Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,. A következő kifejezéseket úgy alakítsd át, hogy ne tartalmazzanak gyökjelet! a) b) 4 a c) a d) a e) f) a 7. Az alábbi kifejezéseket úgy alakítsd át, hogy sem negatív, sem törtkitevőt ne tartalmazzanak! a) b) 4 a c) 4 b d) ( ) a e) a f) c. A logaritmus fogalma. A következő kifejezéseket írd fel egyszerűbb alakban! a) log 9 = b) 7 log 7 = c) log 8 8 lg 4 = d) 0 = e) =. A logaritmus fogalma segítségével írd át más alakba a következő egyenlőségeket! a) = 8 b) = 9 c) 4 = 6 d) 4 = e) 6 4 log 6 = f) 64 lg7 f) 0 = = 6 g) = h) 8 = 64 i) 7 0 = j) 4 = 8 k) 8 4 = 7. Határozd meg az alábbi logaritmusok értékét! a) log 4 6 = b) log 9 = c) log 7 7 = d) log = e) log 8 = f) log = g) log 8 = h) log 4 = i) log 9 = j) log 9 = 8
.4 Számítsd ki a következő kifejezések pontos értékét! + a) log + = b) log 4 4 = c) + 4log = d) log 4 4 = e) log + log log6 7 = f) log 6 6 =. A logaritmus azonosságai. Írd fel rövidebb alakban a következő kifejezéseket! a) ( log + log y ) 4 log z = k k k logk + logk y + logk z b) 7 logk a + = 4 logk a + logk b logk + logk y c) + = d) lg + lg a lg c + ( lg + lg lg y 4lg z ) =. Határozd meg az alábbi kifejezések értékét! a) log 8 lg 000 = 7log7 b) log7 0 7 lg 0 log = 4. Eponenciális egyenletek 4. Oldd meg a következő egyenleteket! a) 7 6 7 7 = 4 b) 7 6 7 + 7 = 4 c) + 4 + + = 4 d) = 4 4. Oldd meg a következő egyenleteket! a) + + 7 + = + b) = 8 c) 6 + = 9 d) + 8 8 + 4 + 4 = 8 8
4. Oldd meg a következő egyenleteket! a) + + 4 + = 0 b) + 4 4 = 0 c) 9 6 = 7 d) 0 4 = 6. Logaritmusos egyenletek. Oldd meg a következő egyenleteket! lg a) ( ) ( 6 ) lg + = b) lg( 4) lg 4 = lg( ) c) [ lg( ) + lg ] = + lg( + 46) d) e) lg lg lg lg ( ) ( ) ( ) ( ) = = 6. Az eponenciális-, és a logaritmusfüggvény 6. Ábrázold és jellemezd az alábbi függvényeket! a) a b) a c) a log a log d)
Koordinátageometria. Műveletek vektorokkal. Egy téglalap csúcsai legyenek A, B, C, D. Rajzold meg a következő vektorokat! a) AB + BC b) AB + CB c) AB + DC d) AB + CD e) AC + BD f) BC + CD + DA g) CB + DC + AC h) AC BD i) CD AD. Rajzolj tetszőleges (nullvektortól különböző) a és b vektort! Szerkeszd meg az alábbi vektorokat! a) a b) a c),a d) a e) a f) a + b g) a b a b h) 0,a + b i) +. Egy C pont helyvektora c, egy tetszőleges P ponté p. Határozd meg a P pont C-re vonatkozó tükörképének helyvektorát!.4 Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4; ) b) ( ; ) c) ( 6; ) d) (4; ) e) (0; 0) f) ( ; 0). Egyenlő szárú háromszög alapja 0, magassága 6 hosszúságegység. Határozd meg a háromszög csúcsainak helyvektorait, ha úgy helyezzük el a koordináta-rendszerben, hogy a kezdőpont az alap egyik végpontjába van, és az alap az tengelyre illeszkedik. Hány megoldás van?.6 Rajzold meg azoknak a pontoknak a mértani helyét, amelyeknek a) az abszcisszája 0. b) az ordinátája 0. c) az abszcisszája. d) az ordinátája 4. e) az abszcisszája. f) az ordinátája. g) az abszcisszája és az ordinátája egyenlő..7 Az a ( ; ), b ( 4; ) és ( ; 8) vektorokat 90 -kal elforgatjuk. Határozd meg az elforgatott helyvektorok koordinátáit! Írd fej azokat a vektorokat is, amelyek az eredeti vektorokból 90 -os elforgatással adódnak! c.8 Legyen az a ( ; ), b ( 4; ) és ( ; 8). Számítsd ki a következő vektorok koordinátáit! c 4
a) a + b b) a c c) a b d) a + b e) Ábrázold a kapott helyvektorokat! a + b + c.9 Egy csónak sebessége állóvízben folyóban a partra merőlegesen indul. km. A csónak h a) Szerkessze meg a csónak eredő sebességét, ha cm-nek vesszük a hosszát! b) Számítsa ki az eredő sebesség nagyságát! km sebességű h km sebességvektor h.0 Három kutya egyenként 0 N erővel húz egy szánt. A szomszédos kutyák kötelei 0º-os szöget zárnak be. Szerkessze meg az eredő erőt!. Adott az a (; ) és (; 4) vektor. a) Szerkessze meg a v (7; 6) vektor a -val és b -vel párhuzamos összetevőit! b) Számítással határozza meg az összetevők koordinátáit! b. Egy katicabogár az A (; 4) pontból 7 másodpercen át egyenes vonalú egyenletes mozgást végzett, s múlva a B (; ) pontban volt. a) Írja fel a sebességvektorát! b) Mekkora utat tett meg összesen a bogár 7 másodperc alatt?. Vektorok skaláris szorzata. Szánkót húz egy ifjú apa 0 N egyenletes erővel, miközben a kötél 0º-os szöget zár be a vízszintessel. Mekkora munkát végez, ha 0 métert húzza így gyermekét? (A végzett munka az erő- és az elmozdulás-vektor skaláris szorzata.). Mekkora az egyenlő (de nem nulla) hosszúságú a és b szöge, ha az a + b és az a 4b egymásra merőleges vektorok?. Határozd meg az a és b egységvektorok által bezárt szöget, ha a + b a 4b!.4 Két egymással 60º-os szöget bezáró vektor skaláris szorzata 4. Ha az egyik vektor hossza a másik kétszerese, akkor a) milyen hosszúak a vektorok?
b) mekkora a két vektor összege? c) mekkora a két vektor különbsége?. Adott két vektor: (4; ) koordinátarendszerben a) Mi az a b szorzat értéke? b) Határozd meg a vektorok hosszát! a, b ( ; ) c) Mekkora a két vektor hajlásszöge?. Ábrázold a két vektort.6 Határozd meg az ( 8; ) a, b (; 6) vektorok hajlásszögét!.7 Egy háromszög csúcsai: A(; 0), B(; 4), C(-; ). Mekkorák a háromszög szögei?. Felezőpont, harmadoló pont. Számítsd ki az A ( 0;,6 ) és B (,8; 4) pontok által meghatározott szakasz felezőpontjának koordinátáit!. Legyen OA (; 7), OB ( 9; )! Határozza meg AB -t, valamint az AB szakasz felezőpontjához és harmadoló pontjaihoz az O-ból induló vektorok koordinátáit! 4. Háromszög súlypontja 4. Egy háromszög csúcsai: A(; 0), B(; 4), C(-; ). Határozd meg a súlypontjának a koordinátáit!. Az egyenes egyenlete. Írd fel annak az egyenesnek az egyenletét, amely áthalad az origón és illeszkedik az ; koordinátájú pontra!. Mi az egyenlete annak az egyenesnek, amely a) áthalad az (; ) ponton és normálvektora (; )? b) áthalad a (; ) ponton és irányvektora ( 4; )? c) áthalad a ( ; ) és ( ; 4) pontokon? Ábrázold a fenti egyeneseket!. Állapítsd meg, hogy rajta van-e a y = egyenesen az ( ; ) pont! 6
.4 Mely pontokban metszi a koordináta-rendszer tengelyeit az y = 0 egyenletű egyenes? Ábrázold az egyenest!. Adj meg pontot, amelyek illeszkednek a + y = egyenesre! 6. Egyenesek metszéspontja 6. Ábrázold az egyeneseket, és számítsd ki a két egyenes metszéspontjának koordinátáit! a: y = 0 b: + 4y 7 = 0 6. Egy háromszög oldalegyeneseinek egyenlete: a: 9 6y + 4 = 0 b: + 4 y 8 = 0 c: + y 46 = 0. Számítsd ki a kerületét! 6. Számítsd ki a P(-; ) pont és az e: + y = 0 egyenes távolságát! 6.4 Írd fel a P( ; ) és Q(6; 7) pontok által meghatározott szakasz felező merőlegesének egyenletét! 6. Számítsd ki a P( ; ) pont és a 4 y = egyenletű egyenes távolságát! 6.6 Egy háromszög csúcspontjainak koordinátái A( ; 0), B(; ) és C( ; 4). Hol metszi a C csúcsból induló magasságvonal a koordináta tengelyeket? 6.7 Egy háromszög csúcspontjainak koordinátái A( ; 4), B( ; ) és C(; ). Mekkora darabokat vág le a C csúcsból induló súlyvonal a koordinátatengelyekből? 6.8 Egy háromszög csúcspontjainak koordinátái A( ; ), B(; ) és C(; ). Írja fel a súlyvonalak egyenletét, és határozza meg a súlyvonalak közös pontját! 6.9 Egy háromszög csúcspontjainak koordinátái (4; 0), ( ; ) és ( ; 6). Írd fel az oldalfelező merőlegesek egyenletét, és határozd meg a merőlegesek közös pontját! 7. A kör egyenlete 7. Egy kör középpontja C (; ), sugara egység. Írd fel a kör egyenletét! 7. Egy kör egyik átmérőjének két végpontja: A ( ; ) és B (7; ). Írd fel a kör egyenletét! 7. Rajzold le koordináta-rendszerbe azt a kört, melynek középpontja a C ( ; ) pont és érinti az y tengelyt! Határozd meg a sugarát! Írd fel a kör egyenletét! 7
7.4 A következő másodfokú kétismeretlenes egyenletek közül válaszd ki azokat, amelyek kör egyenletei lehetnek, határozd meg a kör középpontját és sugarát! a) + y + 6 4y + 4 = 0 b) + y + y + y 4 = 0 c) + y 0 + 6y + = 0 d) y + 4 + 8y + = 0 7. Határozd meg az + y 6 + 0y = 0 egyenletű körrel koncentrikus (azonos középpontú) egység sugarú kör egyenletét! 7.6 Döntsd el, hogy rajta vannak-e az alábbi pontok az ( ) + ( y ) = 69 egyenletű körön! a) A (0; 4) b) B (4; 7) 7.7 Mi annak a körnek az egyenlete, ami áthalad a P( ; ) és az R( 4; - ) pontokon, és a középpontja az y = 9 egyenletű egyenesen van? 8. Kör és egyenes metszéspontja 8. Számítsd ki az ( ) + ( y + ) = 6 egyenletű kör és az y = 7 egyenletű egyenes metszéspontjának koordinátáit! 8. Milyen hosszúságú húrt vág ki az y = + egyenletű egyenesből az + y + =? ( ) ( ) 8. Az ( ) + ( y ) = 69 egyenletű körhöz az P(0; 4) pontjában érintőt húzunk. Írja fel az érintő egyenletét! 8.4 Az ( 4) + ( y ) = 6 egyenletű körnek van-e olyan pontja, mely egyenlő távolságra van a ( ; ) és (; 0) koordinátájú pontoktól? 8
Trigonometria. Szögfüggvények általános értelmezése, azonosságok. Válaszd ki az alábbi állítások közül az igazakat! sin 0 = sin0 cos 0 = cos 0 sin 60 = cos 0 sin 840 0 cos0 0 sin 80 = 0 cos080 =. Mely valós számokra teljesül, hogy. Mely valós számokra teljesül, hogy sinα =? cosα =?.4 Mely valós számokra teljesül, hogy tgα =?. Szinusz-, koszinusz- és tangensfüggvény ábrázolása és jellemzése. Ábrázold és jellemezd a tanult trigonometrikus függvényeket!. Számolások derékszögű háromszögben. Egy hegy északi lejtője km hosszú és 0 -os szöget zár be az alapsíkkal. A déli lejtő hossza 8 km. Milyen magas a hegy, és milyen meredek a déli lejtő?. Egy méter hosszú, függőleges falhoz támasztott létra lába a faltól 0 cm-re van. a) Mekkora szöget zár be a létra a fallal? b) Milyen magasan van a falhoz támasztva? c) Legfeljebb milyen távol lehet a lába a faltól, ha tudjuk, hogy biztonsági okokból a létrának a talajjal legalább 70º-os szöget kell bezárnia?. Egy trapéz párhuzamos oldalainak hossza 6 cm és 4 cm. A hosszabb alapon fekvő szögei 40º és 60º a) Mekkorák a trapéz szárai? b) Mekkora a trapéz kerülete és területe? 4. Szinusztétel, koszinusztétel 4. Egy háromszögben a = 7, b = 6 és γ =40. Mekkora lehet c,α, β? 9
4. Egy kikötőből egymástól 09 -ban eltérő irányban indul el két hajó. Az egyik km km sebessége 46, a másiké 6. Milyen messze lesz egymástól a két h h hajó óra 0 perc múlva? 4. Egy kismotoros repülőgép a felszállás óta 40 km-t tett meg déli irányban, majd -ot fordult nyugat felé, és megtett újabb km-t. Milyen messze van ekkor a kiindulási helyétől? 4.4 Egy háromszög egyik szöge 64, ennek a szögnek a felezője cm, a szög csúcsából kiinduló magasság hossza pedig 0 cm. Mekkorák a háromszög ismeretlen oldalai és szögei?. Trigonometrikus egyenletek. cos 4 =. cos + π = π. tg + =, 6 0