Feladatok MATEMATIKÁBÓL II.



Hasonló dokumentumok
Feladatok MATEMATIKÁBÓL II.

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

Hatvány, gyök, normálalak

Feladatok MATEMATIKÁBÓL

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Feladatok MATEMATIKÁBÓL

I. A négyzetgyökvonás

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

Kisérettségi feladatgyűjtemény

Kisérettségi feladatsorok matematikából

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

NULLADIK MATEMATIKA ZÁRTHELYI

Érettségi feladatok: Trigonometria 1 /6

c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3

Geometriai feladatok, 9. évfolyam

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Koordináta-geometria feladatok (középszint)

9. évfolyam Javítóvizsga szóbeli. 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán!

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat!

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

törtet, ha a 1. Az egyszerűsített alak: 2 pont

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

Matematika kisérettségi

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Egyenes mert nincs se kezdő se végpontja

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Exponenciális és logaritmusos kifejezések, egyenletek

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

Matematika 11. osztály

XVIII. Nemzetközi Magyar Matematika Verseny

Gyakorló feladatsor a matematika érettségire

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

. Számítsuk ki a megadott szög melletti befogó hosszát.

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Próbaérettségi feladatsor_b NÉV: osztály Elért pont:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

Szakaszvizsgára gyakorló feladatok 9. évfolyam

2009. májusi matematika érettségi közép szint

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

Koordináta-geometria feladatok (emelt szint)

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

Érettségi feladatok Koordinátageometria_rendszerezve / 5

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

Másodfokú egyenletek Gyakorló feladatok. Készítette: Porkoláb Tamás. Milyen p valós paraméter esetén lesz az alábbi másodfokú egyenlet egyik gyöke 5?

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

Érettségi feladatok: Koordináta-geometria 1/5

MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI SZÓBELI TÉMAKÖRÖK

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Hasonlóság. kísérleti feladatgyűjtemény POKG osztályos matematika

Add meg az összeadásban szereplő számok elnevezéseit!

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

MATEMATIKA ÉRETTSÉGI május 06. KÖZÉPSZINT I.

NULLADIK MATEMATIKA ZÁRTHELYI

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

10. Koordinátageometria

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám

1. Feladatsor. I. rész

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

Függvények Megoldások

VI. Felkészítő feladatsor

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.

Szóbeli érettségi gyakorló feladatok

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

Átírás:

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2 8x + 1 f) x 2 + 8x + 1 2. Az alábbi függvények a valós számokat a valós számok halmazába leképezik le. Ábrázoljuk ezeket a függvényeket, határozzuk meg a függvények zérus helyeit és a szélsőértékeiket! a) f(x) = x 2 8x + 18 b) g(x) = x 2 + 2x c) h(x) = x 2 2x 8 d) i(x) = x 2 + 10x + 2 e) j(x) = x 2 12x + 27 f) k(x) = x 2 10x 21. Az ábrán látható függvénynek írjuk fel a hozzárendelési szabályát! Jellemezzük a függvényt! (A jellemzés fő szempontjai az előző feladatsor függvényábrázolással kapcsolatos feladatainál megtalálhatóak.) a) b) c) d)

. Határozzuk meg a c paraméter értékét úgy, hogy a következő függvények zérus helyeinek száma 0, 1 illetve 2 legyen! a) f(x) = x 2 + 6x + c b) g(x) = x 2 8x + c c) h(x) = x 2 x + c. Oldjuk meg a valós számok halmazán a következő egyenletet! a) (x 2) (x + ) = 0 b) (2x ) ( x) = 0 c) x 2 8 = 0 6. Oldjuk meg a valós számok halmazán a következő egyenletet! a) x 2 6x + 8 = 0 b) x 2 x + = 2x 2 + 9x + c) x 2 6x + 1 = 10x + 12 d) x 2 + 1x 9 = 0 e) 6x 2 + x + = 0 f) x 12x 2 + = 0 7. Oldjuk meg a valós számok halmazán a következő egyenletet! a) (x + 2) (2x ) + x = 6 b) (x + 1) (x 2) (x + ) = x c) (x + 1) (2x ) 2 (x + 1) = 7x + 1 d) (2x 7) (x + ) + (7x 1) (2x + ) = 6x 29 e) (x 1)2 f) x 2 x+1 8 x x = 2 = x g) x+1 2x 1 = x 2 x+2 h) 2x+1 x+ x+ = x 1 x+1 x 2 1 8. Alakítsuk szorzattá a következő másodfokú kifejezéseket! a) x 2 + x 6 b) x 2 + 7x + 12 c) 2x 2 9x + 18 d) 12x 2 + 1x + e) x 2 + 8x +

9. Írjunk fel olyan másodfokú egyenletet, amelynek gyökei: a) és b) 2 és 7 c) 0 és d) 1 és 2 e) és 7 10 10. Egyszerűsítsük a következő törteket! a) x2 +7x+12 x 2 +2x 8 b) x2 1x 10 2x 2 7x 1 2x 2 +x c) 2x 2 +11x+1 d) 10x2 1x 8x 2 +1x 11. Adjuk meg a valós számoknak azt a legbővebb részhalmazát. amelyen az alábbi kifejezések értelmezhetőek! a) 2x 1 b) 2x 1 c) x 2 x + d) (x 2)(x + ) e) x 1 x+ f) x 1 x+ g) x h) 1 x i) 1 x 2 12. A műveletek elvégzésével döntsük el, hogy melyik szám a nagyobb! Számológépet ne használjunk! a) 10 vagy 1 b) 11 7 vagy 6 1 1. Végezzük el a következő műveleteket! a) 21 + 21 b) 29 + 2 29 2 c) ( 2 + 2 + ) 2 d) ( 8 + 1 8 + 1) 2

1. Végezzük el a következő műveleteket! a) 72 2 8 b) 8 27 + 7 c) 12 20 1. Zsebszámológép használata nélkül végezzük el a következő műveleteket! a) 7 b) 972 8 c) 7 + 22 7 22 d) 1 7 1 + 7 16. Gyöktelenítsük a következő törtek nevezőjét! a) b) 8 +2 12 1 10 c) 6+2 17. Végezzük el a következő műveleteket! a) ( 7+ ) (20 2 8) 7 b) ( 6 + 2 ) (10 + 7 ) +2 20 c) 7+ 7 + 18. Zsebszámológép használata nélkül végezzük el a következő számításokat! a) 7 + 22 b) 9 + 17 7 22 9 17 c) 1 7 1 + 7 19. Döntsük el, hogy melyik szám a nagyobb! Számológépet ne használjunk! a) 2 2 b) c) vagy 7 vagy 2 17 vagy 1 d) 1 vagy 2 99 20. Végezzük el a következő összevonásokat! a) b) 162 + 16 + 12 20 2 c) 187 2 8 21. Oldjuk meg a valós számok halmazán az alábbi egyenleteket! a) x+ + x = 100 x x+ x 2 2 b) 2x+1 x 1 + 8 = 0 x+ x x 2 16 c) x+1 x+1 = 1 x 1 x+1 9x 2 1

22. Oldjuk meg a valós számok halmazán az alábbi egyenleteket! a) x x 2 + = 0 b) x + x 2 20 = 0 c) x 8x 2 9 = 0 d) 2x + 7x 2 = 0 e) x 6 7x 8 = 0 f) x 6 28x + 27 = 0 g) x 6 x = 0 2. Oldjuk meg az alábbi egyenletrendszert, ahol az ismeretlenek a valós számok halmazából valóak! x + 2y = a) x 2 + y = 2 } x y = b) x + y 2 = 8 } c) x2 2y = 2 x + y = } x + y = 7 d) x y = 10 } e) x2 + y 2 = 10 x 2 + y = 1 } 2. Oldjuk meg a valós számok halmazán az alábbi egyenleteket! a) (x 2) (x 2) 2 + = 0 b) (x + ) 7 (x + ) 2 18 = 0 c) (x + ) 1 (x + ) 2 8 = 0 d) (x 2 + 6x) (x 2 + 6x + ) 77 = 0 e) (x 2 x) (x 2 x ) 10 = 0 2. Oldjuk meg a valós számok halmazán az alábbi egyenlőtlenségeket! a) x 2 9 > 0 b) x 2 100 0 c) x 2 x 0 d) x 2 8x > 0 e) x 2 + 6x 7 < 0 f) x 2 9x + 18 < 0 g) x 2 + 12x + < 0 26. Mely egész számok esetén teljesülnek az alábbi egyenlőtlenségek? a) x 2 x 6 < 0 b) x 2 + x 20 0 c) x 2 x + 12 0 d) x 2 x + 12 0

27. Oldjuk meg a valós számok halmazán az alábbi egyenlőtlenségeket! a) x + x 2 12x 0 b) 2x 7x 2 + 1x > 0 c) x + x 2 2 0 d) x 10x 2 + 9 < 0 28. Oldjuk meg a valós számok halmazán az alábbi egyenlőtlenségeket! x+ a) < 0 x 2 +7 b) x2 +x+18 x c) x2 x 6 x 2 x 2 0 > 0 d) x2 7x+1 x 2 +7x 18 0 29. Oldjuk meg a valós számok halmazán az alábbi egyenlőtlenségeket! a) (x ) (x 2) x > 0 b) x 1 x 2 x 2 x 1 c) 1 + < x 1 x 2 2+x d) 1 + 1 2+2x x 0. Oldjuk meg a valós számok halmazán az alábbi egyenleteket! a) x + = b) x = 9 c) 2x = 1 d) + x + = 0 e) 7 x + 11 = 0 f) 8x 1 8 = 0 g) x = x + 1 h) x + 2 = 7x 8 1. Oldjuk meg a valós számok halmazán az alábbi egyenleteket! a) x + 6 = x b) x + 2 = x c) x + 1 = x 1 d) 2x + 8 = x + 2. Oldjuk meg a valós számok halmazán az alábbi egyenleteket! a) x + 2 + x = b) x 6 x + 1 = 1 c) x + + 2x + 6 = 2 d) x + 6 x + 2 = 2x + 8 e) x + + 1 2x = 9 + x f) 2x + 2 x + 2 = x 6

. Számítsuk ki a következő számok számtani és martani közepük közötti különbséget! a) és 27 b) 20 és c) 6 és 2010. a) Két szám számtani közepe 2, a kisebb szám 20. Mennyi a nagyobb szám? b) Két szám mértani közepe 2, a kisebb szám 20. Mennyi a nagyobb szám? c) Két szám számtani közepe 0, a nagyobb szám 70. Mennyi a kisebb szám? d) Két szám mértani közepe 0, a nagyobb szám 70. Mennyi a kisebb szám?. a) József autóval egy órán át 60 km/h sebességgel, majd két órán át 80 km/h sebességgel haladt. Mennyi volt az átlagsebessége? b) Péter a 10 km-es út első harmadát 60 km/h, a második harmadát 80 km/h, az utolsó harmadát 90 km/h sebességgel tette meg. Mennyi volt az átlag sebessége? 6. a) Két szám különbsége 12, szorzatuk. Melyik ez a két szám? b) Két szám különbsége 12, négyzetösszegük 1. Melyik ez a két szám? c) Két szám különbsége 12, a nagyobb számot a kisebbel osztva hányadosuk 10- zel kisebb, mint a kisebbik szám. Melyik ez a két szám? 7. a) Két szám összege 20, szorzatuk 6. Melyik ez a két szám? b) Két szám összege 20, négyzetösszegük 208. Melyik ez a két szám? c) Két szám összege 20, négyzetük különbsége 200. Melyik ez a két szám? 8. Egy társaság kerékpártúrán vesz részt. Az egyik napon 80 km-t haladtak. Ha óránként km-rel többet tettek volna meg, akkor 1 órával hamarabb értek volna célba. Mekkora sebességgel kerékpároztak, és mennyi ideig tartott az út? 9. Eszter 000 Ft-ért virágpalántát vásárol. Ha a darabonként 90 Ft-tal olcsóbb petúniát választja, akkor 9-cel több palántát tud megvenni, mint a drágább muskátliból. Mennyibe kerül a muskátli palánta és hány darabot tud megvenni a pénzéből? 0. A téglalap alakú monitor képernyőjének oldalai cm és 27 cm. A képernyő körül minden oldalon azonos szélességű műanyag keret van, melynek területe 1/-a a képernyő területének. Milyen széles a keret? 1. Számítsuk ki a körcikk területét, valamint a körív hosszát, ha a sugár 8 cm, a középponti szög pedig a) 1 b) 60 c) 10 d) 270!

2. Mekkora középponti és kerületi szög nyugszik azon a köríven, amelynek hossza a kör kerületének a) 1/-a b) /-e c) 11/12-e d) 0%-a e) 7%-a?. Az alábbi arányok egy négyszög szögeinek az arányát mutatja egy adott körüljárás esetén. Döntsük el, hogy melyik húrnégyszög! Számítsuk ki a négyszög szögeinek értékét! a) :2:: b) :2:9:10 c) ::: d) 2::: e) :20:1:16. Számítsuk ki, hogy milyen távol van a Föld felszínén mérve Budapest az egyenlítőtől mérve! A város az északi 7, szélességi körön fekszik, és a Föld sugara 670 km. Az eredményt egész km-re kerekítve adjuk meg!. Egy szabályos háromszög alakú zárt kert oldalának hossza 1 m. A gazda a kert egyik oldalának felezőpontjában (a kerítésen belül) leszúrt egy karót, majd egy 7 méter hosszú kötéllel a karóhoz kötötte kecskéjét. Mekkora területen legelhet a jószág? 6. Mekkora szöget zár be egy szabályos nyolcszög egy csúcsából kiinduló legrövidebb és leghosszabb átló egymással? 7. Egy szimmetrikus trapéz alapjainak hossza 6 cm és 1 cm, szárai 7 cm hosszúak. Számítsuk ki a trapéz kiegészítő háromszögének oldalait! 8. Egy trapéz rövidebb alapjának hossza 7 cm, kiegészítő háromszögének két másik oldala 2 cm és 6 cm hosszú. A trapéz másik alapjának hossza 1 cm. Számítsuk ki a trapéz szárainak hosszát! 9. Egy derékszögű háromszög befogóinak hossza cm, illetve cm. Mekkora részekre bontja az átfogóhoz tartozó magasság az átfogót? Mekkora távolságra van a derékszög az átfogótól? 0. Egy derékszögű háromszög átfogóhoz tartozó magassága az átfogót két olyan szakaszra bontja, amelyek hossza 8 cm, illetve 2 cm. Mekkorák a háromszög befogói? 1. Egy háromszög alakú virágágyásba négyféle virágot szeretnénk ültetni, ezért azt az oldalak harmadoló pontjai mentén négy részre osztottuk. Liliomot a középső, hatszög alakú részbe ültetünk. Ezt az ábrán szürkével jeleztük. Számítsuk ki, hogy ez a szürke terület hanyadrésze a teljes virágágyásnak!