Lumineszcencia. Atomszerkezet. Molekulaszerkezet. Molekula energiája. E e > E v > E r. + E v. + E r. = E e. E total. Alapok, tulajdonságok

Hasonló dokumentumok
Lézer. Lézerek mindenütt. Lézer: Lézer

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet

Atomszerkezet. Fehérjék szerkezetvizsgáló módszerei. Molekulaszerkezet. Molekula energiája. Lumineszcenciás technikák. E e > E v > E r. + E v.

LÉZER: Alapok, tulajdonságok, kölcsönhatások

LÉZER: Alapok, tulajdonságok, alkalmazások

Lumineszcencia mindenütt. Fehérjék szerkezetvizsgáló módszerei. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Lumineszcenciás technikák

Fehérjék szerkezetvizsgáló módszerei

Az elektromágneses spektrum és a lézer

Abszorpció, emlékeztetõ

Az elektromágneses spektrum és a lézer

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?)

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz november 19.

Bevezetés a fluoreszcenciába

Speciális fluoreszcencia spektroszkópiai módszerek

Lumineszcencia spektroszkópia

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

A fluoreszcencia orvosibiológiai. alkalmazásai. Fluoreszcencia forrása I. Fluoreszcencia alkalmazások. Kellermayer Miklós

A lézer alapjairól (az iskolában)

Einstein: Zur Quantentheorie der Strahlung, 1917

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

A LÉZERSUGÁRZÁS ALAPVETŐ ISMÉRVEI SPONTÁN VS. INDUKÁLT EMISSZIÓ A FÉNYERŐSÍTÉS FELTÉTELE A POPULÁCIÓ INVERZIÓ FELTÉTELE

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Lumineszcencia alapjelenségek

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Lumineszcencia Fényforrások

A lézersugár és szerepe a polimer technológiákban

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Abszorpciós spektrometria összefoglaló

Műszeres analitika II. (TKBE0532)

Optika Gröller BMF Kandó MTI

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Az elektromágneses hullámok

Abszorpciós fotometria

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

Abszorpciós spektroszkópia

NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK

Fény kölcsönhatása az anyaggal:

Fluoreszcencia spektroszkópia

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Abszorpciós fotometria

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie II. Feladat: Lézer (10 pont)

Fluoreszcencia spektroszkópia

Abszorpciós fotometria

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

Abszorpciós fotometria

OPTIKA. Vozáry Eszter November

Az elektromágneses színkép és egyes tartományai

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió

Lézerek Lézer és orvosbiológiai alkalmazásaik

A hőmérsékleti sugárzás

Reakciókinetika és katalízis

Rövid impulzusok esetén optikai Q-kapcsolót is találhatunk a részben áteresztő tükör és a lézer aktív anyag között.

Távolságmérés hullámokkal. Sarkadi Tamás

Optika Gröller BMF Kandó MTI

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Koherens fény (miért is különleges a lézernyaláb?)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Visszaverődés. Optikai alapfogalmak. Az elektromágneses spektrum. Az anyag és a fény kölcsönhatása. n = c vákuum /c közeg

LÉZEREK ÉS (KATONAI) ALKALMAZÁSAIK BEVEZETÉS

A fény tulajdonságai

Sugárzások kölcsönhatása az anyaggal

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémia és Anyagtudomány Tanszék. Lézerek és mézerek

DSC. DSC : differential scanning calorimetry. DSC : differential scanning calorimetry. ITC : isothermal titration calorimetry

Fotonikai eszközök ZH bulid10.10.sp1

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

Bevezetés a lézeres anyagmegmunkálásba

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

jelszó: geta5

Optikai spektroszkópiai módszerek


L A S R A M. engineering laser technology. OPAL orvosi lézer - Robotizált sebészeti műtétek. Vass István

Modern mikroszkópiai módszerek

XIII. kerületi Egészségügyi Szolgálat Közhasznú Nonprofit Korlátolt Felelősségű Társaság

Talián Csaba Gábor Biofizikai Intézet április 17.

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Speciális fluoreszcencia spektroszkópiai alkalmazások. Emlékeztető: az abszorpció definíciója. OD = A = - log (I / I 0 ) = ε (λ) c x

A fény mint elektromágneses hullám és mint fényrészecske

Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Optikai kristályok spektroszkópiája

Fény- és fluoreszcens mikroszkópia. A mikroszkóp felépítése Brightfield mikroszkópia

Biomolekulák nanomechanikája A biomolekuláris rugalmasság alapjai

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Átírás:

Atomszerkezet Lumineszcencia Alapok, tulajdonságok Növekvő energiájú pályák Fotonemisszió: E=hf Molekulaszerkezet Molekula energiája Molekula: kémiai kötéssel összekapcsolt atomok Legegyszerűbb eset: kétatomos molekula (pl., hidrogénmolekula) Born-Oppenheimer - közelítés: E total = E e + E v + E r A molekulák vibrációs és rotációs mozgásokat végeznek! Vibrációs mozgás háromatomos csoportban (-CH 2-): Aszimmetrikus nyúlás Szimmetrikus nyúlás Ollózás Fontos megjegyzések: Energia állapotok egymástól függetlenek (csatolás elhanyagolható) Állapotok energianívói kvantáltak Átmenetek energia csomag elnyelésével/kibocsátásával járnak Energiaszintek közötti különbségek nagyságrendje különbözik: ~100x ~100x E e > E v > E r ~3x10-19 J (~2 ev) > ~3x10-21 J > ~3x10-23 J

Energia állapotok ábrázolása Lumineszcencia Elektron energiaszintek (vastag vonalak) Vibrációs energiaszintek (vékony vonalak) Első gerjesztett állapot Alapállapot Gerjesztett állapotból fényemisszióval járó relaxáció A hőmérsékleti sugárzáson felül kibocsátott sugárzás Hideg fény S: szingulett álapot; ellentétes spinű párosított elektronok (N.B.: Pauli-féle elv) T: triplett állapot; azonos spinű párosított elektronok Fluoreszcencia és foszforeszcencia A lumineszcencia lépései A lumineszcencia típusai Abszorpció Gerjesztés (magasabb energiaszintre lépés) abszorpció Gerjesztés módja Lumineszcencia típusa fotolumineszcencia Biolumineszcencia kémiai reakció kemilumineszcencia, biolumineszcencia termikusan aktivált ion-rekombináció termolumineszcencia töltés injekció elektrolumineszcencia nagyenergiájú radioaktív sugárzás radiolumineszcencia súrlódás tribolumineszcencia hanghullámok szonolumineszcencia Emisszió De-excitáció (relaxáció az alapállapotba) Gerjesztett állapot első gerjesztett szingulett állapot legalsó triplett állapot Lumineszcencia típusa fluoreszencia foszforeszcencia Szentjánosbogár

A lumineszcencia folyamatai Kasha-szabály Jablonski diagram Belső konverzió Vibrációs relaxáció Intersystem crossing Fotonemisszió (fluoreszcencia vagy foszforeszcencia) a legalacsonyabb elektron-energiaállapotból történő átmenet során lép fel. Energia Gerjesztés Fluoreszcencia Foszforeszcencia Michael Kasha (1920-) Amerikai fizikus Az átmenetek sebessége A lumineszcencia tulajdonságai I. gerjesztés fluoreszcencia 10-9 s foszforeszcencia 10-3 s Intenzitás (norm.) Fluoreszcencia gerjesztési spektrum (emisszió 340 nm-nél) Lumineszcencia spektrumok Fluoreszcencia emissziós spektrum (gerjesztés 295 nm-nél) Foszforeszcencia emissziós spektrum (gerjesztés 295 nm-nél) 10-15 s Sávos színkép alapállapot relaxáció kioltás vagy energiatranszfer gerjesztett állapot belső konverzió (hő) Gerjesztési és emissziós spektrumok tükörszimmetrikusak Stokes shift Hullámhossz (nm)

Φ= A lumineszcencia tulajdonságai II. Kvantumhatásfok emittált fotonok száma abszorbeált fotonok száma 1 knr=nem sugárzásos átmenetek sebességi állandói A fluoreszcencia mérése Fluoreszcencia spetrométer ( Steady-state spektrofluoriméter) A gerjesztett állapot élettartama dn dt = ( k f + k nr ) N ( )t N = N 0 e k f +k nr 1 τ = k f + k nr N=gerjesztett állapotú molekulák száma t=idő kf=fluoreszcencia sebességi állandó knr=nem-sugárzásos átmenetek sebességi állandója τ=fluoreszcencia élettartam Xe-lámpa Gerjesztő monokromátor Emissziós monokromátor Küvetta (minta) Fotodetektor A fény elektromágneses hullám Térben tovaterjedő elektromágneses zavar. Tranzverzális hullám. Polarizálható. Polarizáció, anizotrópia I z Mágneses tér oszcillációja abszorpciós vektor Vertikálisan síkpolarizált gerjesztő fény Fotoszelekció: random populációból az elektromos vektorral párhuzamos abszorpciós vektorú festékmolekulák kiválasztása I x I y V polarizációs szűrő Hullámhossz Elektromos tér oszcillációja Tovaterjedés iránya Fluorofórokhoz rendelhető abszorpciós és emissziós vektor: megszabja a foton abszorpció és emisszió valószínűségét. Abszorpció maximális, ha absz. vektor és a fény elektromos vektora párhuzamos. Abszorpció képessége függ cos 2 α-tól (α az absz. vektor és a fény elektromos vektora közötti szög). Polarizáció: Anizotrópia: p = I VV I VH I VV + I VH r = I VV I VH I VV + 2I VH H I V I H

A fluoreszcencia orvosibiológiai alkalmazásai Összefoglalás Fluoreszcencia mikroszkópia DNS szekvenálás (lánc terminációs módszer) DNS festés (EtBr) DNS microarray technológia Immunfluoreszcencia Fluoreszcencia-aktivált sejt válogatás (FACS) Förster rezonancia energia transzfer (FRET) Fluorescence recovery after photoleaching (FRAP) Fluoreszcens fehérjekonjugációs technikák Kvantum pontok (quantm dots) A molekulaszerkezet és energiaállapotok fontos szerepet játszanak a lumineszcenciában. A lumineszcencia molekuláris de-excitáció (relaxáció) melyet fénykibocsáts követ. A fluoreszcencia spektrumot a Stokes-féle eltolódás jellemzi. A kvantumhatásfok és fluoreszcencia élettartam fontos lumineszcencia paraméterek. Lézerek mindenütt Lézer Alapok, tulajdonságok, alkalmazások 5 mw diódalézer néhány mm Terawattos NOVA lézer Lawrence Livermore Laboratories Futballpálya méret

Lézer Lézer: Light Amplification by Stimulated Emission of Radiation 1. Mi a lézer? 2. Rövid lézertörténet 3. A lézerműködés alapjai 4. A lézerfény tulajdonságai 5. A lézerek típusai 6. A lézer orvosi és biológiai alkalmazásai E 2 E 1 MASER: Microwave Amplification by Stimulated Emission of Radiation hν hν Lézertörténet dióhéjban A lézer alapjai I. indukált emisszió 1917 - Albert Einstein: indukált emisszió elméleti predikciója. 1946 - G. Meyer-Schwickerather: első szemműtét fénnyel. 1950 - Arthur Schawlow és Charles Townes: az emittált fotonok a látható tartományba eshetnek. 1954 - N.G. Basow, A.M. Prochorow, és C. Townes: ammónia mézer 1960 - Theodore Maiman: első lézer (rubin lézer) 1964 - Basow, Prochorow, Townes (Nobe-díj): kvantum elektronika 1970 - Arthur Ashkin: lézercsipesz 1971 - Gábor Dénes (Nobel-díj): holográfia 1997 - S. Chu, W.D. Phillips és C. Cohen-Tanoudji (Nobel-díj): lézeres atomhűtés. E 2 E 1 1. Abszorpció 2. Spontán emisszió 3. Indukált emisszió N 2 ρ(ν) ρ(ν) B 21 B 12 N 1 Átmenet gyakorisága: n 12 =N 1 B 12 ρ(ν) ΔE= E 2 -E 1 =hν energiakvantum elnyelésekor. Magyarázat: kétállapotú atomi vagy molekuláris rendszer E 1, E 2 : energianívók, E 2 >E 1 ρ(ν) : sugárzási tér spektrális energiasűrűsége N 1, N 2 : adott energianívón levő atomok, molekulák száma B 12, A 21, B 21 : energianívók közötti átmeneti valószínűségek (Einstein-féle együtthatók), B 12 = B 21 A 21 Átmenet gyakorisága: n 21 =N 2 A 21 E 2 -E 1 fotonok egymástól függetlenül a tér minden irányába. Átmenet gyakorisága: n 21 =N 2 B 21 ρ(ν) Külső sugárzási tér hatására. Sugárzási tér energiája nő. Emittált és külső fotonok fázisa, iránya, frekvenciája megegyezik.

A lézer alapjai II. Populáció inverzió A lézer alapjai III. Optikai rezonancia Fényerősítés az energianívók relatív betöltöttségétől függ F A Aktív közeg dz F+dF df=fa(n 2 -N 1 )dz Zárótükör (99.9%) Pumpálás Részlegesen áteresztő tükör (99%) Aktív közeg Lézernyaláb E 2 E 2 d=nλ/2 E 1 Termikus egyensúly Populáció inverzió csak többállapotú rendszerben! Pumpálás: elektromos, optikai, kémiai energia E 2 Pumpálás E 1 E 1 Populáció inverzió Gyors relaxáció Metastabil állapot Lézerátmenet Rezonátor: két párhuzamos sík (vagy homorú) tükör a kimenő fényteljesítmény egy részét visszacsatolja a közegbe pozitív visszacsatolás -> öngerjesztés -> rezonancia Optikai zár a rezonátorban: Q-csatolás, impulzus üzemmód E 0 1. Kis divergencia Párhuzamos nyaláb 2. Nagy teljesítmény Folytonos üzemmódban több tíz, akár száz W (pl. CO 2 lézer) A lézerfény tulajdonságai I. Q-csatolású üzemmódban a pillanatnyi teljesítmény hatalmas (GW) Kis divergencia miatt óriási térbeli teljesítménysűrűség 6. Koherencia A lézerfény tulajdonságai II. fázisazonosság, interferenciaképesség Időbeli koherencia (különböző időpontokban emittált fotonok fázisazonossága) Térbeli koherencia (nyalábkeresztmetszet menti fázisazonosság) 3. Kis spektrális sávszélesség Monokromaticitás Nagy spektrális energiasűrűség 4. Polarizáltság 5. Rendkívül rövid impulzusok lehetősége ps, fs Alkalmazás: holográfia

Lézertípusok Fényerősítő közeg alapján: 1. Szilárdtest lézerek Kristályokba v. üveganyagokba bevitt fémszennyeződés; Rubin, Nd-YAG, Ti-zafír Vörös-infravörös spektrális tartomány; Folytonos, Q-kapcsolású üzemmód, nagy teljesítmény 2. Gázlézerek Legismertebb: He-Ne lézer (10 He/Ne). Kis energia, Széleskörű használat CO 2 lézer: CO 2 -N 2 -He keverék; λ~10 μm; Óriási teljesítmény (100 W) 3. Festéklézerek Szerves festékek (pl. rodamin, kumarin) híg oldata; Pumpálásra más lézer használt Nagy teljesítmény (Q-kapcsolt módban); Hangolható 4. Félvezető lézerek Összefekvő p- és n-típusú, szennyezett félvezetők határán. Rezonátor tükrökre nincs szükség (belső visszaverődés) Vörös, IR spektrális tartomány. Nagy kontinuus üzemmódú teljesítmény (akár 100W) Nyalábkarakterisztika nem túl jó. Kis méret miatt széleskörű alkalmazás. Lézerek alkalmazása Teljesítmény alapján 5 mw CD-ROM meghajtó 5 10 mw DVD lejátszó vagy DVD-ROM meghajtó 100 mw Nagysebességű CD-RW író 250 mw DVD-R író 1 20 W szilárdtest-lézer mikromegmunkálásra 30 100 W sebészeti CO 2 lézer 100 3000 W ipari CO 2 lézer (lézervágó) 1 kw 1 cm diódalézer rúd Holográfia Sebességmérés lézerrel LIDAR: Light Detection and Ranging Lézer Pásztázó tükör Gábor Dénes Hologram felvétele Hologram megtekintése Felülnézeti elrendezés Felvétel: rekonstruált térbeli elhelyezkedés. Közlekedési sebességmérőben: 100 impulzus 0.3 s alatt Hologram fotolemez felülete Hologramok

MALDI-TOF: matrix-assisted laser desorption/ionization time of flight mass spectrometry Fluorescence activated cell sorter (FACS) Sejtszuszpenzió MALDI-TOF sémája Folyadékköpeny Áramló sejtek Szűrők Detektor Impulzus lézer N2, 337 nm Gyorsítóba/ Detektorba Ionok Lézer Fókuszáló optika Sejtszorter Dikroikus tükör Lencsék és zűrők Detektor 30 Minta Mintatartó Szferikus sejtek Ovoid sejtek Lézer pásztázó konfokális mikroszkóp Teljes belső visszaverődés fluoreszcencia mikroszkópia (TIRFM) fluorofór lézer n 2 n 1 n 1 > n 2 evaneszcens mező fluorofórok Iz ()= I 0 e zd d=karakterisztkus hossz z=távolság fedőlemez i ii objektív (NA1.45) fluorofór Lézer nyaláb Alexa532-vel jelölt bakteriális flagellumok

Csomókötés egyetlen DNS láncra Lézercsipesz mikrogyöngy mozgatható lézercsipeszben Lézer Fáziskontraszt kép Fluoreszcencia kép F Fénytörő mikrogyöngy Mikroszkóp objektív F Grádiens erő EGYENSÚLY mikrogyöngy stacionárius lézercsipeszben Szórási erő (fénynyomás) Kinosita Group Csomókötés aktin filamentumra lézercsipesszel A lézer orvosi alkalmazásai I. Alapelvek: 1. Fény kölcsönhatása a biológiai mintával Beeső nyaláb Reflexió Transzmisszió Szóródás Reemisszió Abszorpció Arai et al. Nature 399, 446, 1999. 2. A lézernyaláb tulajdonságai: Fókuszálhatóság, kiválasztott hullámhossz, teljesítmény 3. A biológiai minta tulajdonságai: Transzmittivitás, abszorbancia, fényindukált reakciók

A lézer orvosi alkalmazásai II. Bőrgyógyászati alkalmazások: 1. Szempontok Sebészeti szakmák: lézerszike, koaguláció, vérzés nélküli operáció. Daganateltávolítás, tetoválás-eltávolítás. CO 2 és Nd:YAG lézer. Bőrgyógyászat: rendkívül kiterjedt alkalmazás. Fogászat: szuvas részek preferáltan abszorbeálnak. Photodynamiás tumorterápia: fotoszenzitív, tumor által preferáltan felvett kémiai anyagok aktiválása lézerrel. Szemészet: Retinaleválás, szemfenék fotokoagulációja, glaucoma, fotorefraktív keratektomia (PRK). 1. Alkalmazott hullámhossz: Argon: 488 or 514.5 nm Ruby: 694 nm Alexandrite: 755 nm Pulsed diode array: 810 nm Nd:YAG: 1064 nm 2. Impulzusszélesség 3. Megvilágított terület nagysága (8-10 mm átmérő) 4. Energiasűrűség (J/cm 2 ) 5. Repeticiós ráta (akkumulációs hatások) 6. Epidermális hűtés (gélek, folyadékok, spray-k, levegő) Bőrgyógyászati alkalmazások: 2. Lézeres szőrtelenítés Bőrgyógyászati alkalmazások: 3. Tetoválás eltávolítás Phototricholysis, photoepiláció Alapja: szelektív photothermolysis chromophorok általi szelekív abszorpció Q-kapcsolású Nd:YAG lézer (1064 nm) Alkalmazott chromophorok: 1. Szén (exogén, széntartalmú kenőcsök) 2. Hemoglobin (endogén) 3. Melanin (endogén) Kezelés előtt Kezelés után Kezelés előtt Kezelés után

Bőrgyógyászati alkalmazások: 4. Anyajegy eltávolítás Bőrgyógyászati alkalmazások: 5. Felületes erek, vénák eltávolítása Kezelés előtt Kezelés után Kezelés előtt Kezelés után Kezelés előtt 2 évvel a kezelés után Bőrgyógyászati alkalmazások: 6. Bőr felületi módosítása ( resurfacing ) 1993. Adrian CO 2, Erbium:YAG lézer Szemészeti alkalmazások: 1. Alapelvek Az optikai közegek transzmittivitása hullámhossz-függő Látható lézer UV lézer Ránctalanítás Napkárosítás Rhinophyma Szisztémás epidermális naevusok

Szemészeti alkalmazások: 2. LASIK Fotodinámiás terápia Laser-assisted In Situ Keratomileusis A refraktív lézer-szemsebészet egy fajtája Történet: Jose Barraquer, 1970: microkeratome építése, mellyel a corneába lézerrel hasadékokat vágott és lemezeket alakított ki (keratomileusis). Lucio Buratto (Olasz) és Ioannis Pallikaris (Görög), 1990: keratomileusis és photorefractív keratectomia kombinálása. Thomas and Tobias Neuhann (Németo), 1991: automatizált microkeratome. Lépések: 1. Kontaktlencse eltávolítása (7-10 nappal a beavatkozás előtt) 2. Lézeres letapogatás (kis teljesítmény): a cornea topográfiájának megrajzolása 3. Cornea felületéről egy lemez felhajtása (fs lézerrel) 4. Stroma anyagából eltávolítás (néhány 10 mikrométer vastagságban). Excimer lézer (193 nm). Phtotorefraktív keratektomia (PRK) A refraktív lézer-szemsebészet egy másik fajtája. Nincs lemez kialakítás, kisebb a felületi átalakítás mértéke. DE: fájdalmasabb, a regeneráció lassabb. Photodynamiás terápia (PDT): Roswell Park Cancer Institute 1970-es évek. Háromkomponensű tumorterápiás módszer: 1. Fotoszenzitizáló ágens, 2. Fény, 3. Oxigén. Lépések: 1. Fotoszenzitizáló prekurzor beadása (aminolevulinsav, ALA). 2. Néhány órás inkubációs idő. Ez alatt az ALA protoporhyrin IX-é alakul. 3. A célterület megvilágítása diódalézerrel (néhány perc). 4. Protoporphyrin abszorbeál -> gerjesztett szinglett állapot -> triplett állapot -> energiatranszfer triplett oxigénnel -> gerjesztett, reaktív oxigén -> szöveti reakció 5. Néhány napon belül a terület elhal, leválik. Lézer: Kulcsszavak Mi kell a lézerműködéshez? Kényszerített emisszió Populáció inverzió Pumpálás Optikai rezonancia Milyen a lézerfény? Monokromatikus Koherens Nagy teljesítményű