Kinematika, dinamika Fizika 7.

Hasonló dokumentumok
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

DINAMIKA ALAPJAI. Tömeg és az erő

Mozgások. Fizika 9. Készítette: Rapavi Róbert. Lektorálta: Gavlikné Kis Anita. Kiskunhalas, december 31.

Tanulói munkafüzet. FIZIKA 9. évfolyam egyetemi docens

Newton törvények, lendület, sűrűség

Érettségi témakörök fizikából őszi vizsgaidőszak

Mérések állítható hajlásszögű lejtőn

Newton törvények, erők

A gravitációs gyorsulás meghatározására irányuló. célkitűzései:

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A középszintű fizika érettségi kísérleteinek képei 2017.

Mit nevezünk nehézségi erőnek?

Munka, energia Munkatétel, a mechanikai energia megmaradása

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

A természettudományos oktatás komplex megújítása a Révai Miklós Gimnáziumban és Kollégiumban. Munkafüzet FIZIKA. 7. évfolyam. Wernerné Pőheim Judit

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel!

Nyomás. Fizika 7. Készítette: Hegedüsné Solymosi Ildikó. Lektorálta: Rapavi Róbert. Kiskunhalas, december 31.

Galilei lejtő golyóval (golyó, ejtő-csatorna) stopperóra, mérőszalag vagy vonalzó (abban az esetben, ha a lejtő nincsen centiméterskálával ellátva),

Egyenes vonalú egyenletes mozgás vizsgálata

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk!

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Szekszárdi I Béla Gimnázium Emelt szintű szóbeli vizsgaközpont. Eltérések az OH honlapján közzétettektől

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

TANULÓI KÍSÉRLET (2 * 30 perc) Mérések alapjai SNI tananyag. m = 5 kg

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

Az emelők működés közbeni megfigyelésének célja: Arkhimédész görög fizikust és matematikust az ókor egyik legnagyobb tudósa volt.

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag egyetemi docens

a) a vonaton ülő utas;... b) a Parlament;... c) a hintázó gyerek;... d) a vízisíelő?...

Dinamika. Fizika 9. Készítette: Rapavi Róbert. Lektorálta: Gavlikné Kis Anita. Kiskunhalas, december 31.

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Speciális mozgásfajták

DÖNTŐ április évfolyam

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

. T É M A K Ö R Ö K É S K Í S É R L E T E K

Fénytan. Fizika 8. Készítette: Klemné Lipka Dorottya Lektorálta: Rapavi Róbert. Kiskunhalas, december 31.

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Mérés: Millikan olajcsepp-kísérlete

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Folyadékok és gázok mechanikája

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Hatvani István fizikaverseny Döntő. 1. kategória

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

Az anyagok világa. Természetismert 5. Készítette: Gavlikné Kis Anita Lektorálta: Zseni Zsófia. Kiskunhalas, december 31.

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Szaktanári segédlet. FIZIKA 9. évfolyam egyetemi docens

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

Mechanika 1. Az egyenes vonalú mozgások

A fizika középszintű érettségi mérési feladatai és a hozzá tartózó eszközlisták május

Mágnesesség, elektromosság Természetismeret 5.

Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály

A nyomás. IV. fejezet Összefoglalás

Tömegpontok mozgása egyenes mentén, hajítások

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

1. Súlymérés. Eszközjegyzék: Mikola-cső mm beosztással digitális mérleg ékek A/4 lapok ismeretlen súlyú test (kő) Mikola-cső.

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI

Folyadékok és gázok áramlása

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI június

Hidrosztatika. Folyadékok fizikai tulajdonságai

Komplex természettudomány 3.

Rugalmas állandók mérése

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

TÁMOP Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

a) Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben!

Digitális tananyag a fizika tanításához

Dinamika, Newton törvények, erők

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Eszközismertető Stopper használat egyszerű, lenullázni az első két gomb együttes megnyomásával lehet.

A lendületmegmaradás vizsgálata ütközı kiskocsikkal PIC idıméréssel fotokapukkal

Középszintű fizika érettségi közzéteendő mérés eszközei és azok képei

Forgatónyomaték, egyensúlyi állapotok Az erőnek forgató hatása van. Nagyobb a forgatóhatás, ha nagyobb az erő, vagy nagyobb az erő és a forgástengely

Az emelt szintű fizika szóbeli vizsga méréseihez használható eszközök

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

1. Egy háromtengelyes tehergépjármű 10 tonna saját tömegű. 130 kn. 7 m. a.) A jármű maximális össztömege 24 tonna lehet.(előadás anyaga)!!!!

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése.

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Emelt szintű fizika érettségi kísérletei

Elektrosztatika, elektromos áram Fizika 8.

PÉLDÁK ERŐTÖRVÉNYEKRE

Átírás:

Kinematika, dinamika Fizika 7. Készítette: Klemné Lipka Dorottya Lektorálta: Rapavi Róbert Kiskunhalas, 2014. december 31.

2 Balesetvédelem Minden munkahelyen, így a természettudományos kísérletek végzésekor is be kell tartani azokat a szabályokat, amelyek garantálják a biztonságos munkavégzést a gimnáziumunkban. Az előírásokat komolyan kell venni, és aláírással igazolni, hogy tűz és balesetvédelmi oktatáson részt vettél. Általános szabályok A tanulók a laboratóriumi gyakorlat megkezdése előtt a folyosón várakoznak, s csak tanári kísérettel léphetnek be a laboratóriumba. A laboratóriumba csak az ott szükséges füzetet, könyvet, íróeszközt viheted be. Táskát, kabátot csak külön engedély alapján szabad bevinni. A laboratóriumban étel nem tárolható; ott enni, inni tilos! A laboratóriumban az iskolától kapott köpenyt kell viselni, a hosszú hajat hajgumival össze kell kötni! A munkahelyedet a feladat végzése közben tartsd rendben és tisztán! A munkavédelmi, tűzrendészeti előírásokat pontosan tartsd be! A laboratóriumot csak a kijelölt szünetben hagyhatod el. Más időpontban a távozáshoz a tanártól engedélyt kell kérni. A laboratóriumban csak a kijelölt munkával foglalkozhatsz. A gyakorlati munkát csak az elméleti anyag elsajátítása után kezdheted meg. Az anyag-és eszközkiadást, a füzetvezetést az órát tartó tanár szabályozza. A laboratórium vezetőjének, munkatársainak, tanárod utasításait maradéktalanul be kell tartanod! Néhány fontos munkaszabály Törött vagy repedt üvegedényt ne használj! Folyadékot tartalmazó kémcső a folyadékfelszíntől lefelé haladva melegítendő. Nyílását ne tartsd magad vagy társad felé! A vegyszeres üvegek dugóit ne cserélgesd össze! Szilárd vegyszert tiszta vegyszeres kanállal vedd ki, a kanalat használat után töröl el! Megmaradt vegyszert a vegyszeres edénybe viszszaönteni nem szabad! A laboratóriumi lefolyóba ne dobj olyan anyagot (pl. szűrőpapírt, gyufaszálat, parafadugót, üvegcserepet stb.), amely dugulást okozhat! Az eszközöket csak rendeltetésszerűen, tanári engedéllyel szabad használni! Az eszközöket, berendezéseket csak rendeltetésszerűen és csak az adott paraméterekre beállítva használhatod! Vegyszerekhez kézzel nyúlni szigorúan tilos! Soha ne szagolj meg közvetlenül vegyszereket, ne kóstolj meg anyagokat kémia órán! Ha bőrödre sav vagy lúg kerül, először mindig töröld szárazra, majd bő vízzel öblítsd le! A legkisebb balesetet vagy az eszközök meghibásodását azonnal jelentsd a szaktanárnak! Munka közben mind a saját, mind társaid testi épségére vigyáznod kell! Tanóra végén rakj rendet az asztalodon tanárod és a laboráns irányításával!

Fizika 7. 3 Kinematika, dinamika 1. óra Egyenes vonalú egyenletes mozgás Emlékeztető 1. Mikor mozog egy test?... 2. Mikor mondjuk azt, hogy megváltozott egy test mozgásállapota?... 3. Mit nevezünk útnak?... Mi az út jele?... Melyek az út mértékegységei?... 4. Mit jellemzünk az idővel?... Mi az idő jele?... Melyek az idő mértékegységei?... Eszköz és anyaglista Mikola cső stopperóra kréta fahasáb 3 különböző éllel Munkavédelem A mérés során különös munkavédelmi előírások nincsenek. Arra ügyeljünk, hogy a csövet ne ejtsük le. A MÉRÉS LEÍRÁSA, JELENSÉG 1. A Mikola-cső egy 1 méter hosszú, egyik végén zárt, másik végén bedugaszolt, vízzel töltött üvegcső, melyben egy kis légbuborék van. A csőben a levegőbuborék mozoghat. Az eszköz Mikola Sándor magyar fizikatanár nevéhez fűződik, aki először használta. A kísérlet során azt kell megfigyelni, hogyan mozog a csőben a buborék. Helyezd a Mikola csövet 3 különböző hajlásszöggel ( 1 < 2 < 3 ) a fahasáb három különböző lapjára támasztva úgy, hogy a buborék a cső aljában legyen!

Fizika 7. 4 Kinematika, dinamika Mérd meg és írd a táblázatba mind a három különböző állás esetén, mennyi idő alatt ér a buborék a cső aljáról a tetejéig! 1 2 3 mozgás ideje (s) Melyik kísérletben volt legnagyobb a buborék sebessége?... Miből állapítottad meg?... 2. Mérd meg, hogy a buborék mekkora utat tesz meg azonos időtartamok alatt a legkisebb ( 1 ) hajlásszög esetén! Lentről indítsd a buborékot! Egy stopper segítségével négy másodpercenként húzz krétával egy jelet a Mikola-cső számegyenesén oda, ahol a buborék felső pontja éppen tart! A harmadik behúzott jel legyen a kiindulási pontod! Számítsd ki ettől a ponttól az első, a második, a harmadik és a negyedik jel távolságát! Ezek a különbségek lesznek az azonos időtartamok alatt megtett utak! Írd az adatokat a táblázat megfelelő oszlopába! Számítsd ki az út és az idő hányadosát! 1. mérés ( 1 ) idő (s) út (cm) út idő (cm s ) Milyen összefüggést veszel észre a megtett utak és a megtételükhöz szükséges idők között? Mit állapíthatsz meg az út hányadosokról?... idő

Fizika 7. 5 Kinematika, dinamika Végezd el a kísérletet a Mikola-cső másik két állása esetén is! 2. mérés ( 2 ) 3. mérés ( 3 ) idő (s) út (cm) út idő (cm s ) idő (s) út (cm) út idő (cm s ) Írd le mit tapasztaltál!... Ábrázold a derékszögű koordináta rendszerben különböző színnel a buborék által megtett utat az idő függvényében a különböző hajlásszögek esetén! út (cm) idő (s) Hasonlítsd össze az út-idő grafikonok meredekségét!... Tanári kísérlet Eszköz és anyaglista kiskocsi videó kamera légpárnás sín

Fizika 7. 6 Kinematika, dinamika Munkavédelem A mérés során különös munkavédelmi előírások nincsenek. A MÉRÉS LEÍRÁSA, JELENSÉG 4. A légpárnás sínen meglökött kiskocsi sebességének meghatározása videó kamera sorozatfelvételének segítségével. idő (s) út (cm) út idő (cm s ) Írd le mit tapasztaltál!... TAPASZTALATOK, MÉRÉSI ADATOK A Mikola-csőben a buborék által megtett út és az út megtételéhez szükséges idő között egyenes aranyosság van, a buborék egyenletes mozgást végez. Az egyenletes mozgást végző test sebessége (v) a test által megtett út (s) és az út megtételéhez szükséges idő (t) hányadosa. sebesség = út idő (v = s t ). A sebesség leggyakrabban használt mértékegységei: m s ; km h. Házi feladat 1. Mekkora utat tesz meg 1 perc alatt egy autó, ha sebessége 90 m s? 2. Gyűjtőmunka: Mikola Sándor élete és munkássága, Sebesség egyéb mértékegységei, Konkrét példák mindennapjainkból egyenletes mozgásra. Felhasznált irodalom Fizika 7. Mozaik Kiadó; MS 2867; 2014.; MS 2667; 2014. Fizikai kísérletek és feladatok Mozaik Kiadó; 2007 Bonifert D.-né - Schwartz K.: Kézikönyv a fizika és természetismeret oktatásához - Mozaik Kiadó; 2008

Fizika 7. 7 Kinematika, dinamika 2. óra Egyenletesen változó mozgás, szabadesés Emlékeztető Mikor végez egy test egyenletes mozgást?... Mikor mondjuk, hogy egy test egyenes vonalú egyenletes mozgást végez?... Egyenletes mozgás esetén hogyan számolható ki a test sebessége?... Eszköz és anyaglista 1 méter hosszú lejtő vasgolyó mérőszalag stopper kréta vasgolyó fagolyó gyurmagolyó mérőszalag Munkavédelem A mérés során különös munkavédelmi előírások nincsenek. A MÉRÉS LEÍRÁSA, JELENSÉG 1. Guríts le egy lejtőn egy golyót a rúd alsó végétől 20 cm, 40 cm, 60 cm távolságból úgy, hogy a golyó a lejtő meghosszabbításában vízszintes pályán tovább tudjon gurulni! Jelöld meg a vízszintes szakaszon hogy mekkora utat tett meg 3 másodperc alatt a golyó az első, a második és a harmadik esetben! A mért adatokból számítsd ki a golyó sebességét! A vízszintes pályán a golyó által 3 s alatt megtett út (cm) A golyó sebessége ( cm s ) 1. eset 2. eset 3. eset A lejtő aljára érkező golyó sebessége jó közelítéssel egyenlőnek mondható a harmadik másodperc végén, a vízszintes szakaszon mozgó golyó sebességével. Hasonlítsd össze ezeket a sebességértékeket! Mi állapítható meg?... Milyen mozgást végez ezek alapján a lejtőn leguruló golyó?...

Fizika 7. 8 Kinematika, dinamika 2. Mérd meg, hogy az 1 méter hosszú lejtőn különböző, de egyre növekvő hajlásszögek esetén mennyi idő alatt gurul le egy golyó! Minden esetben számold ki a golyó átlagsebességét! hajlásszög 1 2 3 4 idő (s) A golyó átlagsebessége ( cm ) s Mit tapasztalsz?... 3. Szabadesés: Először Galileo Galilei olasz tudós vizsgálta (1600) körül. A legenda szerint a pisai ferdetoronyból ejtett le különböző testeket. Ugyanolyan magasságból ejts le egyszerre azonos méretű, különböző tömegű fagolyót és vasgolyót! Ismételd meg a kísérletet többször különböző magasságokból indítva! Mit tapasztalsz?... Befolyásolja-e a test anyaga, tömege a szabadesés idejét?... 4. Ejts le egy gyurmagolyót 30 cm illetve 100 cm magasról! Azonos lesz-e a két esetben a gyurma alakváltozása a földet érés során!... Mi lehet ennek az oka?......... Tanári kísérlet Eszköz és anyaglista 2 db 2,5 m hosszú zsineg 10 db csavaranya mérőszalag Munkavédelem A mérés során különös munkavédelmi előírások nincsenek.

Fizika 7. 9 Kinematika, dinamika A MÉRÉS LEÍRÁSA, JELENSÉG 1. Rögzítsünk egy zsinegre egyenlő kb. 60 cm-es távolságokra csavaranyákat! Tartsuk függőlegesen a zsinórt úgy, hogy a legalsó csavar épp a földön legyen! Engedjük el a zsinórt. Figyeld meg az egyes koppanások közötti időtartamok hosszát! Mit veszel észre?... Mi mondható el a kétszer, háromszor nagyobb magasságból induló csavarok földet éréséhez szükséges időkről?... Hogyan változik esés közben a test sebessége?... Kötözzünk a zsinegre csavaranyákat a következő ábra szerint! 15 cm 45 cm 75 cm 105 cm Végezzük el az előző kísérletet most ezzel a zsinórral. Figyeld meg itt is a koppanások között eltelt időtartamok hosszát! Mit veszel észre?... Két koppanás között hogyan változik a csavarok által megtett út?... Mire következtetsz ebből?... TAPASZTALATOK, MÉRÉSI ADATOK A lejtőn leguruló golyó egyenes vonalú egyenletes változó mozgást végez. A gyorsulás az a mennyiség, amely megmutatja, hogy mekkora az egyenletesen változó mozgást végző test egységnyi idő alatt bekövetkezett sebességváltozása. A testek olyan esését, amikor csak a gravitációs mező hatása érvényesül szabadesésnek nevezzük. A szabadesés szintén egyenes vonalú egyenletesen változó mozgás. Magyarországon, földközelben a szabadon eső test sebessége másodpercenként 9,81 m -mal nő. s Felhasznált irodalom Fizika 7. Mozaik Kiadó; MS 2867; 2014.; MS 2667; 2014. Fizikai kísérletek és feladatok Mozaik Kiadó; 2007 Bonifert D.-né - Schwartz K.: Kézikönyv a fizika és természetismeret oktatásához - Mozaik Kiadó; 2008 http://tudasbazis.sulinet.hu/hu/termeszettudomanyok/fizika/fizika-7-evfolyam/mozgasok-fajtai/szabadeses

Fizika 7. 10 Kinematika, dinamika 3. óra Tehetetlenség, tömeg, sűrűség Emlékeztető Mi szükséges ahhoz, hogy egy test mozgásállapota megváltozzon?..... Fogalmazd meg a tehetetlenség törvényét!..... Mi a tömeg?... Mi a tömeg jele?... Melyek a tömeg mértékegységei?... Mi a térfogat jele?... Melyek a térfogat mértékegységei?... Hogyan számítjuk ki egy test anyagának sűrűségét?..... Mit mutat meg a sűrűség?..... Tanári kísérlet Eszköz és anyaglista állvány cérna fahenger két végén kampóval Munkavédelem A mérés során különös munkavédelmi előírások nincsenek. A kísérlet leírása, jelenség, tapasztalat Egy állványhoz cérnát kötöttünk, majd a cérna végére egy fahengert, a fahenger végére egy másik cérnát. a) Rántsuk meg lassan az alsó cérnát. Mi történik?..... b) Rántsuk meg gyorsan az alsó cérnát. Mi történik?..... Mi lehet a különbség oka?.......

Fizika 7. 11 Kinematika, dinamika Tanulói kísérletek Eszköz és anyaglista főzőpohár acélgolyó A4-es papírlap mérőhenger víz digitális mérleg 3 db legfeljebb 150 g tömegű szilárd test (pl.: fa, kő, vas) két különböző anyagú folyadék (pl.: olaj alkohol) Munkavédelem A törékeny mérőeszközöket óvatosan használd! A kiömlő víz csúszásveszélyes, azonnal takarítsd fel! A kísérlet leírása, jelenség, tapasztalat 1. Helyezd az acélgolyót a pohárba. Tegyél egy papírlapot az asztalra úgy, hogy a negyede lelógjon az asztalról. A poharat tedd a papír közepére. Ezután egy hirtelen mozdulattal rántsd ki a papírt a pohár alól. Mi történik? Magyarázd meg a jelenséget?.... 2. a) Becsüld meg a három különböző anyagú test tömegét (1. táblázat)! b) Digitális mérleg segítségével határozd meg a három test tömegét. A mért értékeket írd be az 1. táblázatba, majd váltsd át a mért értékeket kilogrammba! 1. táblázat 1. 2. 3. Test anyagának neve Becsült tömeg (g) Mért tömeg (g) Mért tömeg (kg) 3. Folyadékok tömegének meghatározásakor a folyadékot tartóedénybe (főzőpohárba) kell tennünk. Mivel a tartóedény tömegének ismeretére nincs szükségünk, helyezd a tartóedényt a mérlegre és a tárázás gomb segítségével állítsd alapállásba! A tárázást követően tölts a főzőpohárba 100 cm 3 vizet, és végezd el a tömegmérést. Ismételd meg a mérést a másik két folyadékkal is (alkohol, olaj sorrendben)!

Fizika 7. 12 Kinematika, dinamika A mért értékeket írd be az 2. táblázatba, majd határozd meg a három folyadék sűrűségét! Váltsd át a sűrűségeket kg m 3 be! 2. táblázat A folyadék anyaga Mért tömeg (g) Sűrűség ( g 1. víz 2. alkohol 3. olaj cm 3) Sűrűség ( kg m 3) A sűrűségük alapján tedd növekvő sorrendbe a feladatban szereplő anyagokat! 4. Önts egy mérőhengerbe vizet kb. a feléig! Olvasd le a mérőhengerről a benne lévő víz térfogatát (V víz)! (Ügyelj a beosztásra!) Óvatosan helyezd a mérőhengerbe a 2. a) feladatban szereplő szilárd testek közül az egyiket úgy, hogy a víz ellepje. (A fát bele kell nyomni a vízbe!) Olvasd le a víz és a szilárd test közös térfogatát (V közös)! A szilárd test térfogata: V test = V közös - V víz Határozd meg mindhárom test térfogatát! Test anyagának neve V víz (cm 3 ) V közös (cm 3 ) V test (cm 3 ) 1. 2. 3. 5. Határozd meg az előző feladatokban használt három különböző szilárd test sűrűségét! 1. 2. 3. Test anyagának neve Tömeg (g) Térfogat (cm 3 ) Sűrűség ( g cm 3) A sűrűségük alapján tedd növekvő sorrendbe a feladatban szereplő anyagokat!

Fizika 7. 13 Kinematika, dinamika 6. Egyensúlyozz ki egy üres mérőhengert a digitális mérlegen, majd tölts bele 50 cm 3 lisztet és mérd meg a tömegét! Számítsd ki a liszt sűrűségét! = = =? GONDOLKODTATÓ KÉRDÉSEK 1. Építs 15-20 db tíz- vagy húszforintos érméből pénzoszlopot! Hogyan tudnád kivenni a legalsó pénzérmét az oszlop feldöntése nélkül úgy, hogy a pénzérmékhez nem nyúlhatsz hozzá? 2. Miért nem süllyed el a több tonnás teherhajó a vízben? 3. Váltsd át a mértékegységeket! a. 3500 kg/m 3 = g/cm 3 b. 4,5 g/cm 3 = kg/m 3 c. 1200 kg/m 3 = g/cm 3 d. 0,7g/cm 3 = kg/m 3 4. Mennyi a sűrűsége 12 tonna tömegű, 8 m 3 térfogatú testnek? 5. Mekkora a tömege egy 3 dm 3 térfogatú alumínium testnek? (az alumínium sűrűsége 2700 kg/m 3 ) 6. Mekkora a térfogata egy 300 kg tömegű fenyőfatörzsnek? (a fa sűrűsége 500 kg/m 3 ) Házi feladat Nézz utána! A gyógyszerek hatóanyaga milligramm egységben van megadva. A gyógyszerészek milyen eszközökkel mérnek tömeget? Mekkora a Föld átlagos sűrűsége? Milyen eszköz az areométer? Mire használható? Felhasznált irodalom Fizika 7. Mozaik Kiadó; MS 2867; 2014.; MS 2667; 2014. Fizikai kísérletek és feladatok Mozaik Kiadó; 2007 Bonifert D.-né - Schwartz K.: Kézikönyv a fizika és természetismeret oktatásához - Mozaik Kiadó; 2008

Fizika 7. 14 Kinematika, dinamika 4. óra Erőmérés, erő, forgatónyomaték Emlékeztető Mit nevezünk erőhatásnak?..... Mi lehet a következménye annak, ha egy testet erőhatás ér?..... Mi az erő?... Mi az erő jele?... Mi az erő mértékegysége?... Mit jelent az, hogy az erő vektormennyiség?..... Mit nevezünk az erő támadáspontjának?..... Mit nevezünk az erő hatásvonalának?..... Eszköz és anyaglista csavarrugó 5 db kampós nehezék (50 g) skálával ellátott állvány mérleg tengelyezett rúd 10 N-os rugós erőmérő Munkavédelem A mérés során különös munkavédelmi előírások nincsenek. A kísérlet leírása, jelenség, tapasztalat 1. A skálával ellátott állvány tetejére akaszd fel a rugót, és jegyezd le, hogy milyen hosszú terhelés nélkül. A rugó hossza terhelés nélkül:.. cm. Ezután akassz a rugó szabadon hagyott végére egy, kettő illetve három ugyanolyan nehezéket és minden esetben olvasd le a rugó hosszát! Számítsd ki a rugó megnyúlásait is! tudasbazis.sulinet.hu A rugó hossza megnyúlása 1. eset (1 db nehezék) 2. eset (2 db nehezék) 3. eset (3 db nehezék)

Fizika 7. 15 Kinematika, dinamika Mit állapíthatsz meg a rugó megnyúlásairól?..... Milyen arányosság van a rugó megnyúlása és az erő között?... 2. Az erő mérésére alkalmas eszközt rugós erőmérőnek nevezzük. A rugós erőmérő segítségével a testek súlyát is meg lehet határozni. Rugós erőmérő segítségével mérd meg az előző feladatban szereplő 1., 2., illetve 3. esetben használt nehezék súlyát! Mérleg segítségével mérd meg mindhárom esetben a tömegüket is. A nehezék súlya (N) A nehezék tömege (g) 1. eset (1 db nehezék) 2. eset (2 db nehezék) 3. eset (3 db nehezék) Milyen összefüggést veszel észre a testek tömege és súlya között?..... 3. Helyezz a tengelyezett rúd egyik oldalára a tengelytől legtávolabbra egy nehezéket! A másik oldalon a rugós erőmérővel próbáld kiegyensúlyozni az emelőt többféleképpen! A mérési eredményeket foglald táblázatba! Távolság a tengelytől erőkar (cm) Erő (N) Helyezz a tengelyezett rúd egyik oldalára a tengelytől tetszőlegesen egy nehezéket! Ugyanazon az oldalon a rugós erőmérővel próbáld kiegyensúlyozni az emelőt többféleképpen! A mérési eredményeket foglald táblázatba! Távolság a tengelytől (cm) Erő (N) Mit tapasztalsz, mi a feltétele az egyensúlynak?..... 4. Akassz az emelőrúd egyik oldalára a tengelytől számított első lyukba (k 1 ) először 0,5 N, majd 1 N, 1,5 N illetve 2 N súlyú testeket (F 1 )! Mindegyik esetben próbáld kiegyensúlyozni

Fizika 7. 16 Kinematika, dinamika az ellentétes oldalon lévő 0,5 N súlyú nehezékkel (F 2 )! A tapasztalataidat foglald táblázatba! Számítsd ki minden esetben az F k szorzatot! Teher F 1 (N) Erőkar k 1 (m) Forgatónyomaték M 1 = F 1 k 1 (Nm) Erő F 2 (N) Erőkar k 2 (m) Forgatónyomaték M 2 = F 2 k 2 (Nm) 0, 5 1 1,5 0,5 2 Mit veszel észre, hogyan lehetett egyensúlyba hozni az emelőt?...... Milyen irányú az emelő két oldalán kifejtett két erő?... TAPASZTALATOK, MÉRÉSI ADATOK Az 1 kilogramm tömegű test súlya kb. 10 N. Az erőnek forgató hatása is lehet, melynek nagysága az erő és az erőkar szorzatával jellemezhető. Ezt a mennyiséget forgatónyomatéknak nevezzük és M-mel jelöljük. Egyensúly esetén az ellentétes irányba forgató két erő forgatónyomatéka egyenlő nagyságú. Egy emelőt egyoldalúnak nevezünk, ha a forgástengely az emelő egyik végén van, kétoldalúnak pedig akkor, ha a forgástengely az ellentétes irányba forgató erők támadáspontja között van. GONDOLKODTATÓ KÉRDÉSEK 1. Mekkora erőt lehet egy harapófogóval kifejteni, ha az élek 2 cm-re vannak a forgástengelytől és 100 N nagyságú erő hat a 18 cm hosszú nyél végén? 2. Keress mindennapjainkból olyan eszközöket, amelyek az egyoldalú vagy a kétoldalú emelő elvén működnek. Felhasznált irodalom Fizika 7. Mozaik Kiadó; MS 2867; 2014.; MS 2667; 2014. Fizikai kísérletek és feladatok Mozaik Kiadó; 2007 Bonifert D.-né - Schwartz K.: Kézikönyv a fizika és természetismeret oktatásához - Mozaik Kiadó; 2008 http://tudasbazis.sulinet.hu/hu/termeszettudomanyok/fizika/fizika-7-evfolyam/az-ero-merese/eromero-keszitese