Molibdén-tartalmú ipari hulladék anyag feldolgozása tiszta molibdén kinyerése



Hasonló dokumentumok
a réz(ii)-ion klorokomplexének előállítása...

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

A ferrát-technológia klórozással szembeni előnyei a kommunális szennyvizek utókezelésekor

KÉMIA FELVÉTELI DOLGOZAT

XXXVI. KÉMIAI ELŐADÓI NAPOK

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Az oldatok összetétele

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

Kémiai metallurgia-ii (Fémelőállítási folyamatok elméleti alapjai)

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002

Szent-Györgyi Albert kémiavetélkedő

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Az oldatok összetétele

ALPHA spektroszkópiai (ICP és AA) standard oldatok

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Kémia OKTV I. kategória II. forduló A feladatok megoldása

Általános és szervetlen kémia Laborelıkészítı elıadás IX-X.

Vegyipari technikus Vegyipari technikus

Előadás címe: A vörösiszappal szennyezett felszíni vizek kárenyhítése. Mihelyt tudjátok, hogy mi a kérdés érteni fogjátok a választ is Douglas Adams

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

KÉMIA FELVÉTELI KÖVETELMÉNYEK

Oldódás, mint egyensúly

Az 2008/2009. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának. feladatmegoldásai K É M I Á B Ó L

SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL

Telítetlen oldat: még képes anyagot feloldani (befogadni), adott hőmérsékleten.

Tárgyszavak: akkumulátor; elem; Kína; nehézfém; reciklálás; technológia; újrahasznosítás.

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

Az Analitikai kémia III laboratóriumi gyakorlat (TKBL0504) tematikája a BSc képzés szerint a 2010/2011 tanév I. félévére

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Sav bázis egyensúlyok vizes oldatban

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Számítások ph-val kombinálva

Oldódás, mint egyensúly

2011/2012 tavaszi félév 3. óra

KÉMIA. PRÓBAÉRETTSÉGI május EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Erre a célra vas(iii)-kloridot és a vas(iii)-szulfátot használnak a leggyakrabban

Elektro-analitikai számítási feladatok 1. Potenciometria

Ecetsav koncentrációjának meghatározása titrálással

Szent-Györgyi Albert kémiavetélkedő Kód

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése

A nád (Phragmites australis) vizsgálata enzimes bonthatóság és bioetanol termelés szempontjából. Dr. Kálmán Gergely

T I T - M T T. Hevesy György Kémiaverseny

T I T M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 8. osztály

Kromatográfiás módszerek

Név: Dátum: Oktató: 1.)

Zn-tartalmú szennyvíz membránszűrése. Dr. Cséfalvay Edit, egyetemi tanársegéd BME Kémiai és Környezeti Folyamatmérnöki Tanszék

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

AsMET víztisztító és technológiája

Számítástudományi Tanszék Eszterházy Károly Főiskola.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

B TÉTEL A cukor, ammónium-klorid, nátrium-karbonát kémhatásának vizsgálata A túró nitrogéntartalmának kimutatása A hamisított tejföl kimutatása

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

O k t a t á si Hivatal

Általános Kémia GY, 2. tantermi gyakorlat

Általános és szervetlen kémia Laborelıkészítı elıadás I.

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

TP-01 típusú Termo-Press háztartási műanyag palack zsugorító berendezés üzemeltetés közbeni légszennyező anyag kibocsátásának vizsgálata

1. Koncentrációszámítás, oldatkészítés

a) 4,9 g kénsavat, b) 48 g nikkel(ii)-szulfátot, c) 0,24 g salétromsavat, d) 65 g vas(iii)-kloridot?

Kétalkotós ötvözetek. Vasalapú ötvözetek. Egyensúlyi átalakulások.

1. B 6. C 11. E 16. B 2. E 7. C 12. C 17. D 3. D 8. E 13. E 18. D 4. B 9. D 14. A 19. C 5. C 10. E 15. A 20. C Összesen: 20 pont

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár

1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

2018/2019. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA. I. KATEGÓRIA Javítási-értékelési útmutató

Kémiai energia - elektromos energia

2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA. II. KATEGÓRIA Javítási-értékelési útmutató

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:...

A tisztítandó szennyvíz jellemző paraméterei

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE

Hulladékos csoport tervezett időbeosztás

Minőségi kémiai analízis

feladatmegoldásai K É M I Á B Ó L

13 Elektrokémia. Elektrokémia Dia 1 /52

3. feladat. Állapítsd meg az alábbi kénvegyületekben a kén oxidációs számát! Összesen 6 pont érhető el. Li2SO3 H2S SO3 S CaSO4 Na2S2O3

Radiokémiai neutronaktivációs analízis (RNAA)

SZERVETLEN KÉMIAI TECHNOLÓGIA

ACÉLOK MÉRNÖKI ANYAGOK

Automata titrátor H 2 O 2 & NaOCl mérésre klórmentesítő technológiában. On-line H 2 O 2 & NaOCl Elemző. Méréstartomány: 0 10% H 2 O % NaOCl

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000

Általános Kémia, 2008 tavasz

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek

1. Gázok oldhatósága vízben: Pa nyomáson g/100 g vízben

ANYAGSZERKEZETTAN II.

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7

Átírás:

Molibdén-tartalmú ipari hulladék anyag feldolgozása tiszta molibdén kinyerése Máté Csilla 1, Dr. Kékesi Tamás 2 1 Doktorandusz hallgató, 2 Egyetemi tanár 1,2 Miskolci Egyetem, Metallurgiai és Öntészeti Tanszék BEEZETÉS Napjainkban egyre fontosabb szempont a gyártás során keletkező hulladékok, mint másodlagos nyersanyagok újrafeldolgozása és a nagytisztaságú fémek előállítása. A speciális tisztaságot különösen az elektronikai felhasználások igénylik, de egyéb alkalmazási területen is fokozatosan emelkedik a tisztaság iránti igény. A molibdén és volfrám primer, és szekunder nyersanyagok feldolgozására egyre elterjedtebbé váltak a hidrometallurgiai eljárások. Különösen fontos ez a módszer, ha az anyag oldat, vagy oldatból származó iszap formájában áll rendelkezésre. Ez a helyzet Magyarországon is a volfrám spirál gyártásánál [1] alkalmazott molibdén maghuzal kioldásából származó másodnyersanyagok esetében is.. A korábbi ammónium-paramolibdenát - ammónium-paravolframát oldatokkal végzett anioncserés elválasztási kísérletek alátámasztották, hogy a volfrám megkötése és a molibdén kinyerése laboratóriumi körülmények között kivitelezhető. Kutatásaink során a General Electric hajdúböszörményi gyárából származó másodlagos nyersanyag, a MoO 3 hidrát oldhatóságát, és molibdén tartalmának kinyerését vizsgáltuk. A savas maghuzal kioldásból származó iszap molibdén tartalma legkedvezőbben sósavval oldható ki, amit kis mennyiségű volfrám és néhány század ppm-nyi egyéb szennyező is kísér (pl. kobalt, mangán, kadmium). Az anioncserés elválasztási kísérleteket 4M, 5M és 6M HCl koncentrációt alkalmazva végeztük. 1. A MOLIBDÉN ÉS OXIDJAI 1.1. Kémia A molibdén átmeneti fém, a periódusos rendszer I. B csoportjának második eleme. Rendkívüli tulajdonsága, hogy erős komplexképző, a bivalens állapottól a hexavalens oxidációs állapotig előfordulhat, koordinációs száma 4 és 8 között változik. Könnyen képez vegyületeket. A molibdén(i) leggyakoribb vegyülete a MoO 3 [2], amely lúgos közegben könnyen, savas közegben hő hatására oldódik, de szerves oldószerben és vízben oldhatatlan [3]. Az alkalikus közegben feloldott MoO 3 -ot megsavanyítva molibdén-trioxid dihidrát képződik, mely hevítés hatására monohidráttá alakul.[4]. A köznyelvben ún. molibdénkéknek nevezett kolloid oldatok a molibdén(i) vagy MoO 3 vizes vagy savas szuszpenziójának redukálása során (pl. Sn II, SO 2, H 2 S) keletkeznek [5]. Oxidot és hidroxidot is tartalmaznak. Jellemzőjük, hogy vízben és alkoholban könnyen oldódnak [6]. 1.2. A molibdén-trioxid keletkezése és felhasználása Az iparilag keletkező molibdén-trioxid egy része molibdenit (MoS 2 ) pörkölésekor, illetve más illóanyagot tartalmazó molibdén vegyület oxidációja során, másik része a

világítástechnikában a volfrámspirál gyártásához szükséges molibdén maghuzal kioldása során keletkezik. Az izzólámpa gyártásához szükséges volfrámszálat spirálozó gép segítségével tekerik fel a molibdén magra. A spirál tovább alakításához vagy izzólámpában történő alkalmazásához viszont a maghuzal eltávolítására van szükség. Az eljárás során kénsavval és salétromsavval oldják ki a maghuzalt, majd a kioldást követően kapott oldatot desztillálják. A kénsavat regenerálás és újrafelhasználás céljából visszavezetik, a visszamaradó molibdén-trioxid hidrát iszapot mossák, szűrik, majd gyűjtik. A molibdén alkalmazási területe igen sokoldalú: kitűnő acél és öntöttvas ötvöző, magas hőmérsékleten használt eszközök alapanyaga (pl. üvegolvasztó kemencék elektródja). A molibdén tulajdonságai nagytisztaság esetén jobbak, nagyobb a hőállósága, szilárdsága és jobb a hővezetőképessége, így széles körben alkalmazzák az elektronikai eszköz gyártó iparban félvezető eszközök és csatlakozók anyagaként, a világítástechnikában támasztórudak, huzalvágó eszközök és fűtőelemek, valamint üvegipari rostok komponenseként [7]. 2. LABORATÓRIUMI KÍSÉRLETEK A GE Hungary Zrt. hajdúböszörményi gyárából kapott világítástechnikai hulladékanyagként keletkező molibdén-trioxid hidrát pontos összetétele nem volt ismeretes, ezért volt szükség az összetétel mellet az oldhatóságot is megvizsgálni. A nyersanyag pontos összetételének azonosítására 100 ppm és 2000 ppm molibdén nyersanyagot oldottam fel 6M HCl-ben és -ban. Az oldatok elemzését atomabszorpciós spektrométerrel (AAS) végeztem, referenciaként pedig az ózdi Furol Kft. induktív csatolású plazmaspektroszkópiával (ICP) is megvizsgálta. A molibdéntrioxid hidrát molibdén és néhány szennyezőjének tartalmát az 1. táblázat foglalja össze. 1. táblázat A MoO 3 -hidrát összetétele AAS 6M HCl Mo Cr Fe Hg Mn Cd Ni Zn Oldat, mg/l 224,800 14,890 0,002 0,198 0,001 0 0 0,012 0,065 Nyersa.% 74,933 4,963 0,001 0,066 0 0 0 0,004 0,022 Nyersa.ppm 49633,333 6,667 660,000 3,333 0 0 40,000 216,667 Oldat, mg/l 168,560 16,230 0,002 0,078 0 0 0 0,002 0,039 Nyersa.% 56,187 5,410 0,001 0,026 0 0 0 0,001 0,013 Nyersa.ppm 54100,000 5,333 260,000 0 0 0 6,667 130,000 ICP 6M HCl Mo Cr Fe Hg Mn Cd Ni Zn Oldat, mg/l 235,100 17,120 0,007 0,256 0,001 0 0 0,017 0,085 Nyersa.% 78,367 5,707 0,002 0,085 0 0 0 0,006 0,028 Nyersa.ppm 57066,667 23,333 853,333 3,333 0 0 56,667 283,333 Oldat, mg/l 186,940 18,230 0,008 0,087 0 0 0 0,010 0,046 Nyersa.% 62,313 6,077 0,003 0,029 0 0 0 0,003 0,015 Nyersa.ppm 60766,667 26,667 290,000 0 0 0 33,333 153,333 Látható, hogy a nyersanyag a nagy molibdén tartalom mellett gyakorlatilag csak a volfrámot tartalmazza jelentős szennyezőként, a benne található többi elem mennyisége elhanyagolható, így a vizsgálatok és az anioncserés elválasztások elvégzésekor nem kell számítanunk egyéb szennyező által okozott zavaró tényezőre.

2.1. Kioldási vizsgálatok és a nyersanyagból oldott volfrám mennyiségének csökkentése Az anioncserés elválasztási kísérletek előtt szükség volt kioldási vizsgálatok elvégzésére a megfelelő oldószer és oldási körülmény megtalálása miatt. Ennek során 5g molibdén-trioxidot oldottam azonos intenzitású keverés és hőmérséklet mellett különböző mennyiségű 6 mólos sósavban, nátrium-kloridban, kénsavban és 2M és 1M nátrium-hidroxidban. A MoO 3 legkevesebb 120 cm 3 6M HCl-ben oldódott maradéktalanul és hűlés közben nem keletkezett csapadék, míg 1M NaOH esetében az 5 g nyersanyag 70 cm 3 lúgban oldódott. A MoO 3 -hidrát viszont nem oldódott fel <120 ml HCl-ban, 6M NaCl-ban és kénsavban. Az elválasztások elvégzését megelőzően ~2000 ppm Mo-tartalmú molibdén-trioxidot oldottam 6M HCl-ben, majd 5 ill. 4M-ra hígítottam. A hígítások következtében bekövetkező volfrám csapadék leszűrésével próbáltam az oldatban levő tartalmat csökkenteni, a minták tartalmát a 2. táblázat foglalja össze. 2. táblázat A hígítás során bekövetkező -tartalom változás Oldattérfogat, cm 3 Konc., ppm Oldott volfrám tömege, g 6M törzsoldat 147 153,2 0,0383 5 M szűrés után 160 121,7 0,0357798 4M szűrés után 176 92,4 0,033264 A táblázatban megfigyelhető, hogy az oldat hígításával és szűrésével a koncentráció nem csökken jelentősen, tehát a Mo- elválasztás legkedvezőbb és legeredményesebb módszere még mindig az anioncserés elválasztás. 2.2. Elválasztási kísérletek A molibdén és a volfrám ionjai hatos, ötös és hármas oxidációs állapotukban is képesek negatív töltésű kloro-komplex ionokat képezni. A molibdén és a volfrám oxidációs állapotainak és kloridos komplex ionjainak stabilitási feltételeit spektrofotometriai és anioncserés megoszlási eredmények is bizonyítják [8]. A komplex ionok képződése és az így kialakuló anioncserés megoszlás erősen függ a kloridionok koncentrációjától mindkét vizsgált fém esetében. Az ioncserélő gyanta egységnyi térfogatában és a vele érintkező oldat egységnyi térfogatában egyensúlyban található fémtömegek viszonyát jelentő megoszlási hányados (D) értékét a sósav-koncentráció függvényében leíró görbéket, valamint a redukálószerként használható vas és cink hasonló függvényeit már korábban pontosan meghatározták [9] a lehetséges oxidációs állapotokra vonatkozóan. A Mo és megoszlási függvényei és a különböző oxidációs fokozatainak redukáló közegei láthatók az 1. ábrán. Ezen függvények elengedhetetlenül szükségesek a Mo elválasztás tervezéséhez A nem teljes tartományokat átfogó megoszlási görbék is jelzik, hogy a volfrám nem marad oldatban 6 mol dm -3 alatti HCl koncentrációk használatakor, hacsak nem sikerül azt a (III) fokozatig redukálni. A redukcióra a korábbi vizsgálatok alapján a megfelelő reagens a vaspor, mivel a redukció során az oldatban stabilizálódó Fe(II) nem kötődik meg a gyantaágyban. Ezzel a módszerrel a volfrám megkötése és a molibdén közvetlen eluálása megoldható, ami a molibdén tisztítását szolgálja.

Az anioncserés elválasztási kísérletekhez ~ 2000ppm molibdént tartalmazó ~ 250 cm 3 4M, 5M és 6M koncentrációjú sósavas oldatokat készítettem, amelyeket arion AP típusú erős bázisú kvaternér ammin típusú anioncserélő gyantával 25 cm magasságban töltött anioncserélő oszlopra vittem fel, és különböző oldatokkal átöblítve kaptam a Mo tartalmú eluátumokat... 3 Zn(II) Fe(III) 2 Mo(I) lgd 1 Mo() (III) (I) () (I) 0 Mo(III) Fe(II) -1 0 2 4 6 8 10 HCl-koncentráció, mol dm -3 1. ábra A molibdén-volfrám elválasztásnál szerepet játszó anioncserés egyensúlyi megoszlási függvények [9]. 3. KÍSÉRLETI EREDMÉNYEK ÉS ÉRTÉKELÉSÜK 3.1. Anioncserés elválasztási kísérletek Az eljárás hatékonyságát az eluens oldatból rendszeresen gyűjtött minták analitikai eredményei alapján szerkesztett elúciós diagramok szemléltetik. A numerikus feldolgozást ANEL (ANalitikai korrekció - ELválasztási jellemzők) Excel alapú számítógépes programmal végeztem [10]. A feldolgozó program input felületének egy részletét a 2. ábra mutatja. ANEL (Analytical Data Correction - Elution Results Processing) INPUT Sheet Test: Mo-4M Max. number of data lines:100 (Pull down Row #111 if needed). Element: Mo (One at a time!) First: --> Set max. window width and select Me in the "Acid" sheet! Samples/STD: 1 (Checking Std.) --->Fill or paste (with Ctrl+B) data in framed & white areas! Std.conc.: 1 Cycle length: Delete only these areas! (after archiving input data) Std.acid conc.(m): 0 2 Next: --> check "Corr" and go to "Corr-OUT" Analysed samples ####### ####### <---Interpolating formulae - Copy and adjust! Check: "Acid" sheet! Acid Effl. Analysed Concentrations (LS-direct) Intensity Table (for c ---> 0) Msg. Sample conc. ol. STDi Sample STDf Intensities (cps) - best wl <-Fill Me S.No. ID Dil. (M) wl(1) wl(2) wl(1) wl(2) wl(1) wl(2) Sample Std. Blank / OK Mo 1 a1 1 4 85 1 567,077 1 OK Mo 2 a2 1 4 130 1 966,308 1 OK Mo 3 a3 1 4 175 1 964,769 1 OK Mo 4 a4 1 4 220 1 945,538 1 OK 2. ábra. Az ANEL feldolgozó szoftver adatbeviteli felületének részlete. A programban opcionális lehetőségként szerepel a folyadékáramlásnak a mintavétellel járó zavaraiból eredő koncentrációingadozások matematikai simítása a közismert futó-

átlagok módszerével. Ennek során azonban a szélső értékek pontjainál a rendszer automatikusan letiltja a simító operátor hatását. Az analitikai eredmények alapján megszerkesztettem a vizsgálatok elúciós görbéit. A 3. ábra a ~2000 ppm mennyiségű molibdént tartalmazó 4M sósavoldattal végzett elválasztási kísérlet elúciós görbéit mutatja. 1 Fe Max. konc., ppm Relatív koncentráció 0.8 0.6 0.4 0.2 Mo Mo: 1812 : 185 Fe: 197 0 Feladás 4M HCl Öblítés 3M HCl íz öblítés íz 0 250 500 750 1000 1250 1500 1750 2000 3 Effluens térfogat, cm 3. ábra. 4M HCl koncentrációban végzett Mo- elválasztás elúciós görbéi. Elválasztási eljárás: Feladás 4M HCl + Mo,, Red.szer; Öblítés - 4M HCl; Öblítés víz; Kiegészítő (kondicionáló) művelet: Öblítés, víz Látható, hogy a volfrámot nem sikerült megkötni maradéktalanul, mivel a mintafelvitel és a 4M HCl öblítés során nagymértékben távozott az oszlopról. A korábbi tapasztalatokkal ellentétben a molibdén nem került az eluátumba a feladást követően, így ebben a sósav koncentrációban a molibdén megfelelő kihozatala és a volfrám megkötése nem valósítható meg kellő mértékben. Az 5M HCl koncentráció esetében a helyzet kedvezőbb (4. ábra). 1 Fe Max. konc., ppm Relatív koncentráció 0.8 0.6 0.4 0.2 Mo Mo: 1516 : 154 Fe: 127 0 5M HCl Feladás Öblítés 3M HCl íz öblítés íz 0 250 500 750 1000 1250 1500 1750 3 Effluens térfogat, cm 4. ábra. 5M HCl koncentrációban végzett Mo- elválasztás elúciós görbéi. Elválasztási eljárás: Feladás 5M HCl + Mo,, Red.szer; Öblítés - 5M HCl; Öblítés víz; Kiegészítő (kondicionáló) művelet: Öblítés, víz A molibdén és a vas már a felvitelt követően az eluátumba került, azonban a volfrám is mutat némi csúcsot, itt sem sikerült tökéletesen megkötni a gyantaágyban, viszont a

kondícionáló művelet során teljesen kinyerhető az oszlopból a molibdénnel és a vassal együtt. A 6M sósav koncentráció esetében tapasztalható a legkedvezőbb körülmény Az elválasztás elúciós diagramjait a 5. ábra szemlélteti. Megfigyelhető, hogy a molibdén és a vas nagy része a feladást követő 6M HCl koncentrációjú öblítő fázisban eltávozott az oszlopból, a lúgos öblítésig mindkét elem eluálható volt. A volfrám a NaOH-os utókezelésig a gyantaágyban megköthető volt. Tehát a kísérletek elúciós diagramjaiban megfigyelhető, hogy anioncserés eljárással a másodlagos nyersanyagban levő molibdén és volfrám könnyen elválasztható egymástól. Relatív koncentráció 1 0.8 0.6 0.4 0.2 0 Fe Mo 6M HCl Feladás Max. konc., ppm Mo: 1734 : 167 Fe: 151 Öblítés íz öblítés íz 0 250 500 750 1000 1250 1500 1750 3 Effluens térfogat, cm 5. ábra. 6M HCl koncentrációban végzett Mo- elválasztás elúciós görbéi. Elválasztási eljárás: Feladás 6M HCl + Mo,, Red.szer; Öblítés - 6M HCl; Öblítés víz; Kiegészítő (kondicionáló) művelet: Öblítés, víz A molibdén és vas csúcsok egybeesése azt mutatja, hogy a redukció és az ioncserés eljárások eredményeképpen az eredeti volfrámszennyező helyett az eluátumban a vas(ii) található. Egy következő lépésben ez a vasszennyező - a két elem eltérő tulajdonságai miatt - eltávolítható, ezáltal tiszta molibdén-oldat nyerhető. Ekkor már csak arra az oldatrészre van szükség, amelyben a kér elem csúcsa található. A legegyszerűbb megoldás az oldat 4M HCl koncentráció alá való hígítása, ahol a molibdén már csapadékot képez. Egy másik alkalmazható eljárás lehet a Fe(III)-ra és Mo(I)-ra történő oxidáció (levegővel vagy hidrogén-peroxiddal), majd az oldat ~3M HCl koncentrációra történő hígítását követő újabb anioncserés elválasztás. A vas közvetlen elúciója és a molibdén megkötődése megvalósítható, majd a Mo(I) NaOH-os öblítést követően kinyerhető az oszlopból. Ezután a tiszta molibdén-oldat bepárlása következtében tiszta molibdénvegyület kapható, vagy elektrolízissel tiszta Mo-fém nyerhető. 3.2. Az elválasztások minősítése A kihozatali eredmények alapján kiszámítható a gyűjtött Mo-oldatrészbe került szennyező elemek mennyisége, illetve a molibdén mennyiségéhez viszonyított arányuk. Az anioncserés elválasztási eljárások optimalizálása során a kísérletekből származó elúciós görbék numerikus integrálása alapján kifejezhető a vizsgált szennyezőre () vonatkozó tisztítási arányszám (T ):

T i = Σm i f f Σm mi m = ci, o c, o cd cid, (1) s s valamint az alapfémre (Mo) vonatkozó kihozatali index (η Mo ): f η = 100 Σm c d, (2) % ahol k és v a tisztított eluens gyűjtését jelölő kezdeti és végső folyadék térfogatok. A tisztítandó molibdén és a volfrámszennyező feladott mennyisége Σm Mo, illetve Σm. A tisztított oldatrészben összegyűjtött mennyiségek (m Mo és m ) az elúciós görbék alakjától és az eluens gyűjtés intervallumától függenek. 3. táblázat A kísérleti Mo- elválasztások minőségi jellemzői η Mo, Eltávolítási index, T i Oldat töménysége k k k v (%) Fe 4M HCl 2 2 32,1 42,6 30,8 5M HCl 2 2 33,5 44,7 32,6 6M HCl 2 2 67,4 78,9 53,6 k k és k v az eluens gyűjtési paraméterek az alapfém határkoncentrációi kifejezésében A legjobb eredményeket a 6M HCl 2000 ppm molibdén-trioxidot tartalmazó oldat esetében kaptuk. A kapott eluens a feladott oldathoz viszonyítva ~79-szer tisztább lett, miközben a feladott molibdén 67 %-át sikerült meggyűjteni benne. ÖSSZEFOGLALÁS A világítástechnikában keletkező molibdén-trioxid hidrát másodlagos nyersanyag nagytisztaságú molibdén előállításához előnyös tulajdonságokkal és összetétellel rendelkezik. A molibdén nyersanyag összetételének elemzése megállapította, hogy az anyagban a nagy molibdén tartalom mellett csak a volfrám tekinthető jelentős szennyezőnek, a többi elem mennyisége elhanyagolható. Az oldhatóság vizsgálata során biztosítottuk, hogy az anioncsere tervezéséhez legelőnyösebb oldószer, a 6 M koncentrációjú sósav. Az oldott volfrám kicsapása vizes hígítással és szűréssel nem hoz szembetűnő eredményt. Az anioncserés elválasztás elúciós diagramjai bizonyították, hogy a legelőnyösebb elválasztási körülményt a megfelelően redukált, 6M HCl oldattal érjük el. A kisebb sósavtartalmú (4-5M HCl) oldatokban a volfrám még erősebben redukálva sem képes teljes mértékben megkötődni a gyantaágyban. A tisztítási és a kihozatali paraméterek is kedvező eredményeket mutattak 6M HCl esetében. A feladott oldat ~79-szer tisztább, és a feladott molibdén 67 %-át sikerült összegyűjteni. A 4M és 5M HCl oldatok esetében mind a tisztítási fok, mind a gyűjtött molibdén mennyisége jóval kisebb. s

Irodalomjegyzék [1] Northcott, L.: Metallurgy of the rare metals, Molybdenum, Butterworths Sci. Publ. London, 1956. [2] A. Sutlov: International Molybdenum Encyclopedia (1778-1978) III. A.S Intermet.publishing, 1980., p.96. [3] G. Bauer : Handbook of Preparative Inorganic Chemistry, 2nd ed., vol. 2, Academic Press, New York 1965, p. 1412. [4] F.A. Schroder, J. Scherle, Z. Naturforsch: Inorganic Chemistry, Organic Chemistry 28B (1973) 46 [5] N.N. Greenwood, A. Earnshaw: Az elemek kémiája III., 2. kiadás, Nemzeti Tankönyvkiadó Rt., Budapest, 2004. p. 1377-1379. [6].K. Rudenko, Soviet Journal of Coordinated Chemistry (eng. transl.) 5 (1979) 231. [7] http://www.exportmetals.com/products.asp?smallclassid=35 [8] Kékesi, T., Torok, I.T., Isshiki, M.: Anion exchange of chromium, molybdenum and tungsten species of various oxidation states, providing the basis for separation and purification in HCl solutions, Hydrometallurgy, 77 (2005) 81-88. [9] Kékesi, T., Isshiki, M.: Anion Exchange for the Ultra-High Purification of Transition Metals, Erzmetall, 56, 2, (2003) 59-67. [10] Kékesi, T.: Kombinált anioncserés elválasztások Sósavas oldatokban ultra-nagy tisztaságú átmenetifémek előállítására, Miskolci Egyetem Habilitációs Füzetei, 2004.