Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Hasonló dokumentumok
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

Megoldások 9. osztály

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

XX. Nemzetközi Magyar Matematika Verseny

Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Megyei matematikaverseny évfolyam 2. forduló

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet Megoldások

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

Fonyó Lajos: A végtelen leszállás módszerének alkalmazása. A végtelen leszállás módszerének alkalmazása a matematika különböző területein

illetve a n 3 illetve a 2n 5

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

9. évfolyam 2. forduló

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

Az 1. forduló feladatainak megoldása

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

A III. forduló megoldásai

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

300 válogatott matematikafeladat 7 8. osztályosoknak

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

Az egyszerűsítés utáni alak:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

1. melléklet: A tanárokkal készített interjúk főbb kérdései

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

Egészrészes feladatok

4. Számelmélet, számrendszerek

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

XVIII. Nemzetközi Magyar Matematika Verseny

Bartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre

47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

Paraméteres és összetett egyenlôtlenségek

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Matematika 6. osztály Osztályozó vizsga

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

XXII. Vályi Gyula Emlékverseny április 8. V. osztály

XXIII. Vályi Gyula Emlékverseny május 13. V. osztály

Minden feladat teljes megoldása 7 pont

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás

Ezután az első megoldásban látott gondolatmenettel fejezhetjük be a feladat megoldását. = n(np 1)...(np p+1) (p 1)! ( ) np 1.

1. feladat Bizonyítsuk be, hogy egy ABCD húrnégyszögben AC BD

Matematika 7. osztály

Németh László Matematikaverseny, Hódmezővásárhely április 11. A osztályosok feladatainak javítókulcsa

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

A tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Függvény fogalma, jelölések 15

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév. kezdők III. kategória

1 = 1x1 1+3 = 2x = 3x = 4x4

Oszthatósági problémák

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

Haladók III. kategória 2. (dönt ) forduló

FELADATOK ÉS MEGOLDÁSOK

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

: 1 4 : 1 1 A ) B ) C ) D ) 93

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Érettségi feladatok: Síkgeometria 1/6

Átírás:

Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2 + ab + b 2 tízes számrendszerben felírva 0-ra végződik. Bizonyítsuk be hogy legalább két nullára végződik. Megoldás. Átfogalmazzuk a feladatot. Tudjuk hogy 10 osztója az a 2 +ab+b 2 kifejezésnek és azt kell belátnunk hogy a 2 + ab + b 2 100-zal is osztható. A feltétel ekvivalens azzal hogy a kifejezés osztható 2-vel és 5-tel. Le fogjuk vezetni hogy akkor 4-gyel és 25-tel is osztható amiből már következik a bizonyítandó állítás. Először vizsgáljuk a 2-vel való oszthatóságot. Az alábbi táblázat alapján csak akkor lesz a kifejezés páros ha a és b is páros. a b a 2 + ab + b 2 2-es maradékai 0 0 0 1 0 1 0 1 1 1 1 1 Tehát a és b is páros. Ebből viszont az következik hogy a 2 b 2 és ab is osztható 4-gyel vagyis kifejezésünk is osztható 4-gyel. Most megnézzük az 5-tel való oszthatóságot. a 2 b 2 ab a 2 + ab + b 2 5-ös maradékai 0 0 0 0 0 1; 4 0 1; 4 1; 4 0 0 1; 4 1 1 1; 4 3; 1 1 4 2; 3 2; 3 4 1 2; 3 2; 3 4 4 1; 4 4; 2 (A táblázat ötödik sora például azt mutatja hogy ha a 2 1 maradékot ad 5-tel osztva akkor a 1 vagy 4 maradékot ad és ha b 2 maradéka 4 akkor b maradéka 2 vagy 3. Ezeket minden lehetséges párosításban összeszorozva ab-re az 1 2 = 2 1 3 = 3 4 2 = 8 4 3 = 12 vagyis a 2 és 3 lehetséges maradékokat kapjuk.) 1

Az előzőekhez hasonlóan csak akkor lesz a 2 + ab + b 2 5-tel oszható ha a és b is az de ebben az esetben a 2 ab és b 2 (tehát összegük is) 25-tel is osztható. Ha pedig egy egész 4-gyel és 25-tel is osztható akkor 100-zal is így tízes számrendszerben felírt alakja legalább két nullára végződik. 2. Adott a síkon 6 pont közülük semelyik három nincs egy egyenesen. Bizonyítsuk be hogy található közöttük három amelyek által meghatározott háromszögnek van egy legalább 120 -os szöge. Megoldás. Képezzük az adott pontok konvex burkát azaz azt a legszűkebb konvex sokszöget melynek csúcsai az adott pontok közül valók és tartalmazza az adott pontokat. Ha a konvex burok hatszög: Nem lehet a hatszög minden szöge kisebb mint 120 mert a hatszög belső szögeinek öszszege 720. Ezért a hatszögnek van legalább 120 -os szöge ami a konvexitás miatt kisebb mint 180. Tehát ez a szög szöge egy olyan háromszögnek melynek csúcsai az adott pontok közül valók így az állítás teljesül. Ha a konvex burok ötszög négyszög vagy háromszög: Ekkor van olyan pont ami a konvex burok belsejében van (hiszen a pontok között nincs három amelyek egy egyenesre illeszkednének) legyen ez a pont A. A konvex sokszöget az egyik csúcsából induló átlói háromszögekre bontják tekintsük azt a BCD háromszöget amely belsejében van az A pont. A BAD CAD DAB szögek összege 360 ezért van közöttük olyan amelyik legalább 120 és az itt keletkező háromszög eleget tesz a feltételeknek így az állítás teljesül. 2

3. Nyolc darab pozitív egész szám összege és szorzata ugyanannyit ér. Mekkora ez a közös érték? Megoldás. sorrendje. Feltehetjük hogy 1 x 1 x 2 x 3... a nyolc szám nagyság szerinti Az x 1 + x 2 + x 3 +... + = x 1 x 2 x 3... egyenlet oldalait -cal osztva x 1 + x 2 + x 3 +... + x 7 + 1 = x 1 x 2 x 3... x 7 adódik. Mivel ezért 8 x 1 x 2 x 3... x 7. x 1 x 2... x 7 1 Nyilvánvaló hogy x 7 2 így x 7 2 ezért x 1 = x 2 = x 3 = x 4 = 1 hiszen x 4 2 esetén a szorzat értéke legalább 16. Tehát 4 + x 5 + x 6 + x 7 + = x 5 x 6 x 7. Így pedig x 5 x 6 x 7 = 4 + x 5 + x 6 + x 7 + 1 6 hiszen x 7 2. Az x 5 x 6 x 7 6 egyenlőtlenség alapján x 5 értéke csak 1 lehet. Így pedig x 6 x 7 6 ezért x 6 értéke 1 vagy 2. Ha x 6 = 1 akkor 6 + x 7 + = x 7 ahonnan = x 7 + 6 x 7 1 = 1 + 7 x 7 1 azaz (x 7 1)( 1) = 7. Az egyenlet egyetlen megoldása x 7 = 2 = 8 ekkor pedig x 1 x 2... = x 1 + x 2 +... + = 16. Ha x 6 = 2 akkor 7 + x 7 + = 2x 7 alapján = x 7 + 7 2x 7 1 x 7 ahonnan (2x 7 1)(2 1) = 15 adódik. Egyenletünk megoldása x 7 = 2 = 3. Ebben az esetben a szorzat és az összeg közös értéke 12. A közös érték tehát 16 vagy 12 ahol mindkét érték megfelel a feladat feltételeinek. 3

4. Egy konvex ötszög pontosan 100 darab egységnyi oldalú egybevágó szabályos háromszögből rakható ki (hézag- és átfedés nélkül). Mekkora lehet az ötszög kerülete? Megoldás. Egybevágó szabályos háromszögekből egy újabb szabályos háromszöget csak négyzetszám számú darabból lehet kirakni. Esetünkben egy n oldalú szabályos háromszög n 2 egységyni oldalú kis háromszögből állhat. A feladat feltételeinek megfelelő ötszög az alábbi ábra szerint kiegészíthető egy n oldalú szabályos háromszögre: Ha például x y akkor 1 x y < n ahol z 1. Bevezető megállapításunk alapján n = x + y + z az ötszög létrejöttének feltétele (x + y + 1) 2 x 2 y 2 (x + y + z) 2 x 2 y 2 = 100. A felírt egyenlőtlenség rendezett alakja 2x + 2y + 2xy 99. Ha x y akkor 4x + 2x 2 99 azaz x 2 + 2x 495 ahonnan x 6 következik. Mivel n 2 x 2 y 2 = 100 ezért (1) x = 1 esetén n 2 y 2 = 101 így n y = 1 n + y = 101 ahonnan n = 51 y = 50 nem ad megoldást. (2) x = 2 esetén n 2 y 2 = 104 ezért n y = 2 n + y = 52 vagy n y = 4 n + y = 26 lehetséges. Az első esetben n = 27 y = 25 ami nem ad megoldást. A második esetben n = 15 y = 11. Ekkor x = 2 y = 11 z = 2 a másik két oldal pedig 4 illetve 13 egység hosszú. Az ötszög kerülete pedig 32 egységnyi. 4

(3) Az x = 3 x = 4 x = 5 x = 6 esetekben rendre n 2 y 2 = 109 n 2 y 2 = 116 n 2 y 2 = 125 n 2 y 2 = 136 adódik. Az n 2 y 2 = (n y)(n + y) azonosság alapján n y < n + y felhasználásával a felsorolásnak megfelelően az n y = 1 n + y = 109 n y = 5 n + y = 25 n y = 2 n + y = 58 n y = 2 n + y = 68 n y = 1 n + y = 125 n y = 4 n + y = 34 egyenletrendszerek adódnak felhasználva azt is hogy n y és n + y azonos paritásúak. A felírt egyenletrendszerek egyikének sincs a feladat feltételeinek megfelelő megoldása. Tehát az ötszög kerülete csak 32 egység hosszú lehet. 5