NT Az érthető matematika 10. Tanmenetjavaslat

Hasonló dokumentumok
TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Tanmenet a Matematika 10. tankönyvhöz

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA

NT Az érthető matematika 11. Tanmenetjavaslat

NT Matematika 10. (Heuréka) Tanmenetjavaslat

pontos értékét! 4 pont

Matematika tanmenet 10. évfolyam 2018/2019

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

TARTALOM. Előszó 9 HALMAZOK

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Osztályozó- és javítóvizsga. Matematika tantárgyból

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP és AP )

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Az osztályozó vizsgák tematikája matematikából évfolyam

2018/2019. Matematika 10.K

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Az osztályozó vizsgák tematikája matematikából

Tanulmányok alatti vizsga felépítése. Matematika. Gimnázium

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Koós Dorián 9.B INFORMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

NT Matematika 11. (Heuréka) Tanmenetjavaslat

Az osztályozó- és javítóvizsga témakörei matematika tantárgyból. 9. évfolyam

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

MATEMATIKA. Szakközépiskola

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, nyelvi-kommunikáció tagozatos csoport)

Matematika szóbeli érettségi témakörök 2017/2018-as tanév

TANMENET. a matematika tantárgy tanításához 11.E osztályok számára

MATEMATIKA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 11. évfolyam (középszintű csoport)

Matematika 11. évfolyam

TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára

I. A négyzetgyökvonás

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, szeptember

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

Osztályozóvizsga követelményei

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára

Szé12/1/N és Szé12/1/E osztály matematika minimumkérdések a javítóvizsgára

Követelmény a 8. évfolyamon félévkor matematikából

Osztályozóvizsga követelményei matematikából (négy évfolyamos képzés, alapóraszámú csoport)

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök

Mit emelj ki a négyjegyűben?

TANMENET. Matematika

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Osztályozóvizsga követelményei matematikából (négy évfolyamos képzés, emelt óraszámú csoport)

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

Matematika. Osztályozó vizsga írásbeli szóbeli időtartam 60 p 10 p arány az értékelésnél 60% 40% A vizsga értékelése

TANMENET. a Matematika tantárgy tanításához a 12. a, b c osztályok számára

Függvény fogalma, jelölések 15

Matematika 5. osztály

Az osztályozó vizsgák tematikája matematikából évfolyam

Osztályozóvizsga-tematika 8. évfolyam Matematika

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

2017/2018. Matematika 9.K

Matematika pótvizsga témakörök 9. V

MATEMATIKA tanterv emelt szint évfolyam

Másodfokú egyenletek, egyenlőtlenségek

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

Osztályozóvizsga követelményei

A középszintű érettségi vizsga témakörei MATEMATIKÁBÓL

Matematika házivizsga 11. évfolyam alapos csoportok részletes követelmények

Osztályozóvizsga követelményei

TANMENET. a matematika tantárgy tanításához a nappali 11. évfolyam számára

Matematika. osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése

MATEMATIKA HÁZIVIZSGA 11. ÉVFOLYAM, ALAPOS CSOPORTOK RÉSZLETES KÖVETELMÉNYEK

Matematika házivizsga 11. évfolyam emelt szintű csoport részletes követelmények

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli

Matematika. Matematika 10. évfolyam. IKT kompetencia fejlesztésére javasolt TANMENET

Követelmény a 7. évfolyamon félévkor matematikából

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez

Osztályozóvizsga követelményei matematikából (hat évfolyamos képzés, matematika tagozatos csoport)

Másodfokú egyenletek, egyenlőtlenségek

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

Érettségi előkészítő emelt szint évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

Javítóvizsgára készülést segítő anyagok matematikából 9. szakgimnázium 9/A 9/B 9/C 9/D

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Toldi Miklós Élelmiszeripari Szakképző Iskola és Kollégium Érettségi témakörök május-június

Átírás:

NT-17212 Az érthető matematika 10. Tanmenetjavaslat A segédanyag Az érthető matematika tankönyvsorozat átdolgozott kiadásának második könyvéhez (17212) készült. A tízedik osztályos tananyag egy lehetséges feldolgozását 111 órára (37 tanítási hét, heti 3 óra) készítettük el. A táblázat első oszlopában a tanítási óra sorszámát, a másodikban az óra anyagát (általában a megfelelő tankönyvi lecke címe) tüntettük fel, míg a harmadik oszlopban az órához kapcsolódó fontosabb módszerek, fogalmak, tételek olvashatók. A második oszlopban dőlt betűvel szedtük a tankönyvi leckék címétől eltérő órákat (például Gyakorlás, Dolgozat). Általános elvként 3 6 óránként egy-egy gyakorló órát szúrtunk be, a javasolt nyolc témazáró dolgozatot pedig igyekeztünk 10-12 (max. 15) óránként elhelyezni. A tanmenetjavaslat elsősorban a középszintű érettségi vizsgához tartalmazza a tananyagot. Az emelt szintű anyagrészeket, valamint a kiegészítő olvasmányokat külön (piros) színnel jelöltük. A tervezetünk csak alapot adó, iránymutató javaslat. A konkrét osztály összetételétől a tanulók képességei, motiválási lehetőségek, az osztály irányultsága (reál, humán) függően bátran eltérhetünk az alábbi tanmenettől. Érdeklődőbb gyerekekkel az olvasmányokat is elemezhetjük (ezek egy részét a diákok akár önállóan is feldolgozhatják), erősebb csoportban egyes emelt szintű részeket is megemlíthetünk az órán. (Időt nyerhetünk például a dolgozatok megbeszélésekor vagy az év végi ismétlő feladatokra szánt idő csökkentésével.) 36 tanítási hét esetén 108 tanítási órával számolhatunk. A három óratöbbletet több helyről is elvehetjük: ez lehet valamelyik gyakorló óra (elsősorban akkor, ha több Gyakorlás szerepel viszonylag közel egymáshoz); időnyerés céljából átütemezhetjük és ritkíthatjuk a gyakorló órákat; kihagyható valamelyik, a tanmenetben azonos címmel szereplő duplázó óra (ilyet akkor érdemes választani, ha a megfelelő témakör alaposabb vagy mélyebb gyakorlására nincs szükség); végül elhagyhatunk az év végi ismétlő órákból is. Ugyanakkor a tanmenetjavaslat 3-nál magasabb heti óraszám esetén is alkalmazható, a kiegészítő és emelt szintű részek arányos bevonásával. Budapest, 2014. augusztus Orosz Gyula

Halmazok, kombinatorika A tanítandó tananyag, fogalmak, tételek 1. Vegyes kombinatorikai feladatok Algoritmusok, invariáns tulajdonság (módszer), szimmetria 2. A skatulya-elv Skatulya-elv (alakjai) 3. Gyakorlás 4. Sorba rendezési és kiválasztási problémák I. Sorba rendezési és kiválasztási feladatok (permutációk, variációk) 5. Sorba rendezési és kiválasztási problémák II. Kombinációk, részhalmazok száma Játékok, gráfok (olvasmány) Egy kis logika (olvasmány) 6. Összefoglalás 7. 1. dolgozat 8. A dolgozat feladatainak a megbeszélése Algebra Egyszerű gráfelméleti játékok. Állítások, tagadásuk, szükséges és elégséges feltételek. 9. Irracionális számok Irracionális számok, műveleti tulajdonságok 10. Számok n-edik gyöke n-edik gyök definíciók 11. A négyzetgyökvonás azonosságai A négyzetgyökvonás azonosságai 12. A négyzetgyökvonás azonosságai 13. A négyzetgyökvonás azonosságainak alkalmazása I. A négyzetgyökvonás azonosságainak alkalmazása (műveletek, alaphalmaz) 14. A négyzetgyökvonás azonosságainak alkalmazása II. Bevitel a gyökjel alá, kihozatal a gyökjel alól, gyöktelenítés 15. Gyakorlás Az n-edik gyökvonás azonosságai (emelt szint) Az n-edik gyökvonás azonosságai Az n-edik gyökvonás azonosságainak alkalmazása (emelt szint) Műveletek, bevitel a gyökjel alá, kihozatal a gyökjel alól, gyöktelenítés 16. A négyzetgyökfüggvény Négyzetgyökfüggvény, transzformációi 17. Az inverz függvény fogalma Inverz függvény, egyszerűbb esetek 18. Összefoglalás 19. 2. dolgozat 20. A dolgozat feladatainak a megbeszélése Másodfokú egyenletek, egyenlőtlenségek 21. Másodfokú egyenletek megoldása szorzattá alakítással Csoportosítás módszere; gyöktényezős alak 22. Másodfokú egyenletek megoldása teljes négyzetté kiegészítéssel Teljes négyzetté kiegészítés

23. Gyakorlás 24. A másodfokú egyenlet megoldóképlete Egyenletmegoldás lépései; diszkrimináns, megoldóképlet 25. Az egyenletmegoldás gyakorlása 26. Nem kell mindig megoldóképlet! Speciális másodfokú egyenletek megoldása 27. A másodfokú függvények és másodfokú egyenletek kapcsolata Másodfokú függvény, transzformációs alak, diszkrimináns 28. Gyakorlás 29. Másodfokú egyenlőtlenségek I. Másodfokú egyenlőtlenségek megoldása grafikus módszerrel 30. Másodfokú egyenlőtlenségek II. Másodfokú egyenlőtlenségek megoldása algebrai módszerrel 31. Gyakorlás 32. Másodfokúra visszavezethető egyenletek Helyettesítés módszere Másodfokúra visszavezethető egyenletek, egyenlőtlenségek (nem érettségi tananyag) 33. Összefoglalás 34. 3. dolgozat 35. A dolgozat feladatainak a megbeszélése Szimmetrikus egyenlet, reciprok egyenlet 36. Gyökök és együtthatók közötti összefüggések Viète-formulák 37. Viète-formulák használata feladatmegoldásokban Gyökökben szimmetrikus kifejezések 38. Gyakorlás Paraméteres egyenletek (emelt szint) Megoldhatósági feltétel, gyökök előjele Paraméteres egyenlőtlenségek (emelt szint) 39. Szöveges, gyakorlati feladatok I. Másodfokú kifejezések alkalmazása (vegyes feladatok) 40. Szöveges, gyakorlati feladatok II. 41. Gyakorlás 42. Másodfokú egyenletrendszerek Másodfokú egyenletrendszerek megoldási módszerei Diofantoszi egyenletek (olvasmány) (Csak heti 3-nál magasabb óraszám esetén. Tanév közben, folyamatosan is feldolgozható.) 43. Szélsőérték-problémák, nevezetes közepek Hatványközepek, nagyságrendi viszonaik 44. Gyakorlás 45. Négyzetgyökös egyenletek I. Négyzetgyökös egyenletek megoldási módszerei Négyzetgyökös egyenletek II. (emelt szint) Négyzetgyökös egyenlőtlenségek (emelt szint) Magasabb fokú egyenletek megoldása (olvasmány) (emelt szint) 46. Összefoglalás 47. 4. dolgozat Többlépcsős négyzetgyökös egyenletek; az alaphalmaz szerepe Nehezebb négyzetgyökös egyenlőtlenségek; az alaphalmaz szerepe

48. A dolgozat feladatainak a megbeszélése 49. Új statisztikai jellemzők Terjedelem, eltérések, szórás 50. Új statisztikai jellemzők 51. Gyakorlás Adatok feldolgozása (olvasmány) Hasonlóság 52. Középpontos nagyítás és kicsinyítés, középpontos hasonlósági Nagyítás, kicsinyítés, középpontos hasonlósági transzformáció fogalma transzformáció 53. Középpontos nagyítás és kicsinyítés, középpontos hasonlósági Negyedik arányos szerkesztése transzformáció 54. Szerkesztések középpontos hasonlóság alkalmazásával Körök hasonlósági pontjai 55. Szerkesztések középpontos hasonlóság alkalmazásával 56. Gyakorlás 57. A hasonlósági transzformáció fogalma A hasonlósági transzformáció fogalma, a transzformáció aránya 58. A hasonlósági transzformáció fogalma Alakzatok hasonlósága, háromszögek hasonlósági kritériumai 59. Gyakorlás 60. Derékszögű háromszögre vonatkozó tételek Magasságtétel, befogótétel 61. Derékszögű háromszögre vonatkozó tételek A számtani és a mértani közép összehasonlítása 62. Szögfelezőtétel A szögfelezőtétel (hasonlósággal) 63. Gyakorlás 64. Hasonló síkidomok területének aránya; hasonló testek térfogatának aránya Hasonló alakzatok területi és térfogati aránya 65. Hasonló síkidomok területének aránya; hasonló testek térfogatának aránya A gúla alappal párhuzamos síkmetszetei (Heti 3-nál magasabb óraszám esetén.) Gulliver geometriája (olvasmány) (Heti 3-nál magasabb óraszám esetén. Év közben folyamatosan is feldolgozható.) Párhuzamos szelők tétele (emelt szint) A háromszög területe és a háromszög oldalait érintő körök (olvasmány) (Heti 3-nál magasabb óraszám esetén. Tanév közben, folyamatosan is feldolgozható.) 66. Összefoglalás 67. 5. dolgozat 68. A dolgozat feladatainak a megbeszélése A vektorokról 69. Vektor szorzása számmal Vektorok műveleti tulajdonságai, skalármennyiség

70. Egyértelmű vektorfelbontási tétel Bázisvektor, koordináták, egyértelmű vektorfelbontási tétel 71. Vektorok a koordinátasíkon. Helyvektorok Helyvektorok; műveletek és koordináták 72. Gyakorlás 73. Felezőpont, osztópont Adott arányú osztópont koordinátái 74. A háromszög súlypontjába mutató vektor Háromszög súlypontjába mutató vektor A tetraéder súlypontja (olvasmány) 75. Vektor elforgatása 90 -kal 90 -kal elforgatott vektor koordinátái 76. Összefoglalás 77. 6. dolgozat 78. A dolgozat feladatainak a megbeszélése Trigonometria 79. Hegyesszögek szögfüggvényei Hegyesszögű szögfüggvény definíciók: szinusz, koszinusz, tangens, kotangens 80. Derékszögű háromszögek adatainak meghatározása Derékszögű háromszögek adatainak meghatározása 81. Gyakorlás 82. Összefüggések a hegyesszögek szögfüggvényei között Speciális hegyesszögek pontos értékei; pótszögek; trigonometriai alapegyenlet 83. Háromszögek adatainak meghatározása Emelkedési, lehajlási szög; területképlet 84. Gyakorlás 85. Síkbeli és térbeli számítások szögfüggvények segítségével Alkalmazások 86. Gyakorlás Hogyan határozta meg Sherlock Holmes az elpusztult szilfa árnyékának hosszát? (olvasmány) Egy feladat több megoldás (olvasmány) 87. Összefoglalás 88. 7. dolgozat 89. A dolgozat feladatainak a megbeszélése Függvények (Heti 3-nál magasabb óraszám esetén. Tanév közben, folyamatosan is feldolgozható.) 90. Szögfüggvények általánosítása Forgásszög; forgásszög szögfüggvényei 91. Szögfüggvények általánosítása Trigonometriai alapegyenlete 92. Gyakorlás 93. Szögfüggvények ábrázolása Szögfüggvények ábrázolása; 94. Szögfüggvények ábrázolása Függvénytulajdonságok (szélsőérték, monotonitás) Trigonometrikus inverzek

95. Gyakorlás Valószínűség-számítás 96. Ismerkedés a véletlennel Eseményalgebra alapjai 97. Valószínűség-számítási alapfogalmak Események (kedvező, biztos, lehetetlen) 98. Gyakorlás 99. Műveletek eseményekkel Események összege, különbsége, szorzata; kizáró események 100. Események valószínűsége Gyakoriság, relatív gyakoriság; a valószínűség fogalma 101. Események valószínűsége 102. Gyakorlás A három kocka problémája (olvasmány) 103. A valószínűség kiszámításának kombinatorikus modellje Kombinatorikus modell; az alkalmazás feltételei 104. Néhány érdekes probléma 105. Összefoglalás 106. 8. dolgozat 107. A dolgozat feladatainak a megbeszélése Kerületi és középponti szögek (emelt szint) Kerületi és középponti szögek Érintőszárú kerületi szög Látószöggel kapcsolatos mértani hely Gyakorlás Húrnégyszög Húrnégyszög A körhöz húzott szelőszakaszok tétele (olvasmány) Gyakorlás Összefoglalás Grafikus számítógépprogramok (olvasmány) Kerületi szög, középponti szög; a kerületi szögek tétele Érintőszárú kerületi szög; a kerületi és középponti szögek tétele A látókör 3-féle alakja Húrnégyszög Húrnégyszögek tétele A körhöz húzott szelőszakaszok tétele Tanév közben, folyamatosan is feldolgozható. Év végi ismétlés 108. Vegyes feladatok 109. Vegyes feladatok 110. Vegyes feladatok 111. Vegyes feladatok