAC adatbázis instabilitása A kapcsolók rögzíthetnek olyan adatokat, amelyek szerint adott MAC-cím meghatározott portjukon van, miközben az állomás a valóságban egy másik porton keresztül érhető el Példánkban az Y forgalomirányító MAC-címe egyik kapcsoló MAC-címtáblájában sem szerepel Az X állomás egy keretet küld az Y forgalomirányítónak. Az A és a B kapcsoló a nullás porton megismeri az X állomás MAC-címét Mindkét kapcsoló 1-es portján keresztül szórással továbbítja a keretet Az A és a B kapcsoló is visszakapja az adatokat az 1-es portján, és ennek alapján helytelenül úgy látja, hogy az X állomás MAC-címe az 1-es porthoz tartozik
12 1. Redundáns topológiák 2. Feszítőfa protokoll
13 Redundáns topológia és feszítőfa A feszítőfa protokoll (Spanning-Tree Protocol, STP) 2. rétegbeli kapcsolatkezelő protokoll, amely kapcsolt vagy hídtechnológiát alkalmazó hálózatokban biztosítja az útvonalak redundanciáját, de megakadályozza a nemkívánatos hurkok kialakulását. Az STP működése észrevehetetlen a végponti állomások számára. A redundáns kapcsolatok miatt viszont fizikai hurkok keletkeznek a hálózatban A második rétegben nincs élettartam (TTL). Ha egy keret bekerül egy második rétegbeli hurkot tartalmazó topológiába, akkor örökké keringeni fog. Ez a sávszélesség lekötésével és a hálózat használhatatlanná válásával járhat. (A harmadik rétegben a TTL értéke folyamatosan csökken, és amikor eléri a nullát, a csomagot eldobjuk. ) A megoldás az, hogy a fizikai hurkok létrejöttét engedélyezzük, de hurokmentes logikai topológiát hozunk létre A hurokmentes logikai topológiát fának nevezzük A feszítőfa protokoll folyamatos ellenőrzésnek veti alá a hálózatot A Catalyst kapcsolókon az STP alapértelmezés szerint be van kapcsolva
14 Hurokmentes kapcsolás Fizikai kialakítás A nagyobb megbízhatóság érdekében a fizikai topológia redundáns kialakítású Logikai kialakítás A hálózat logikailag hurokmentes a második rétegben is Feszítőfa protokoll (Spanning-Tree Protocol STP) Hurokmentes topológiát, fát képez Kiterjesztett csillag topológia, a hálózat feszítőfája Viszonylag hosszú idő alatt konvergál Továbbfejlesztett változata a gyors feszítőfa algoritmus, mely rövidebb időn belül konvergál
15 A feszítőfa protokoll (IEEE 802.1d) Működés Feszítőfa-algoritmus segítségével hurokmentes legrövidebbút-hálózat létrehozása lehetséges Legrövidebb utak kiválasztása az összeköttetések összköltsége alapján történik Összeköttetés költsége a sebességtől függ A kapcsolók gyökérponti hidat választanak, ez a kiindulópont Olyan topológiát készít, amelyben minden cél csak egy úton érhető el A nem használt redundáns ágak lezárásra kerülnek Lezárt porton érkező kereteket a készülékek eldobják
16 Bridge Protocol Data Unit (BPDU) Feladata: Hurokmentes topológia létrehozását segítő üzenetek BPDU forgalmazás lezárt porton is történhet BPDU segítségével elvégezhetők Gyökérponti híd kiválasztása Legrövidebb útvonal kiválasztása önmaga és a gyökérponti híd között Minden LAN szegmens kapcsolói közül a gyökérponti hídhoz legközelebb eső megtalálása (kijelölt kapcsoló, feladata a LAN és a gyökérponti híd közötti forgalom kezelése) A nem gyökérponti kapcsolók kiválasztják saját gyökérportjukat (ezen keresztül érik el a gyökérponti kapcsolót) A feszítőfa felépítésében résztvevő portok kiválasztása (kijelölt port), a többi lezárása A nem kijelölt portokat a készülékek lezárják. A zárolás előtt a készülék kiszámítja minden portjának költségét a gyökérponti hídhoz képest. Ezután azt a portot zárolja, amelynek a legnagyobb a költsége. Alapértelmezett esetben a BPDU-k elküldésére két másodpercenként kerül sor.
17 Bridge Protocol Data Unit (BPDU) Hogyan történik a gyökérponti híd kiválasztása? Az STP-t használó készülékek a rendszergazda által megadott prioritási szám alapján állapodnak meg a gyökérponti híd kilétéről. Az a készülék lesz a gyökérponti híd, amelyiknek a legkisebb a prioritási száma. Mi történik, ha két készüléknek ugyanaz a prioritási száma? Ebben az esetben az STP-t használó készülékek azt a készüléket választják, amelyiknek kisebb a MAC-címe. A hidak az STP segítségével továbbítják a hidak MAC-címét és prioritási számát. Mi az a BPDU? A készülékek BPDU (Bridge Protocol Data Unit, hídprotokoll-adategység) formájában küldik egymásnak az üzeneteiket. A BPDU üzenetek a gyökérponti híd és a többi készülék legjobb portja (a gyökérport ) között haladnak. A BPDU-k a hálózat állapotára vonatkozó üzeneteket továbbítanak. Mi történik, ha meghatározott időn belül nem érkeznek be BPDU-k? A nem gyökérponti hídként működő eszközök azt tételezik fel, hogy meghibásodott a gyökérponti híd, ezért új gyökérponti hidat választanak.
18 BPDU felépítése és működése
19 A feszítőfa működése Kiválasztásra kerül Hálózatonként egy gyökérponti híd vagy kapcsoló Minden nem gyökérponti kapcsolónál egy gyökérport Szegmensenként egy kijelölt port Használaton kívüli portok Adattovábbítás A gyökérportok és kijelölt portok ( jelük: F) minden adatot továbbítanak A nem kijelölt portok (jelük: B) csak BPDU-k forgalmazásában vesznek részt, a többi forgalmat eldobják
20 Gyökérponti kapcsoló kiválasztása Kiválasztás menete BPDU-k kerülnek kiküldésre a híd azonosítójával (BID, 8 bájt), amely egy hídprioritásból (alapértelmezett értéke 32768) és a kapcsoló MAC címéből áll A kapcsoló induláskor feltételezi, hogy ő a gyökérponti kapcsoló (A gyökérponti és küldő BID a kapcsoló BID-je lesz) A kijelölt kapcsoló által küldött BPDU-ban gyökérponti és kijelölt kapcsolónak is saját magát jelöli meg Az elküldött BID-eket minden kapcsoló megkapja Ha alacsonyabb BID érték érkezik, mint a sajátja a továbbküldött BPDU-ban gyökérpontként az alacsonyabb BID-et szerepelteti A legkisebb BID-et felmutató kapcsoló lesz a gyökérpont Figyelmeztetés Kapcsolók prioritását csak indokolt esetben szabad megváltoztatni
21 A portok feszítőfa protokoll szerinti állapotai Letiltott Adminisztratív (rendszergazda által) úton letiltott portok, nincs semmilyen forgalom Lezárt (max. 20 másodperc) Csak BPDU-t fogadnak, adatkeretet eldobják, címet nem jegyeznek Figyelő (továbbítási késleltetés: 15 másodperc) a gyökérponti hídhoz vezető alternatív útvonalakat keresik, BPDU forgalom Azaz útvonal, amelynek költsége a minimálisnál nagyobb, visszakerül lezárt állapotba továbbítási késleltetésnek nevezzük adatok továbbítása és a MAC-címek rögzítése szünetel (15 s) Tanuló (továbbítási késleltetés: 15 másodperc) adatok továbbítása még nem indul meg, de a címek feljegyzése a kapott forgalomból igen (15 s) Továbbító BPDU és normál adatforgalom, valamint címek tanulása - feljegyzése
22 Portok állapotváltozása
23 Feszítőfa újraszámolása Konvergens hálózat Minden kapcsolóport vagy továbbító, vagy lezárt módban van A továbbító portok adatkereteket és BPDU-kat küldenek, fogadnak A lezárt portok kizárólag BPDU-kat fogadnak Változás esetén Topológia változás esetén a kapcsolók újraszámítják a feszítőfát Felhasználói adatforgalom megszakadhat Az IEEE 802.1d szerint a konvergálás akár 50 másodperc is lehet A konvergálás időtartama a 20 másodperces kiöregedési időtartamból, a 15 másodperces figyelő továbbítási késleltetésből és a szintén 15 másodperces tanuló továbbítási késleltetésből tevődik össze.
24 Gyors feszítőfa porotokoll (IEEE 802.1w) Gyors feszítőfa protokoll (Rapid Spanning-Tree Protocol, RSTP) A szabvány hatásköre Portállapotok és szerepük tisztázása Olyan összeköttetés állapotok leírása, amelyek gyorsan átmehetnek továbbító állapotba Eljárás, hogy a konvergált hálózatok saját BPDU-kat generáljanak, ne a gyökérpontét továbbítsák Jellemzők Lezárt állapot új neve eldobó lett, melyet alternatív portként kezelünk Egy eldobó port kijelöltté válhat, ha a kijelölt port meghibásodik Összeköttetés lehet pont-pont, belépési és megosztott A pont-pont és belépési összeköttetések közvetlenül továbbító módba válthatnak azonnal Maximális konvergencia idő 15 másodperc
25 Gyors feszítőfa porotokoll (IEEE 802.1w)
26 Köszönöm a figyelmet!
Department of Software Engineering
Tavasz 2012 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 7. gyakorlat Feszítőfa protokoll Zelei Dániel S z e g e d i T u d o m á n y
Department of Software Engineering
Tavasz 2016 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 7. gyakorlat Feszítőfa protokoll (STP) Zelei Dániel, Bordé Sándor S z e g e
Hálózati alapismeretek
Hálózati alapismeretek 8. Kapcsolás az Ethernet hálózatokban 1. 2. Ütközési és szórási tartományok Második rétegbeli hídtechnika Ha egy Ethernet szegmenst bővítünk => => az átviteli közeg kihasználtsága
Számítógép hálózatok gyakorlat
Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így
MAC címek (fizikai címek)
MAC címek (fizikai címek) Hálózati eszközök egyedi azonosítója, amit az adatkapcsolati réteg MAC alrétege használ Gyárilag adott, általában ROM-ban vagy firmware-ben tárolt érték (gyakorlatilag felülbírálható)
3. Kapcsolás vállalati hálózatokban
3. Kapcsolás vállalati hálózatokban Tartalom 3.1 A vállalati szintű kapcsolási folyamatok megismerése 3.2 A kapcsolási hurkok kialakulásának megelőzése 3.3 VLAN-ok konfigurálása 3.4 A trönkölés és a VLAN-ok
FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA
FORGALOMIRÁNYÍTÓK 6. Forgalomirányítás és irányító protokollok 1. Statikus forgalomirányítás 2. Dinamikus forgalomirányítás 3. Irányító protokollok Áttekintés Forgalomirányítás Az a folyamat, amely révén
III. előadás. Kovács Róbert
III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.
Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) Deák Kristóf Címfeloldás ezerrel Azt eddig tudjuk, hogy egy alhálózaton belül switchekkel oldjuk meg a zavartalan kommunikációt(és a forgalomirányítás is megy, ha egy
Kapcsolás vállalati hálózatokban. Hálózati ismeret II. c. tárgyhoz Szerkesztette: Majsa Rebeka
Kapcsolás vállalati hálózatokban Hálózati ismeret II. c. tárgyhoz Szerkesztette: Majsa Rebeka Vállalati szintű kapcsolási folyamatok Kapcsolás és a hálózat szegmentálása Azzal együtt, hogy a kapcsolók
Újdonságok Nexus Platformon
Újdonságok Nexus Platformon Balla Attila balla.attila@synergon.hu CCIE #7264 Napirend Nexus 7000 architektúra STP kiküszöbölése Layer2 Multipathing MAC Pinning MultiChassis EtherChannel FabricPath Nexus
Forgalomirányítás (Routing)
Forgalomirányítás (Routing) Tartalom Forgalomirányítás (Routing) Készítette: (BMF) Forgalomirányítás (Routing) Autonóm körzet Irányított - irányító protokollok Irányítóprotokollok mőködési elve Távolságvektor
Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői
Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító
8. Virtuális LAN-ok. A kapcsolás alapjai, és haladó szintű forgalomirányítás. Kapcsolás alapjai, haladó forgalomirányítás
A kapcsolás alapjai, és haladó szintű forgalomirányítás 8. Virtuális LAN-ok 1. VLAN fogalmak 2. VLAN konfigurálás 3. VLAN hibaelhárítás VLAN bevezetés Jellemzők VLAN használatával eszközök és felhasználók
Cisco Teszt. Question 2 Az alábbiak közül melyek vezeték nélküli hitelesítési módok? (3 helyes válasz)
Cisco Teszt Question 1 Az ábrán látható parancskimenet részlet alapján mi okozhatja az interfész down állapotát? (2 helyes válasz) a. A protokoll rosszul lett konfigurálva. b. Hibás kábel lett az interfészhez
Tájékoztató. Értékelés. 100% = 90 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 30%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Az IEC PRP & HSR protokollok használata IEC61850 kommunikációjú védelmi automatika hálózatokban
Az IEC 62439 PRP & HSR protokollok használata IEC61850 kommunikációjú védelmi automatika hálózatokban Nagy Róbert Védelmes értekezlet 2014 2014. Június 5. Ethernet az energiaelosztó hálózatokhoz Az Ethernet
54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Debreceni Egyetem Informatikai Kar
Debreceni Egyetem Informatikai Kar Egy telephelyi kommunikációs hálózat elemzése, tesztelése és technológiáinak ismertetése Témavezető: Dr. Almási Béla Egyetemi docens Készítette: Ruszcsák Péter Mérnök
Tartalom. Kapcsolók. Második rétegbeli kapcsolás. Második rétegbeli hídtechnika. Második rétegbeli hídtechnika
Tartalom Kapcsolók 1 Második rétegbeli kapcsolás A kapcsolók működése VLAN és a trönkölés mikroszegmentálás duplex-félduplex üzemmód CAM (Content-addressable memory) alkalmazásspecifikus integrált áramkörök
Bevezetés. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék
Bevezetés Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu Tartalom Alapfogalmak, definíciók Az OSI és a TCP/IP referenciamodell Hálózati
54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Számítógépes Hálózatok
Számítógépes Hálózatok 6. Előadás: Adatkapcsolati réteg IV. & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring
Hálózati alapismeretek
Hálózati alapismeretek 10. Alhálózatok és forgalomirányítási alapismeretek 1. Irányított protokollok 2. IP alapú irányító protokollok 3. Az alhálózatok működése Irányított protokollok Irányított protokoll
2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
Tavasz 2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 2. gyakorlat OSI modell, Ethernet alapok Bordé Sándor S z e g e d i T u d o
Felhő alapú hálózatok (VITMMA02) Hálózati megoldások a felhőben
Felhő alapú hálózatok (VITMMA02) Hálózati megoldások a felhőben Dr. Maliosz Markosz Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék
2. Melyik az alábbi ábrák közül, az EIA/TIA 568 A szabvány szerinti bekötési sorrend?
1. Melyek a VPN hálózatok típusai? a. Távoli b. Internetes c. Intranetes d. Elosztási e. Hozzáférési f. Központi 2. Melyik az alábbi ábrák közül, az EIA/TIA 568 A szabvány szerinti bekötési sorrend? 1.
Újdonságok Nexus Platformon
Újdonságok Nexus Platformon Balla Attila CCIE #7264 balla.attila@synergon.hu Újdonságok Unified Fabric Twin-AX kábel NX-OS L2 Multipathing Fabric Extender Emlékeztető Továbbítás Routing Van bejegyzés ->
A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze
A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze a MAC-címet használja a hálózat előre meghatározott
Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ
Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ A routerek elsődleges célja a hálózatok közti kapcsolt megteremtése, és
Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak
Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és
Számítógépes hálózatok
Számítógépes hálózatok Hajdu György: A vezetékes hálózatok Hajdu Gy. (ELTE) 2005 v.1.0 1 Hálózati alapfogalmak Kettő/több tetszőleges gép kommunikál A hálózat elemeinek bonyolult együttműködése Eltérő
Bánfalvy Zoltán, ABB Kft., MEE Vándorgyűlés, Budapest, Ethernet-hálózatok redundanciája IEC és IEC 62439
Bánfalvy Zoltán, ABB Kft., MEE Vándorgyűlés, Budapest, 2012.09.06. Ethernet-hálózatok redundanciája IEC 61850 és IEC 62439 Tartalom Rövid összefoglaló az IEC 61850 és IEC 62439 szabványokról Elérhető megoldások
Adatkapcsolati réteg 1
Adatkapcsolati réteg 1 Főbb feladatok Jól definiált szolgáltatási interfész biztosítása a hálózati rétegnek Az átviteli hibák kezelése Az adatforgalom szabályozása, hogy a lassú vevőket ne árasszák el
Tájékoztató. Használható segédeszköz: -
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 52 481 02 Irodai informatikus Tájékoztató A vizsgázó az első lapra írja fel a nevét!
Tájékoztató. Használható segédeszköz: -
A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 51 481 02 Szoftverüzemeltető-alkalmazásgazda Tájékoztató A vizsgázó az első lapra
Internet használata (internetworking) Készítette: Schubert Tamás
Internet használata (internetworking) Készítette: (BMF) Internet/1 Internet használata (internetworking) Az együttműködő számítógépek kapcsolódhatnak: kizárólag LAN-hoz, kizárólag WAN-hoz, vagy LAN-ok
Kapcsolás alapjai, haladó forgalomirányítás
1 Kapcsolás alapjai, haladó forgalomirányítás 4. A kapcsolás elmélete 1. Ismerkedés az Ethernet / 802.3 LAN-nal 2. Ismerkedés a LAN-kapcsolással 3. A kapcsoló működése Az Ethernet / 802.3 LAN kialakulása
1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika
1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika A vizsga leírása: A vizsga anyaga a Cisco Routing and Switching Bevezetés a hálózatok világába (1)és a Cisco R&S:
Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe
Tartalom Az adatkapcsolati réteg, Ethernet, ARP Adatkapcsolati réteg A hálózati kártya (NIC-card) Ethernet ARP Az ARP protokoll Az ARP protokoll által beírt adatok Az ARP parancs Az ARP folyamat alhálózaton
Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban
Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben
Az alábbi állítások közül melyek a forgalomirányító feladatai és előnyei?
ck_01 Az alábbi állítások közül melyek a forgalomirányító feladatai és előnyei? ck_02 a) Csomagkapcsolás b) Ütközés megelőzése egy LAN szegmensen c) Csomagszűrés d) Szórási tartomány megnövelése e) Szórások
1. Melyik az alábbi ábrák közül, az EIA/TIA 568 A szabvány szerinti bekötési sorrend?
1. Melyik az alábbi ábrák közül, az EIA/TIA 568 A szabvány szerinti bekötési sorrend? 1. kép 2. kép 3. kép 4. kép a. 1. kép b. 2. kép c. 3. kép d. 4. kép 2. Hálózati adatátvitel során milyen tényezők okoznak
Tájékoztató. Használható segédeszköz: -
A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 481 04 Informatikai rendszergazda Tájékoztató A vizsgázó az első lapra írja fel
A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással
A Cisco kapcsolás Networking alapjai Academy Program és haladó szintű forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 1. Ismerkedés az osztály nélküli forgalomirányítással Mártha
Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek
Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A
GOOSE üzenetküldés korszerű alállomásokban. Előadás: Rózsa Gábor
GOOSE üzenetküldés korszerű alállomásokban. Előadás: Rózsa Gábor Bemutatkozás Előadó Rózsa Gábor Tesztmérnök a TÜV Rheinland Intercert Kft-nél gabor.rozsa@hu.tuv.com IEC 61850 a TÜV Rheinlandnál IEC 61850
JÁNOS SZAKKÖZÉPI SKOLA
Cisco Networking Kapcsolás Academy alapjai, Program haladó forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 2. Egyterületű OSPF Név 1. Link-state (kapcsolatállapot alapú) protokollok
6. Forgalomirányítás
6. Forgalomirányítás Tartalom 6.1 Az irányító protokollok konfigurálása 6.2 Külső forgalomirányító protokollok Az irányító protokollok konfigurálása 6.1 Vissza a tartalomjegyzékre A forgalomirányítás alapjai
WS 2013 elődöntő ICND 1+ teszt
WS 2013 elődöntő ICND 1+ teszt 14 feladat 15 perc (14:00-14:15) ck_01 Melyik parancsokat kell kiadni ahhoz, hogy egy kapcsoló felügyeleti célból, távolról elérhető legyen? ck_02 S1(config)#ip address 172.20.1.2
4. előadás. Internet alapelvek. Internet címzés. Miért nem elegendő 2. rétegbeli címeket (elnevezéseket) használni a hálózatokban?
4. előadás Internet alapelvek. Internet címzés Miért nem elegendő 2. rétegbeli címeket (elnevezéseket) használni a hálózatokban? A hálózati réteg fontos szerepet tölt be a hálózaton keresztüli adatmozgatásban,
Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont
Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,
Tájékoztató. Használható segédeszköz: -
A 12/2013 (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 481 04 Informatikai rendszergazda Tájékoztató A vizsgázó az első lapra írja fel
5. Ethernet. Dr. Bilicki Vilmos Szoftverfejlesztés Tanszék. Department of Software Engineering UNIVERSITY OF SZEGED
5. Ethernet Dr. Bilicki Vilmos Szoftverfejlesztés Tanszék Tartalom Helyi hálózatok (LAN családok). A 802.x szabvány család megismerése 802.2 Logical Link Control 802.3 Ethernet Források Online: http://grouper.ieee.org/groups/802/
Kapcsolók biztonsága/1
Kapcsolók biztonsága Készítette: Dr. Óbudai Egyetem Kapcsolók biztonsága/1 Tartalom Kapcsolók biztonsága A feszítőfa protokoll (Spanning Tree Protocol) Virtuális LAN-ok (VLAN) Virtuális LAN, trönk használata
V2V - routing. Intelligens közlekedési rendszerek. VITMMA10 Okos város MSc mellékspecializáció. Simon Csaba
V2V - routing Intelligens közlekedési rendszerek VITMMA10 Okos város MSc mellékspecializáció Simon Csaba MANET Routing Protokollok Reaktív routing protokoll: AODV Forrás: Nitin H. Vaidya, Mobile Ad Hoc
Department of Software Engineering
Ősz 2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 11. gyakorlat Feszítőfa protokoll (STP) Vezetéknélküli hálózatok (WLAN) Bordé
Ethernet. Hozzáférési hálózatoktechnológiák. Moldován István. Department of Telecommunications and Media Informatics
Ethernet Hozzáférési hálózatoktechnológiák Moldován István Budapest University of Technology and Economics Department of Telecommunications and Media Informatics Ethernet továbbítás MAC Forwarding Topology
Hálózati alapismeretek
Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet
OSI-ISO modell. Az OSI rétegek feladatai: Adatkapcsolati réteg (data link layer) Hálózati réteg (network layer)
OSI-ISO modell Több világcég megalkotta a saját elképzelései alapján a saját hálózati architektúráját, de az eltérések miatt egységesíteni kellett, amit csak nemzetközi szinten lehetett megoldani. Ez a
Tájékoztató. Használható segédeszköz: -
A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 51 481 02 Szoftverüzemeltető-alkalmazásgazda Tájékoztató A vizsgázó az első lapra
2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
Tavasz 2014 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 5. gyakorlat Ethernet alapok Deák Kristóf S z e g e d i T u d o m á n y e g
Hálózatok építése és üzemeltetése. Hálózatbiztonság 2.
Hálózatok építése és üzemeltetése Hálózatbiztonság 2. Hálózatok biztonságos darabolása és összekötése 2 Virtuális helyi hálózatok 3 Virtuális helyi hálózat - VLAN Nagy hálózatok szétdarabolása Kisebb hálózat,
Hálózatok II. A hálózati réteg forgalomirányítása
Hálózatok II. A hálózati réteg forgalomirányítása 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111
Gyakorlati vizsgatevékenység
Gyakorlati vizsgatevékenység Elágazás azonosító száma megnevezése: 4 481 03 0010 4 01 Informatikai hálózat-telepítő és -üzemeltető Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 1163-06
Számítógépek, perifériák és a gépeken futó programok (hálózati szoftver) együttese, amelyek egymással összeköttetésben állnak.
Számítógépek, perifériák és a gépeken futó programok (hálózati szoftver) együttese, amelyek egymással összeköttetésben állnak. Előnyei Közös erőforrás-használat A hálózati összeköttetés révén a gépek a
Tartalom. 1. és 2. rétegű eszközök. Hálózati kábelek. Első réteg. UTP kábel. Az UTP kábel felépítése
Tartalom 1. és 2. rétegű eszközök Kábelek és aktív eszközök első rétegű eszközök passzív eszköz: kábel és csatlakozó síntopológiás eszköz: ismétlő (repeater) csillag topológiás aktív eszköz: hub második
Hálózatok II. A hálózati réteg torlódás vezérlése
Hálózatok II. A hálózati réteg torlódás vezérlése 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 481 06 Informatikai rendszerüzemeltető Tájékoztató A vizsgázó az első lapra írja
Advanced PT activity: Fejlesztési feladatok
Advanced PT activity: Fejlesztési feladatok Ebben a feladatban a korábban megismert hálózati topológia módosított változatán kell különböző konfigurációs feladatokat elvégezni. A feladat célja felmérni
Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992
Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. november 5. Adatátviteli feltételek Pont-pont kommunikáció megbízható vagy best-effort (garanciák nélkül) A cél ellenőrzi a kapott csomagot:
III. Felzárkóztató mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK
Mérési utasítás ARP, ICMP és DHCP protokollok vizsgálata Ezen a mérésen a hallgatók az ARP, az ICMP és a DHCP protokollok működését tanulmányozzák az előző mérésen megismert Wireshark segítségével. A mérés
WorldSkills HU 2008 döntő Packet Tracer
WorldSkills HU 2008 döntő Szeged, 2008. október 17. FIGYELEM! Az eszközök konfiguráláshoz a grafikus felület korlátozottan vehető igénybe! Helyzetismertetés Most kerültünk a WSC vállalathoz, mint hálózati
Györgyi Tamás. Szoba: A 131 Tanári.
Györgyi Tamás Szoba: A 131 Tanári E-Mail: gyorgyit@petriktiszk.hu 2 Számítógépek megjelenésekor mindenki külön dolgozott. (Personal Computer) A fejlődéssel megjelent az igény a számítógépek összekapcsolására.
A számítógép hálózatok kialakulásának okai:
A számítógép hálózatok kialakulásának okai: Erőforrás-megosztás: Célja az, hogy a hálózatban levő programok, adatok és eszközök- az erőforrások és a felhasználók fizikai helyétől függetlenül - bárki számára
LAN tervezés. Összeállította: Balogh Zoltán. 2007. február 27. Második, javított kiadás
LAN tervezés Összeállította: Balogh Zoltán 2007. február 27. Második, javított kiadás A LAN-tervezés célkitűzései Egy LAN megtervezésének első lépése a tervezési célkitűzések lefektetése és dokumentálása.
Hálózat szimuláció. Enterprise. SOHO hálózatok. Más kategória. Enterprise. Építsünk egy egyszerű hálózatot. Mi kell hozzá?
Építsünk egy egyszerű hálózatot Hálózat szimuláció Mi kell hozzá? Aktív eszközök PC, HUB, switch, router Passzív eszközök Kábelek, csatlakozók UTP, RJ45 Elég ennyit tudni? SOHO hálózatok Enterprise SOHO
Számítógépes Hálózatok 2008
Számítógépes Hálózatok 2008 7. datkapcsolati réteg, MC korlátozott verseny, WLN, Ethernet; LN-ok összekapcsolása 1 MC alréteg Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok
Tájékoztató. Használható segédeszköz: -
A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 481 04 Informatikai rendszergazda Tájékoztató A vizsgázó az első lapra írja fel
Tartalom. 1. és 2. rétegű eszközök. Hálózati kábelek. Első réteg. UTP kábel. Az UTP kábel felépítése
Tartalom 1. és 2. rétegű eszközök Kábelek és aktív eszközök első rétegű eszközök passzív eszköz: kábel és csatlakozó síntopológiás eszköz: ismétlő (repeater) csillag topológiás aktív eszköz: hub második
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 54 481 06 Informatikai rendszerüzemeltető Tájékoztató A vizsgázó az első lapra írja
Link Aggregation Control Protocol
Link Aggregation A link aggregation vagy IEEE 802.1AX egy szabvány, mely leírja, hogy használjunk szimultán több portot egy adatkapcsolatra. Ezzel a szabvánnyal túlléphetjük az egy kábelen használható
Számítógépes Hálózatok 2012
Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing 1 Az Ethernet példája Gyakorlati példa: Ethernet IEEE 802.3 standard
Biztonsági megfontolások a lokális hálózatok adatkapcsolati rétegében
Biztonsági megfontolások a lokális hálózatok adatkapcsolati rétegében Előadó: Farkas Károly, farkask@hit.bme.hu, BME 2012 Cisco and/or its affiliates. All rights reserved. 1 Támadás típusok és védekezési
Hálózati architektúrák és Protokollok GI 8. Kocsis Gergely
Hálózati architektúrák és Protokollok GI 8 Kocsis Gergely 2018.11.12. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
FORGALOMIRÁNYÍTÓK. 8. A TCP/IP protokollkészlet hiba és vezérlőüzenetei CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA
FORGALOMIRÁNYÍTÓK 8. A TCP/IP protokollkészlet hiba és vezérlőüzenetei 1. A TCP/IP hibaüzenetek áttekintése 2. A TCP/IP protokollkészlet vezérlőüzenetei ICMP Internet Control Message Protocol Az adatok
Számítógépes Hálózatok 2012
Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód
az egyik helyes választ megjelölte, és egyéb hibás választ nem jelölt.
A 12/2013 (III.29) NFM rendelet a 11/2014. (III. 6.) NFM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 51 481 02 Szoftverüzemeltető-alkalmazásgazda
Hálózati Technológiák és Alkalmazások
Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 2016. október 28. Internet topológia IGP-EGP hierarchia előnyei Skálázhatóság nagy hálózatokra Kevesebb prefix terjesztése Gyorsabb konvergencia
Ethernet második rész
Ethernet második rész Moldován István TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Az Ethernet további újdonságai 1 VLAN» LAN (Local Area Network): broadcast tartomány»
Szg.-hálózatok kialakulása, osztályozása, hálózati topológiák, OSI modell
Szg.-hálózatok kialakulása, osztályozása, hálózati topológiák, OSI modell A hálózatok önállóan is működképes számítógépek elektronikus összekapcsolása, ahol az egyes gépek képesek kommunikációra külső
Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el
Routing IPv4 és IPv6 környezetben Professzionális hálózati feladatok RouterOS-el Tartalom 1. Hálózatok osztályozása Collosion/Broadcast domain Switchelt hálózat Routolt hálózat 1. Útválasztási eljárások
Hálózati ismeretek. Az együttműködés szükségessége:
Stand alone Hálózat (csoport) Az együttműködés szükségessége: közös adatok elérése párhuzamosságok elkerülése gyors eredményközlés perifériák kihasználása kommunikáció elősegítése 2010/2011. őszi félév
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 5. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer: ARP Útválasztás: route IP útvonal: traceroute Parancsok: ifconfig, arp,
54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Ethernet. Hozzáférési hálózatoktechnológiák. Moldován István. Department of Telecommunications and Media Informatics
Ethernet Hozzáférési hálózatoktechnológiák Moldován István Budapest University of Technology and Economics Department of Telecommunications and Media Informatics Ethernet továbbítás MAC Forwarding Topology
Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat
Hálózati Architektúrák és Protokollok GI BSc. 3. laborgyakorlat Erdős András (demonstrátor) Debreceni Egyetem - Informatikai Kar Informatikai Rendszerek és Hálózatok Tanszék 2016 9/20/2016 9:41 PM 1 Adatkapcsolati
Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
CCNA Exploration Scope and Sequence (2007 április)
CCNA Exploration Scope and Sequence (2007 április) Ez egy előzetes áttekintés a még fejlesztés alatt álló új Cisco CCNA Exploration tananyagról. Az első és második szemeszter anyagának angol nyelvű változata