Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint



Hasonló dokumentumok
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

6. modul Egyenesen előre!

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

Geometriai alapfogalmak

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK május 19. du. JAVÍTÁSI ÚTMUTATÓ

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

A kör. A kör egyenlete

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

Koordinátageometria Megoldások

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Érettségi feladatok: Koordináta-geometria 1/5

2. Interpolációs görbetervezés

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k x n k+1 x n k+2...x n

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

PRÓBAÉRETTSÉGI MATEMATIKA május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

Geometriai példatár 2.

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

MATEMATIKA ÉRETTSÉGI október 20. EMELT SZINT

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Koordináta-geometria feladatok (emelt szint)

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;

Lineáris Algebra gyakorlatok

10. Koordinátageometria

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

Komplex számok szeptember Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

Elsőfokú egyenletek...

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

Koordináta-geometria feladatgyűjtemény

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

Számítógépes geometria (mester kurzus)

Koordináta-geometria II.

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre

Koordinátageometriai gyakorló feladatok I ( vektorok )

Vektorok és koordinátageometria

15. Koordinátageometria

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

15. Koordinátageometria

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

A lineáris programozás 1 A geometriai megoldás

Koordináta geometria III.

I. rész. x 100. Melyik a legkisebb egész szám,

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

Minimum követelmények matematika tantárgyból 11. évfolyamon

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat

Vektorok összeadása, kivonása, szorzás számmal, koordináták

MATEMATIKA FELADATGYŰJTEMÉNY

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Széchenyi István Egyetem, 2005

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Osztályozóvizsga követelményei

Gondolkodjunk a fizika segı tse ge vel!

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

A továbbhaladás feltételei fizikából és matematikából

Intergrált Intenzív Matematika Érettségi

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

Differenciál egyenletek

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

Az egyenes és a sík analitikus geometriája

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

4. modul Poliéderek felszíne, térfogata

10. évfolyam, ötödikepochafüzet

MATEMATIKA tankönyvcsaládunkat

Számítási feladatok a Számítógépi geometria órához

Számhalmazok. n n. a valós számok halmaza, ahol : nem írható fel két egész szám hányadosaként az irracionális számok halmaza.

2. OPTIKA 2.1. Elmélet Geometriai optika

4. előadás. Vektorok

Átírás:

TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár, 2010. május összeállította: Nagy András

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre (eleme-e az egyenesnek?)! a) e: 2x 7y = 8 és P(11;2); b) e: -7x 6y+ 1 = 0 és P(2;-2); c) e: 2 x = 5 + y és P(9;1); d) e: 5x = 0 és P( 2 1 ; 2 1 ); e) e: x 4y = -210 és P(2;54). 2) Az adott e egyenesre illeszkedik a Q pont. Határozd meg a hiányzó koordinátákat! a) e: x + 5y = 1 és Q(2;y); b) e: 2x y = 6 és Q(-57;y); c) e: 2y = 8x - 50 és Q(x;2); d) e: 7 x 2 = 5y és Q(x;-11); e) e: 5x + y = 14 és Q(p;2p). ) A táblázat egy-egy sora egy-egy egyenest meghatározó adatokat tartalmaz (n normálvektor, v irányvektor, m iránytangens vagy meredekség és α irányszög). Számítsd ki a hiányzó adatokat! n v m α e 2 f (5;) g 56,1 h (4;) i (7;0) 4) Határozd meg az egyenesek normálvektorát, irányvektorát, iránytényezőjét és irányszögét! a) e: 2x 7y = 8; b) f: x = 8; c) g: y = 8 - x; d) h: y + 5= 0; e) i: 4x 11 = y. 5) Írd fel a P 0 pontra illeszkedő, n normálvektorú egyenes egyenletét, ha a) n(2;5) és P 0 (-1;7); b) n(1;1) és P 0 (0;0); c) n( 7 2 ;5) és P0 (2;-); d) n(0;7) és P 0 (5;11); e) n(2;0) és P 0 (0;1); 2

f) n(-;) és P 0 (5;0); g) n(2; 5 ) és P 0 (1;0). 6) Írd fel a P 0 pontra illeszkedő, v irányvektorú egyenes egyenletét, ha a) v(2;5) és P 0 (1;-5); b) v(1;1) és P 0 (2;5); 4 c) v(5; ) és P 0 (2;7); d) v(0;-) és P 0 (1;2); e) v(2;0) és P 0 (2;0); f) v(1;1) és P 0 (0;0); g) v( ;1) és P 0 (2; 27 ). 7) Írd fel a P 0 pontra illeszkedő, m iránytangensű egyenes egyenletét, ha a) m = 1 és P 0 (-4;9); b) m = - és P 0 (0;0); c) m = 2 és P 0 (2;7); d) m = 2 és P0 (1;-5); e) m = 0 és P 0 (-;0). 8) Írd fel a P 0 pontra illeszkedő, α irányszögű egyenes egyenletét, ha a) α = 0 és P 0 (-1;-2); b) α = 0 és P 0 (;7); c) α = 90 és P 0 (-5;1); d) α = -19,29 és P 0 (1;-5); e) α = 90 és P 0 (0;11). 9) Írd fel az A és B pontokra illeszkedő egyenes egyenletét, ha a) A(-4;-2) és B(2;1); b) A(-;2) és B(6;-); c) A(0;0) és B(4;4); d) A(-7;1) és B(6;1); e) A(4;-41) és B(4;). 10) Vizsgáld meg, hogy a megadott három pont egy egyenesre illeszkedik-e! a) P(-4;1), Q(2;-1) és R(14;-5); b) P(1;0), Q(11;-1) és R(;-); c) P(1;), Q(-2;-6) és R(0;0); d) P( 2 1 ;), Q(-4; 2 ) és R(-1;-4). 11) Írd fel az e egyenessel párhuzamos és a P pontra illeszkedő g egyenes egyenletét, ha a) e: 2x 4y = 5 és P(-4;-1); b) e: 5x + 7y = 18 és P(12;-6); c) e: 2x = és P( 2 ; 4 ); d) e: y = 5x és P(5;1).

12) Írd fel az f egyenesre merőleges g egyenes egyenletét, amely illeszkedik a Q pontra, ha a) f: -x + 8y = 17 és Q(-2;5); b) f: x = 4 és Q(1;6); c) f: 5x + y = 4 és Q(4;5); d) f: x = 4y és Q(-2;8). 1) Hol helyezkednek el az A és B pontoktól egyenlő távolságra lévő pontok, ha a) A(2;6) és B(-5;); b) A(2;7) és B(2;-7); c) A(2;5) és B(5,2); d) A(;-2) és B(-1;4); e) A(;-2) és B(-;-2). 14) Az alábbi egyenesek közül melyik párhuzamos az f: x + 8y - 1 = 0 egyenessel, illetve melyik merőleges rá? a) a: -8x + y = 40; 8 14 b) b: y = x ; c) c: x + 8y = 11; d) d: 2x y = -8; e) e: (x 10) = 1 8y. 15) Határozd meg az alábbi egyenesek és a koordináta tengelyek metszéspontjait! a) e: 2x + 5 = 0; b) f: x 7 = 2y; c) g: x + y = 0; d) h: y = 4 x; e) j: y = x. 16) Határozd meg az alábbi egyenesek metszéspontjait! a) e: 4x + y = 17 és f: 2x 7y = -17; b) e: 5x + y = 25 és f: x 6y = 5; c) e: x 4y = -18 és f: -x + y = 14; d) e: x + 4y = 10 és f: y = 6,5 0,75x; e) e: 2x 5y = -24 és f: 2(x + 12) = 5y. 17) Keresd meg azokat a pontokat, melyek egyenlő távolságra vannak az A, B és C pontoktól, ha a) A(;), B(0;6), és C(8;-2); b) A(2;7), B(6;6), és C(14;4); c) A(;4), B(9;2), és C(1;-2); d) A(-2;1), B(8;), és C(2;-). 18) E háromszög oldalainak felezőpontjai P(;-5), Q(5;-2) és R(1;-1). Írd fel a háromszög oldalegyeneseinek és oldalfelező merőlegeseinek egyenleteit! 19) Adott az A(5;-), B(-1;1) és C(6;) pont. Írd fel az ABC háromszög a) b oldal egyenesének egyenletét; b) m b magasságának egyenletét; c) s a súlyvonal egyenesének egyenletét; 4

d) c oldal felezőmerőlegesének egyenletét! 20) Határozd meg annak az egyenesnek az egyenletét, amely áthalad az e: 2x y = 11 és az f: x + 5y = 12 egyenesek metszéspontján és a) párhuzamos a g: 2x + 5y = 1 egyenessel; b) merőleges a h: x 4y = -1 egyenesre. 21) Egy egyenlő szárú háromszög alapjának végpontjai A(2;-) és B(7;-2). Határozd meg harmadik csúcsának koordinátáit, amely illeszkedik az e egyenesre, ha a) e: x y = -2; b) e: 5x + y 9 = 0; c) e: y = 20 5x; d) e: x 5y = 17; e) e: y = 2x 15. 22) Határozd meg az a egyenes és a P pont távolságát, ha a) a: 4x y = 2 és P(5;1); b) a: x + 2y = - és P(1;-2); c) a: 6x 8y és P(-2;-1); d) a: 12x 5y = 77 és P(-6;4); e) a: x + 5y = -5 és P(;4). 2) Határozd meg az a és b egyenesek távolságát, ha a) a: 6x + 2y = 7 és b: y = x 2 7 ; b) a: y = és b: y = -1; c) a: 10x 2y = 11 és b: 25x 5y = -49; d) a: x 5y = 1 és b: 5x + y = 2; e) a: x + y = 8 és b: x + y 18 = 0; f) a: 6x 8y = 21 és b: -x + 4y = 2. 24) Határozd meg az egyenesek hajlásszögét, ha a) e: x + 4y = 0 és f: 5x 2y = 1; b) e: 6x y = 8 és f: y = 2x -; c) e: x + y = 12 és f: x + 2y = 1; d) e: 7x y = 5 és f: x + 7y = -2; e) e: y = és f: x y = 4; f) e: x 4y = -15 és f: x + 10y = 14. 25) Egy négyzet két oldalegyenesének egyenlete x + 2y = 12 és x + 2y = -1. Határozd meg a négyzet kerületét, területét és átlójának hosszát! 26) A Q pontot tükrözzük az e egyenesre. Határozd meg a tükörkép koordinátáit, ha a) e: -x + 5y = és Q(2;1); b) e: 2x = 5y és Q(-2;5); 7 c) e: 7x 11y = 1 és Q(5; ); 2 d) e: y = 2 és Q(-1;-2). 5

Megoldások 1) Helyettesítsük be a pont koordinátáit az egyenes egyenletébe! a. igen, mert 2 11 7 2 = 8; b. nem, mert -7 2 6 (-2) + 1 0; c. igen, mert 2 9 = 5 + 1; 1 d. nem, mert 5 0; 2 e. igen, mert 2 4 54 = -210. 2) A pont koordinátáit az egyenes egyenletébe behelyettesítve a kapott egyenletet megoldjuk. a. y = 5, így Q(2;5); b. y = -250, így Q(-57;-250); 27 27 c. x =, így Q( ;2); 4 4 71 71 d. x = -, így Q(- ;-11); e. p = 2, így Q(2;4). ) Használjuk a következő összefüggéseket: n = (A;B) v= (-B;A) és v = (v 1 ;v 2 ) n = (-v 2 ;v 1 ) v2 A tg α = m = = - v B 1 n v m α e (2;-1) (1;2) 2 6,4 f (-;5) (5;) 5 0,96 g (;-2) (2;) 1,5 56,1 h (4;) (-;4) 4-5,1 i (7;0) (0;7) 90 4) Rendezzük az egyenes egyenletét Ax + By = C alakba és olvassuk le az egyenes normálvektorának koordinátáit. a. n e = (2;-7), v e = (7;2), m = 7 2 és α 15,96 ; b. n f = (1;0), v f = (0;1), m nincs (mert tg 90 nem értelmezett) és α = 90 ; 1 c. n g = (1;), v g = (;-1), m = és α -18,4, vagy α 161,57 ; d. n h = (0;5), v h = (5;0), m = 0 és α = 0 ; e. n i = (4;-), v i = (;4), m = 4 és α 5,1. 6

5) Alkalmazzuk az egyenes normálvektoros egyenletét: Ax + By = Ax 0 + By 0. a. x + 5y = ; b. x + y = 0; c. 2x + 5y = -101; d. y = 7 (x tengellyel párhuzamos egyenes); e. x = 0 (az y tengely egyenlete); f. x y = 5; g. 2x + 5 y = 2. 6) Alkalmazzuk az egyenes irányvektoros egyenletét: v 2 x v 1 y = v 2 x 0 v 1 y 0, vagy v = (v 1 ;v 2 ) n = (-v 2 ;v 1 ) segítségével írjuk fel a normálvektoros egyenletet. a. 5x 2y = 15; b. x y = -; c. 4x + 15y = 11; d. x = 1 (y tengellyel párhuzamos egyenes); e. y = 0 (az x tengely egyenlete); f. x y = 0; g. x y = -7. 7) Alkalmazzuk az egyenes iránytényezős egyenletét: y = m(x x 0 ) + y 0, vagy m = - B A alapján írjuk fel a normálvektoros egyenletet. a. x y = -1; b. x + y = 0; c. -2x + y = ; d. 2x y = 17; e. y = 0 (az x tengely egyenlete). 8) A tg α = m összefüggés alapján felírjuk az egyenes iránytényezős egyenletét: y = m(x x 0 ) + y 0, vagy m = - B A alapján írjuk fel a normálvektoros egyenletet. a. x y = 6 ; b. y = 7; c. x = -5; d. 7x + 20y = -9; e. x = 0 (az y tengely egyenlete). 9) A két pont által meghatározott vektor az egyenes irányvektora: AB = v. a. v = (6;), x 2y = 0; b. v = (9;-5), 5x + 9y = ; c. v = (4;4), x y = 0 (a koordináta-tengelyek szögfelező egyenese az első harmadik negyedben); d. v = (1;0), y = 1 (x tengellyel párhuzamos egyenes); e. v = (0;44), x = 4 (y tengellyel párhuzamos egyenes). 10) Írjuk fel valamelyik két ponton átmenő egyenes egyenletét és abba helyettesítsük be a harmadik pont koordinátáit. a. a három pont egy egyenesre illeszkedik (kollineáris pontok); b. a három pont nem illeszkedik egy egyenesre (nem kollineáris pontok); 7

c. a három pont egy egyenesre illeszkedik (kollineáris pontok); d. a három pont egy egyenesre illeszkedik (kollineáris pontok). 11) Az e egyenes egyenletének Ax + By = C alakjából olvassuk le normálvektorát. Az e egyenessel párhuzamos g egyenesnek is lehet ez a normálvektora. a. n e = (2;-4) = n g, g: x 2y = -2; b. n e = (5;7) = n g, g: 5x + 7y = 18, mert P e; c. n e = (2;0) = n g, g: x = 2 ; d. n e = (-5;1) = n g, g: 5x y = 24. 12) Az f egyenes egyenletének Ax + By = C alakjából olvassuk le normálvektorát. Az f egyenes normálvektora és a g egyenes irányvektora megegyezik. a. n f =(-;8) = v g, g: -8x y = 1; b. n f =(1;0) = v g, g: y = 6; c. n f =(5;) = v g, g: x 5y = -1 d. n f =(1;-4) = v g, g: 4x + 2y = 0. 1) Az AB szakasz felezőmerőlegesének egyenletét keressük. Adott pontja a szakasz felezési pontja, normálvektora n = AB. a. n = (-7;-), F AB = 9 ; 2 2, f: 7x + y = ; b. n = (0;-14), F AB = (2;0), f: y = 0; 7 7 c. n = (;-), F AB = ;, f: x = y; 2 2 d. n = (-4;6), F AB = (1;-1), f: 2x y = -1; e. n = (-6;0), F AB = (0;-2), f: x = 0. 14) Írjuk fel az egyenesek normálvektorait! Ha n a = λ n f (λ R\{0}), akkor a két egyenes párhuzamos. Ha n a n f = 0, akkor a két egyenes egymásra merőleges. a. a f; b. b f; c. c f; d. d nem párhuzamos az f egyenessel és nem merőleges az f egyenesre; e. e f, tehát e f. 15) Az x tengelyre illeszkedő pontok P x (x;0) alakúak. Helyettesítsük be az egyenes egyenletébe P x koordinátáit és a kapott egyenlet megoldása a metszéspont abszcisszája. Az y tengelyre illeszkedő pontok P y (0;y) alakúak. Helyettesítsük be az egyenes egyenletébe P y koordinátáit és a kapott egyenlet megoldása a metszéspont ordinátája. a. M x = (-2,5;0) és M y nincs, mert e y tengely; 7 7 b. M x = ;0 és M y = 0 ; ; 2 c. M x = M y = (0;0); 4 d. M x = ;0 és M y = (0;4); e. M x = (;0) és M y = (0;). 8

16) Oldjuk meg a két egyenes egyenletéből felírható egyenlet-rendszert! a. e I f = (2;); b. e I f = (5;0); c. e I f = (-2;4); d. e I f = {}, azaz a két egyenesnek nincs közös pontja, párhuzamosak; 2 x + 24 e. e f, azaz minden pontjuk közös (x; ). 5 17) A keresett pont az A, B, C pontokra írható kör középpontja, ami a húrok felezőmerőlegeseinek metszéspontja. a. a keresett pont K = (;-2); b. a keresett pont nem létezik, mert a három pont egy egyenesre illeszkedik; c. a keresett pont K = (5;0); d. a keresett pont K = (;2), az AB szakasz felezési pontja. A három pont derékszögű háromszöget határoz meg, melynek az AB szakasz az átfogója. 18) Használjuk fel, hogy a háromszög középvonala párhuzamos a nem metszett oldallal. Így a PR, tehát v a = PR. Az oldalegyenesek egyenletei: a: 2x + y = 8; b: x 2y = 5; c: x + 4y = -17. Mivel az oldalfelező merőleges az oldallal párhuzamos középvonalra is merőleges, ezért m a PR, tehát n m = PR. Az oldalfelező merőlegesek egyenletei: a m a : x 2y = 9; m b : 2x + y = -1; m c : 4x y = 17. 19) a. A b oldal az A és C pontokra illeszkedő egyenes, b: 6x y = ; 9

b. Az m b merőleges a b oldalra, azaz AC vektorra és illeszkedik B csúcsra. m b : x + 6y = 5; c. Az s a illeszkedik az A csúcsra és az a oldal felezési pontjára, ami az BC szakasz felezési pontja. s a : 2x + y = 7; d. Az f c merőleges a c oldalra, azaz az A és B pontokra illeszkedő egyenesre és illeszkedik az AB szakasz felezési pontjára. f c : x 2y = 8. 20) e I f = (7;1). a. n g = n g = (2;5), g g : 2x + 5y = 19; b. n h = v h = (;-4), h h : 4x + y = 1. 21) A háromszög harmadik csúcsa az AB szakasz felezőmerőlegesének és az adott egyenesnek a metszéspontja. a. a harmadik csúcs C(;5); b. nincs megoldás, mert e párhuzamos az AB szakasz felezőmerőlegesével; c. az e egyenes az AB szakasz felezőmerőlegese, így az egyenes bármely pontja lehet a háromszög harmadik csúcsa, kivéve az AB szakasz felezési pontját, 9 5 F AB = ; pontot. C(x;20 5x); 2 2 d. nincs megoldás, mert az e egyenes az AB alap egyenese; e. a harmadik csúcs C(5;-5). 22) Írjuk fel a P pontra illeszkedő és az a egyenesre merőleges egyenes egyenletét, majd határozzuk meg metszéspontját az a egyenessel. A kapott pont és a P távolságát keressük. Ax + By + C (Alkalmazhatjuk a d = összefüggést is, ahol az egyenes egyenlete 2 2 A + B Ax + By + C = 0, alakban, a pont P(x;y) alakban adott.) a. az a egyenes és a P pont távolsága hosszúság egység; b. mivel P a, ezért az a egyenes és a P pont távolsága 0; c. az a egyenes és a P pont távolsága 2 hosszúság egység; 10

d. az a egyenes és a P pont távolsága 1 hosszúság egység; e. az a egyenes és a P pont távolsága 4 hosszúság egység. 2) Írjuk fel az a és b egyenesekre merőleges egyenletét (célszerű az origón átmenő egyenes egyenletét felírni), majd határozzuk meg metszéspontját az a és b egyenessel. A kapott metszéspontok távolságát keressük. a. az a és b egyenesek távolsága 0, mert a b; b. az a és b egyenesek távolsága 4 hosszúság egység; c. az a és b egyenesek távolsága hosszúság egység; d. az a és b egyenesek távolsága 0, mert az egyenesek metszik egymást; e. az a és b egyenesek távolsága 10 hosszúság egység; f. az a és b egyenesek távolsága 2 5 hosszúság egység. 24) Írjuk fel mindkét egyenes egy-egy normálvektorát. A normálvektorok hajlásszöge megegyezik az egyenesek hajlásszögével. A két vektor szöge meghatározható a skaláris A1 B2 A2 B1 szorzat segítségével. (Alkalmazhatjuk a tg φ = összefüggést is, ahol az A A + B B egyenesek egyenlete Ax + By + C = 0, alakban adott.) a. e és f szöge 74,9 ; b. e f, tehát szögük 0 ; c. e és f szöge 45 ; d. e f, tehát szögük 90 ; e. e és f szöge 60 ; f. e és f szöge 42 4 48. 25) A két egyenes távolsága, azaz a négyzet oldalának hossza 1 hosszúság egység. A négyzet kerülete 4a = 4 1 = A négyzet területe a 2 = 208 hosszúság egység; 2 1 = 1 terület egység; A négyzet átlója 2 a = 2 1 = 26 hosszúság egység. 26) Határozzuk meg a Q pontra illeszkedő és az e egyenesre merőleges egyenes egyenletét, majd ennek és az e egyenesnek metszéspontját, M pontot. Keressük a QQ ' szakasz Q pontjának koordinátáit, ha a szakasz felezési pontja M. a. Q = (2;1), mert Q e, azaz Q M; b. M = (0;0), Q = (2;-5) a Q pont e egyenesre vonatkozó tükrözése ebben az esetben megegyezik az origóra vonatkozó tükrözéssel; 1 c. M = ;, Q = ( ;2); 4 4 2 d. M = (-1;2), Q = (-1;6). 1 2 1 2 11