Mechanikai érzékelők II. Szenzorok Battistig Gábor MTA EK Műszaki Fizikai és Anyagtudományi Intézet Mikrotechnológiai laboratórium battistig@mfa.kfki.hu 1
MECHANIKAI ÉRZÉKELŐK Érzékelő: a mérendő fizikai, kémiai, biológiai, stb. mennyiséget alakítja át mérhető, elektromos mennyiséggé. Mit akarunk mérni? Elmozdulás Gyorsulás Forgás Erő Nyomaték Mechanikai feszültség Nyomás Áramlási sebesség Tömeg (súly) Sűrűség Viszkozitás Hogyan tudjuk mérni? Ellenállás, ellenállás változás Piezoelektromosság Piezoellenállás Kapacitásváltozás Mágneses indukció Optikai módszerek Sugárzás (Doppler effektus) Áramlási sebesség Hőmérsékletváltozás (surlódás) 2
Szenzorválasztás a feladatnak megfelelően Mechanikai kialakítás méret és üzemi körülmények figyelembevételével TOKOZÁS! Mérési tartomány feladatnak megfelelő Pontosság legyen a feladatnak megfelelő Hőmérsékleti tényezők félvezetők általános működési tartománya: -40 120 C ellenállásváltozás, hőtágulás figyelembevétele hőkompenzálás Kiolvasás elektromos csatlakozás áram, feszültség, áramhurok, szabványos csatlakozás, I 2 S, Szenzorrendszer Adattárolás, feldolgozás, továbbítás 3
Pozíció, elmozdulás (hossz) Abszolút pozíció:??? Mihez képest? GPS Relatív pozíció: végálláskapcsoló, optokapú, indukciós közelítéskapcsoló, elmozdulás-, gyorsulás-, elfordulásmérés De: egy munkadarab mozgatásánál (robotkar, mintaasztal) a kiindulási pont meghatározása után az elmozdulásból az adott rendszerben a pozíció meghatározható. Precíziós x-y asztal 4
Induktív közelítéskapcsolók: alapvetően fémek érzékelése, kis távolság, nagyon változatos kiviteli alakok, elektromégneses zavarokkal szemben kevésbé védett Optikai kapcsolók: optokapu optikai út megszakítása zászlóval, egyszerű használat, zavarokkal szemben ellenálló Felületről reflektál fény érzékelése 5
Mágneses kapcsolók: Hall-szonda állandó mágnes jelenléte egyszerű, zavarvédett, magas hőmérsékleten (> 200 C) nem működik 6
Elmozdulás-, útmérés A felbontást a kialakítás határozza meg. Valós idejű, érintésmentes, magas fokú linearitás, erősen dinamikus, nagy folyamati sebességű alkalmazásokban is optimális visszajelzést adnak a pozícióról, energiahatékony, akár 1 µm-es felbontás, néhány mikrométeres pontosság. 7
LVDT lineáris differenciál transzformátor 8
Érintőképernyő Kapacitív érzékelés, üvegen transzparens vékonyréteg fémezés, elektronikus kiolvasás és jelfeldolgozás. 9
Optikai útmérés A lézerfény futásidején alapul A felület tulajdonságaitól független stabil mérés Hatótávolság változhat, optimalizálható Nagy ismétlési pontosság Felbontás a milliméteres tartományban Alkalmazás Fém és műanyag alkatrészek méreteinek ellenőrzése Robotok pozicionálása az autóiparban Átmérő, vastagság folyamatos ellenőrzése 10
MEMS mikrogépészet Mechanikai szerkezetek az 1-100 µm tartományban, kombinálva elektromos alkatrészekkel. Felületi mikrogépészet Föláldozható és funkcionális vékonyrétegek leválasztása Föláldozható réteg szelektív kémiai marása Tömbi mikrogépészet A tömbi hordozó nedves vagy plazmakémiai marása A hordozó Si egykristály anizotróp marása Funkcionális vékonyrétegek kialakítása a tömbi hordozó felületén 11
Kantilever struktúra Tömbi MEMS Felületi MEMS 12
Miért kell mérni a gyorsulást? Gravitáció irányának és nagyságának mérése dőlés, elfordulás 2D és 3D pozíció a térben Csak olyan érzékelők alkalmazhatók, amelyek állandó gyorsulást is érzékelnek Mozgásérzékelés gyorsulásmérés, integrálással sebesség meghatározása gyorsulásmérés, kétszeres integrálással pozíciómeghatározása Vibráció vagy sokk érzékelése rendellenes mechanikai működés kimutatása nagy mechanikai erőhatások érzékelése ütközés (légzsák indítása) 13
Gyorsulásérzékelők Alapképlet: a = dv/dt = d 2 s/dt 2 Newton-törvénye: F = m a Gyorsulás Lineáris Rezgés Sokk Jellemző gyorsulások 1g a Föld gravitációs mezejében ható nehézségi gyorsulás (1g=9,81m/s 2 ) 0-2g emberi mozgások közben fellépő gyorsulás 5-30g gépjármű mozgáskor 100-2000g nagyobb közlekedési balesetkor 5000g rakéta becsapódásakor 14
MEMS gyorsulásérzékelők A gyorsulásérzékelő lényegében egy rugó és egy elmozduló tömeg (szeizmikus vagy inerciális tömeg) által alkotott rendszer. Ha a gyorsulás állandó, a szeizmikus tömeg elmozdul (x), míg a rugóerő ki nem egyenlíti a tehetetlenségi erőt. F rugó = Kx és F inerciális = ma a = Kx/m vagy x = am/k Mikromechanikai és mikroelektronikai kivitelben a gyorsulásmérők kizárólag rugalmas lemezre (membrán) erősített szeizmikus tömegből állnak. Mind a rugalmas membrán mind a szeizmikus tömeg szilíciumból (Si) kialakítható. 15
Gyorsulásérzékelők 16
Mérési/érzékelési elvek és módszerek A gyorsulás okozta elmozdulás (x) érzékelésére szolgáló három általános módszer: 1. kapacitás mérés elmozduló és álló elektródák között. 2. a rugóban ébredő feszültségek/deformációk mérése piezoellenállásos módszerrel; 3. a rugóban ébredő mechanikai feszültség által a piezoelektromos hatás révén létrehozott töltés/elektromos feszültség mérése. 17
Érzékelési módok összehasonlítása Kapacitás Piezo-ellenállás Piezo-elektromos Impedancia nagy alacsony nagy Méret közepes közepes kicsi Hőmérsékleti tartomány igen széles közepes széles Linearitási hiba nagy alacsony közepes DC válasz igen igen nem AC válasz (f) széles közepes széles Csillapítás igen igen nem Érzékenység nagy közepes közepes Túlterhelés okozta nullpont eltolódás nem nem igen Elektronika kell nem kell Költségek közepes alacsony magas 18
Kapacitív elvű gyorsulásérzéklő Az inerciális tömeg (egyben a mozgó elektród) két pyrex üveg vagy szilícium lemez között van felfüggesztve, melyeken az ellenelektródok is helyet kapnak. A szimmetrikus elrendezés minimalizálja a hőmérséklet okozta méretváltozások hatását, így általában nincs is szükség aktív hőfokkompenzációra. 19
Kapacitív elvű mikroelektronikai gyorsulásérzéklő Kis deformációkra a d légrések d megváltozásai arányosak a mérendő gyorsulással (k a megfelelően definiált rugóállandó): A kétoldali kapacitás d/d = ma/kd C 1 = const/(d - d) illetve C 2 = const/(d + d) Kis deformációknál sorfejtéssel adódik d /d= (C 1 - C 2 )/(C 1 + C 2 ) 20
Piezorezisztív gyorsulásmérő Gyorsulás hatására a súly meggörbíti a piezoellenállást így megváltozik az ellenállása. Előnye a piezoelektromos gyorsulásmérőhöz hasonlítva, hogy a gyorsulás nagyon lassú változásai is pontosan kimutathatók vele. 5g-10000g max. gyorsulás között gyártják.
Si kapacitív gyorsulásérzékelő 1. Rugóztattottan felfüggesztett szeizmikus tömeg az elektródákkal 2. Rugó 3. Rögzített elektródák 22
Si kapacitív gyorsulásérzékelő 23
Jellemzők Nagyobb gyorsulás illetve lassulásértékek (50... 100 g) mérésére használják Mérési frekvencia 0 Hz-től (azaz lehetőség van statikus mérésre is) akár több khz-ig Tipikus élhosszúságuk 100 és 500 mikron közötti one-chip design Olcsó 24
MEMS gyorsulásérzékelő Szilíciumon kialakított, gépkocsiban (légzsák) alkalmazott mikroelektronikai gyorsulásérzékelő 25
1D-s és 3D-s gyorsulásérzékelők 26
Példák Lengő tömeg és rugókialakítások felületi mikrogépészettel
MEMS inerciális szenzorok 28
Giroszkóp szögelfordulás mérése 29
Szabad hőáramlás elvén működő gyorsulás érzékelő Ezen szenzorok működési elve a természetes hőáramlás fizikáján alapszik Kialakításának köszönhetően alkalmas statikus (DC) gyorsulások mérésére is A rendszer tulajdonképpen mozgó alkatrész nélkül működik (az egyetlen mozgó elem maga a levegő) Nyugalmi állapot, amikor a rendszerre nem hat gyorsulás A szenzorra vízszintes gyorsulás hat (balra) 30
Egy irányban érzékeny hőáramlás alapú gyorsulásmérő A termoelemek által mért hőmérséklet gyorsulás hatására 31
2D hőáramlás alapú gyorsulásmérő 32
Erő, nyomás, nyomaték 3D erőmérő Membrán kialakítás, tömbi mikromechanika, plazmamarás,középen maradó joystick, piezorezisztív kiolvasás, hátoldali ellenállások, membrán átmérő 500 µm, membrán vastagság: 50 µm, chipméret: 2 2 mm 2 33
3D erőmérő kiolvasása 34
Nyomásmérő Key Features 260 to 1260 hpa absolute pressure range Current consumption down to 4 μa High overpressure capability: 20x full-scale Embedded temperature compensation 24-bit pressure data output 16-bit temperature data output ODR from 1 Hz to 75 Hz SPI and I²C interfaces Embedded FIFO Interrupt functions: Data Ready, FIFO flags, pressure thresholds Supply voltage: 1.7 to 3.6 V High shock survivability: 22,000 g Small and thin package ECOPACK lead-free compliant 35
Hőmérséklet és páratartalom érzékelők Mérési tartomány: 300-1100 hpa (felbntás 0.01 hpa) 0-100% rh -40 - +85 C 1s válaszidő I2S digitális interface 36
Alkalmazások - autóipar A legtöbb MEMS szenzort napjainkban a járművekben és a mobileszközökben találjuk. 3D gyorsulásmérő 3D giroszkóp Elmozdulásérzékelőkk Áramlásérzékelők Gázérzékelők Pozícióérzékelők 37
Olvasnivalók: http://www.mogi.bme.hu/tamop/mikromechanika/math-index.html http://www.slideshare.net/smilingshekhar/mechanical-sensors-2-24677162?qid=ec08a37f-5a25-4908-a699-72058c30c4a4&v=qf1&b=&from_search=2 http://www.slideshare.net/bapikumar144/mechanical-sensor?related=1 http://www.slideshare.net/kumarsri526/mechanical-sensors?related=2 38