Elektronika I Dr. Istók Róbert II. előadás
Tranzisztor működése n-p-n tranzisztor feszültségmentes állapotban p-n átmeneteknél kiürített réteg jön létre Az emitter-bázis réteg között kialakult diódát emitterdiódának, a kollektor-bázis réteg közötti diódát kollektordiódának nevezik.
n-p-n tranzisztor előfeszített állapotban I emitterdiódája nyitó irányban, kollektordiódája záró irányban legyen előfeszítve bázisra az emitterhez képest nyitó irányú feszültség kapcsolunk emitter-bázis átmenetnél a kiürített réteg és a potenciálgát megszűnik határrétegen a többségi töltéshordozók áthaladnak bázisrétegbe jutott elektronok, ott kisebbségi töltéshordozók. kollektordióda záró irányban van előfeszítve. bázis-kollektor határrétegnél kiürített réteg és potenciálgát alakul ki potenciálgát megakadályozza a többségi töltéshordozók átjutását az ellentétes töltésű, kisebbségi töltéshordozóknak a határrétegen való áthaladását segíti,
n-p-n tranzisztor előfeszített állapotban II Bázisréteg keskeny (kisebb, mint 25 μm) bázis-kollektor határrétegen kialakult potenciálgát a bázisba érkezett elektronoknak nagy részét (95-99,9 %- át) szippantsa át a kollektorba. Az emitterből érkező elektronok (emitteráram) döntő hányada a kollektoron távozik (kollektoráram), és csak a bázisban rekombinálódott kis része adja a bázisáramot. α = I C I E α-áramátviteli tényező (0,95...0,999 )
n-p-n tranzisztor előfeszített állapotban III Az áram a nyitóirányban előfeszített, kis ellenállású emitter-bázis diódán folyik be a tranzisztorba, és (nagyjából ugyanez az áram) a záró irányban előfeszített, nagy ellenállású kollektorbázis diódán távozik. P = I 2 R Kollektordióda nagyobb teljesítményt ad le, mint amennyit az emitterdióda felvesz, Tranzisztor teljesítményt erősít tranzisztorhatás. A teljesítménykülönbséget a kollektorfeszültséget szolgáltató energiaforrás fedezi.
A bipoláris tranzisztor áramviszonyai, áramerősítés α = I C I E Β áramerősítési tényező
Bipoláris tranzisztor karakterisztikái Emitter földelve Bemenet a bázisra Kimenet a kollektorra
A tranzisztor működési tartományai Tranzisztor passzív eszköz, energiát nem tud termelni, csak fogyasztani. második és negyedik síknegyedében a tranzisztor nem működhet. Tranzisztor normál működési tartománya az első síknegyedben van u BE >0; u CB <0 Tranzisztor mindkét p-n átmenete kinyit, akkor telítési tartományról beszélünk u BE >0; u CB >0 Az inverz működési tartományban a tranzisztor bázis-kollektor diódája nyitó, az bázis-emitter diódája záró irányban van előfeszítve u BE <0; u CB >0
Négypólus H paraméterek i 1 -et, vagy u 2 nullává téve kifejezzük az adott H paramétert
Négypólus H paraméteres helyettesítő képe
Bipoláris tranzisztor fizikai helyettesítő képe Hibrid vagy Giacolleto-modell
Helyettesítő képben alkalmazott paraméterek jelentése r BB bázis-hozzávezetési ellenállás értéke 5-50Ω. Nagy frekvenciás áramkörökben zavaró - minél kisebbre választani r e bázis emitter dióda dinamikus ellenállása. Értékét a termikus feszültség ismeretében az emitteráramból határozhatjuk meg U T termikus feszültség B, illetve β - a bázisáramra vonatkoztatott áramerősítési tényező. Értéke a tranzisztorok felhasználási területétől függően változik. Kisfrekvenciás, kisteljesítménű (100mA) 50-500 Kisfrekvenciás, nagyteljesítménű (több A) 20-50 Nagyfrekvenciás (tranzit határfrekvencia legalább 1GHz) 50-100 Szuper β tranzisztorok 1000-5000
Helyettesítő képben alkalmazott paraméterek jelentése μ - feszültség-visszahatási tényező. Arra utal, hogy a kollektor-emitter feszültség változása milyen mértékben hat vissza a bázis-emitter dióda feszültségére. Értéke 10-4 - 10-5 közé esik. Integrált áramkörökben lévő bipoláris tranzisztorok esetén megközelítheti a 10-6-os értéket is. g m - meredekség. Azt mutatja meg, hogy a bázis-emitter feszültség változása milyen mértékben változtatja meg a kollektoráramot. Nagyságrendileg 10-500 ms körüli értéke van, mely azonban a munkaponti adatok függvénye
h 11 paraméter Értéke kω-os nagyságrendű.
h 11 paraméter
h 12 paraméter μ - feszültség-visszahatási tényező Értéke kω-os nagyságrendű.
h 12 paraméter μ - feszültségvisszahatási tényező
h 21 paraméter
h 21 paraméter
h 22 paraméter
h 22 paraméter
Térvezérlésű tranzisztorok Bemenő áramuk közel 0 Kis teljesítményigény Kis helyigény A többségi töltéshordozók árama határozza meg a működést kisebb hőmérsékletfüggés Szimmetrikus eszközök, a kapcsok felcserélhetőek unipoláris tranzisztor
Feszültséggel vezérelhető ellenállás A vezérlő elektródára kis zárófeszültséget kapcsolva, a kiürített réteg szélessége megnő, a csatorna keresztmetszete csökken, ezért ellenállása megnő. A vezérlő elektródára kapcsolt zárófeszültséget növelve a kiürített réteg egyre szélesedik, és egy, az eszközre jellemző Up vezérlő feszültségnél már a csatorna teljes keresztmetszetét elzárja. Ekkor A és B pont között nem folyhat áram, az ellenállás gyakorlatilag végtelen (a csatorna elzáródott).
Záróréteges j-fet n csatornás (field effect transistor) A source és drain elektródák közötti többségi töltéshordozó áramot a gate elektródára kapcsolt feszültséggel tudjuk változtatni azáltal, hogy változtatjuk a záróirányba előfeszített pn átmenet feszültséget változik a kiürített réteg vastagsága az áramvezetésre alkalmas csatorna keresztmetszete. Legfontosabb paraméter V p elzáródási feszültség ( amikor a kiürített réteg teljesen elzárja a csatornát)
J-FET Karakterisztikák
Kiürítéses MOSFET n-csatornás (szigetelt vezérlőelektródajú térvezérlésű tranzisztor) n típusú sziliciumréteg erősen szennyezett n csatorna vékony és gyengén szennyezet A gate-ra negatív feszültséget kapcsolunk, az elektromos tér, a n csatornából az elektronokat taszítja, kikinszeriti a csatarnaból. Ha a negatív feszültség eléri a lezárófeszültséget U p a csatorna teljesen kiürül, lezáródik és rajta az áram nem folyik
Kiürítéses MOS FET karakterisztikái Pozitív vezérlő feszültség esetén is működőképes marad a tranzisztor Pozitív feszültség növeli a töltés hordozók számát a csatornában
Növekményes MOS FET n csatornás (szigetelt vezérlőelektródajú térvezérlésű tranzisztor) Két erősen szennyezet n típusú üreg, n csatorna nincs Gate-ra pozitív feszültséget kapcsolunk. Az erőtér taszítja a lyukakat és vonzza az elektronokat. Kis pozitív gate feszültség először a p típusú szubsztrát gate alatti részéből távoznak a lyukak, és kiürített réteg alakul ki. Gatefeszültség növeléssel az elektromos tér source üregből elektronokat vonz és létrehozza a csatornát
Növekményes MOS FET karakterisztikái Uk küszöbfeszültség(2-4v) ahol a csatorna létrejön A MOS-FET-ek előnyös tulajdonsága a JFET-hez képest, hogy míg utóbbi gate-jén folyik valamennyi záróáram, a MOS FET gate-je el van szigetelve, tehát az tökéletes szakadásként viselkedik
FET helyettesítő kép g m meredekség, kisebb mint bipoláris tranzisztor esetén Átlagos j-fet esetén ez kb. 1-2 ms. A MOSFET-ek meredeksége 25 ms körül alakul Teljesítmény V- MOSFET-ek mellett ez az érték akár 100-1000 ms is lehet. g DS a drain és a source között fellépő vezetés. Nagyságrendileg megegyezik a bipoláris tranzisztorok h22 paraméterével. FET-ek esetén a nagyon kicsi bementi áram miatt a H paraméteres helyettesítő kép alkalmazása értelmetlen.
Tranzisztor munkapontja Kritériumok munkapont választásához: A bemeneti jel maximális értékének hatására a munkapont meg az átviteli karakterisztika lineáris szakaszán helyezkedjen el. Működés során a tranzisztor jellemző értékei ne haladják meg a gyártok által előirt határértékeket. Biztosítani kell a tranzisztor stabil működését akkor is, ha pl. változások következnek be a környezeti hőmérsékletben, a tápfeszültségben. A tranzisztor zajtényezője az előirt értéken belül kell, hogy maradjon.
Bipoláris tranzisztorok üzemmódjai (I.) nemlineáris tartomány - elektronikus kapcsoló (II.) lineáris tartományt - erősítő. lineáris működésű: a tranzisztoron folyó áram egyenesen arányos a vezérlőjel megváltozásával, nemlineáris működésű: a tranzisztoron folyó áram nem egyenesen arányos a vezérlőjel időbeni lefolyásával.
Sztatikus és dinamikus üzemmód definiálása Sztatikusnak nevezzük azt az üzemmódot, amelyben a tranzisztor a vezérlés hatására csak a kimeneti áramát változtatja meg, miközben a kimeneti feszültség állandó marad. Ilyenkor a kollektorellenállás értéke nulla. Dinamikusnak nevezzük azt az üzemmódot, amelyben a tranzisztor a vezérlés hatására csak a kimeneti feszültségét változtatja meg. Ez az eset olyankor áll fenn, amikor a kimeneti körbe ellenállást kötünk.
Tranzisztor vezérlése sztatikuson A tranzisztor munkapontját úgy tudjuk beállítani, hogy meghatározott egyenfeszültségeket kapcsolunk a kimeneti és bemeneti kapcsokra. A munkapont nagymértékben függ a bemeneti és kimeneti áramkörre előírt jelek váltakozó feszültségének és áramának nagyságától. A osztályú beállítás: - a munkapont a karakterisztika lineáris szakaszán van elhelyezve M A és vezérlés alatt a lineáris szakaszon mozog. A kimeneti áram időbeli lefolyása azonos a vezérlő jel időbeli lefolyásával. A tranzisztor működése lineárisnak tekinthető. B osztályú beállítás: - a munkapont M B a jelleggörbe lezárási pontjában van. A tranzisztoron a vezérlőjelnek csak az egyik fél periódusában folyik áram.
Munkapont beállítások AB osztályú beállítás: - a munkapont M AB az A- és B osztályú beállításnak megfelelő két munkapont között helyezkedik el. A tranzisztoron a fél periódusidőnél hosszabb ideig folyik áram vezérlés esetén. C osztályú beállítás: - a munkapont M C a jelleggörbe zárási szakaszán helyezkedik el. Kimeneti áram a fél periódusidőnél rövidebb ideig folyik, az áram impulzusszerű. Az AB, B és C osztályban az áram nem szinuszos lefolyású, alapharmónikusokból és felharmónikusokból áll. Kisteljesítményű erősítő kapcsolások esetén általában A osztályú munkapont-beállítást alkalmazunk.
Bipoláris tranzisztor dinamikus üzemmódja Ha a tranzisztorra terhelést kapcsolunk, ami legyen egy ellenállás, akkor az ellenálláson eső feszültség a vezérlés ütemében változik.
Kis és nagyjelű üzemmód Kisjelű üzemmód: a fellépő váltakozó áramok és feszültségek sokkal kisebbek, mint az egyenfeszültség és egyenáram értékek. Nagyjelű üzemmód: a fellépő váltakozó- és egyen mennyiségek értékei azonos nagyságrendben vannak. A kisjelű üzemmód feltételei lehetővé teszik, hogy a tranzisztor bemeneti és kimeneti villamos paramétereit lineáris összefüggések kössék össze Nagyjelű üzemmód esetén a tranzisztor a vezérlés során a nemlineáris tartományban is üzemel.
Munkapont beállítás bázisköri feszültségosztóval (I) Cbe és Cki kondenzátor egyenáramú szempontból leválasztja a kimenetet és a bemenetet.váltakozó feszültség-csatolást végez a működési tartományban. A bemeneti feszültségosztót úgy kell méretezni, hogy egy terheletlen feszültségosztóhoz hasonlóan működjön
Munkapont beállítás bázisköri feszültségosztóval (II) A feszültségosztó állandó U B0 bázis-feszültséget szolgáltat, a bázisáram változásaitól függetlenül. A kapcsolás munkaellenállása, azaz a kimeneti kör ellenállása: R E + R C
Munkapont beállítás bázisköri feszültségosztóval (III) Az emitterellenállás szerepe kettős: A kapcsolás bemeneti ellenállása R1- és R2-től is függ. Fontos, hogy ezek ne legyenek kis értékűek. Az R E -n eső feszültség nagyobb U B érték beállítását teszi lehetővé, így R2 is nagyobb lehet, mint R E nélkül. R E stabilizálja a munkapontot a hőmérsékletváltozás ellenében. Ha nő a hőmérséklet I B is megnő. A kollektoráram ettől B-szeresen megváltozik, ezért I E is megnő. Ez megnöveli az emitterfeszültséget. Mivel a bázisosztó miatt U B közel állandó, és U BE = U B U E, U BE csökken, ami I B -t is csökkenti. Vagyis a hőmérséklet hatására I B nem tud megnőni. Ez negatív visszacsatolás, ami a munkapont hőmérsékleti eltolódása ellen hat. C E szerepe: váltakozóáramú szempontból rövidre zárja R E -t, vagyis az emitter váltakozóáramúlag földön van.
Munkapont beállítás bázisárammal Kapcsolás hátránya, hogy a B egyenáramú áramerősítési tényező gyártási szórása nagyon nagy és tényleges értéke a munkaponti kollektoráramot jelentősen befolyásolja. Ugyanakkor nem biztosít olyan stabilitást, mint a feszültség osztó kapcsolás, mivel nem tartja olyan állandó szinten a bázisfeszültséget.
A térvezérléső tranzisztorok munkapont beállítása A térvezérléső tranzisztorok leggyakoribb felhasználási területe a digitális technika. A FET-ek elsősorban integrált áramkörökben találhatók meg, amelyekben a munkapont beállítása gyárilag történik meg. A térvezérlésű tranzisztorokat diszkrét áramköri elemként általában kisjelű tartományban, nagyfrekvenciás erősítőkben használjuk, mivel a határfrekvenciájuk nagy és a kapacitásaik kis értékűek.
Munkapont beállítás gateköri feszültségosztóval (I) A feszültségosztós megoldásban a terheletlenség biztosításához a feszültségosztót alkotó ellenállásoknak nagy értékűeknek kell lenniük A bemeneti feszültségosztó R1 és R2, valamint a Source-ellenállásos megoldás R1 ellenállás értékeinek felső határát a gate-visszáram okozta feszültségesés határozza meg. Ez csak sokkal kisebb lehet, mint az U GS0 értéke. A gyakorlatban ezeknek az ellenállásoknak a maximális értékei MΩ nagyságrendűek.
Munkapont beállítás gateköri feszültségosztóval (II)
Munkapont beállítás gateköri feszültségosztóval (III) A gate-osztó értéke: az ellenállásokat minél nagyobbra kell választani, mert ettől függ a kapcsolás bemeneti ellenállása, tehát I o értéke kicsi. JFET-nél U GS0 negatív, ezért ennél a munkapont beállításnál U G0 > U S0. A gate-osztós munkapont beállítás elsősorban növekményes MOS-FET-eknél alkalmazzák, mert ezeknél U GS0 pozitív.
Munkapont beállítás source-ellenállással A gate-ellenálláson nem folyik áram, mert I G = 0. Feladata, hogy a gate- potenciált 0 V-on tartsa. Értékét minél nagyobbra választják, azért, hogy a bemeneti ellenállás is nagy legyen. Azonban ha túl nagy az ellenállás értéke, akkor a rajta keletkezett zaj is nagy. Ezért R G maximum 1 MΩ. N-csatornás JFET átviteli karakterisztikája
Irodalomjegyzék Borbély Gábor Dr.: Elektronika I. Győr : Széchenyi István Egyetem, 2006. 201 p. [elektronikus jegyzet (pdf) U.tietze-Ch. Schenk: Analog és Digitális Áramkörök Hainzmann- Varga-Zoltai: Elektronikus áramkörök. Tankönyvkiadó, Budapest, 1992