1 Az elektrokéia áttekintése. Hoogén Heterogén Egyensúlyi elektrokéia (áraentes rendszerek) Elektrolitoldatok terodinaikája: elektrolitos disszociáció ionok terodinaikája és aktivitása Galváneleek/galváncellák és elektródok terodinaikája: elektrokéiai cellák cella- és elektródpotenciál elektródok típusai Dinaikus elektrokéia (árajárta rendszerek) Elektrolitok vezetése: elektrolitos vezetés ionozgékonyság Kohlrausch-törvények Elektródfolyaatok kinetikája: csereáraok túlfeszültség Tafel-egyenlet Butler-Voler-egyenlet elektrolízis akkuulátorok HOMOGÉN DINAMIKUS ELEKTROKÉMIA Transzportjelenség is egyben. I. Az elektrolitoldatok vezetése (κ, Λ, Λ o ) az ionok független vándorlása II. Kohlrausch-törvény: Λ = ν + λ + + ν λ Erős elektrolitok: Kohlrausch vezetési törvénye: Λ = Λ o Kc ½ III. Gyenge elektrolitok: (α < 1, α = Λ /Λ o ) Ostwald-féle hígítási törvény IV. Az ionok ozgékonysága, átviteli szá I. Az elektrolitoldatok vezetése I. Az elektrolitoldatok vezetése Ionvezetés: az Oh-törvény érvényes rá: I U / A G vezetés az R el ellenállás reciproka: G 1/ R el T növelésével κ is nő (févezetésnél fordítva van). Oldatban: κ fajlagos vezetés: Gl / A GC (l: cellahossz, A: felület, C: cellaállandó) A koncentráció fontos, ezért használjuk a oláris (fajlagos) vezetést is: / c A Λ határértéke a Λ o (végtelen híg oldat oláris fajlagos vezetése). R el A Λ határértéke a Λ o (végtelen híg oldat oláris fajlagos vezetése). Az elektrolit vezetése az ionok vezetéséből adódik össze: ez az ionok független vándorlásának Kohlrausch-féle törvénye: Λ λ + és λ - : a kation és anion saját (egyedi) végtelen híg oldatbeli oláris fajlagos vezetése ν + és ν - : a kation és anion sztöchioetriai száa Cella elektrolitok vezetésének érésére Erős és gyenge elektrolitok vezetésének függése a koncentrációtól II. Erős elektrolitok Fogalo (definíció): erős elektrolitok oldatában inden koncentrációban gyakorlatilag (közel) teljes a disszociáció, azaz α = 1. Disszociációfok (α): a disszociált olekulák hányada. Az erős elektrolitok Kohlrausch-féle vezetési törvénye: 1 2 Λ Λ Kc K: kísérletileg eghatározható állandó; elsősorban az elektrolit összetételétől, és ne a inőségétől függ. 1
II. Erős elektrolitok III. Gyenge elektrolitok Fogalo (definíció): erős elektrolitok oldatában inden koncentrációban gyakorlatilag (közel) teljes a disszociáció, azaz α = 1. Disszociációfok (α): a disszociált olekulák hányada. Az erős elektrolitok Kohlrausch-féle vezetési törvénye: 1 2 Λ Λ Kc K: kísérletileg eghatározható állandó; elsősorban az elektrolit összetételétől, és ne a inőségétől függ. Az α disszociációfok jól tükröződik az adott koncentrációjú oldat Λ, és a végtelen híg oldat Λ o Λ vezetésének viszonyában: Λ Savi disszociációs állandó: 2 c K a 1 Ostwald-féle hígítási törvény: 1 1 1 c 2 K a IV. Az ionok ozgékonysága vándorlási sebesség (s) az ionok ozgékonysága (u) közegellenállási tényező (f) ozgékonyság (u) és vezetés (λ) átviteli száok (t + és t - ) átviteli száok eghatározási ódszerei IV. Az ionok ozgékonysága Molekuláris kép: az a hydr sugarú ionok az η viszkozitású közegben az F el elektroos erő hatására felgyorsulnak, de ezt az F fric ellenkező irányú súrlódási erő lefékezi (Stokestörvény). F el ze F fs 6a s Beáll a stacionárius s egyenletes sebességű ozgás: ze s u f Az ionvándorlás sebessége az ε elektroos térerő és az u ionozgékonyság szorzata. Az ze ze u értéke: u f 6 fric a hydr hydr IV. Az ionok ozgékonysága Átviteli szá ze ze u f 6a hydr Az átviteli szá: az áthaladó ára hányad részét szállítja a vizsgált ion: I t I Érteleszerűen: t + + t - = 1 Az átviteli száok eghatározási ódszerei: ozgó határfelületek ódszere, Hittorf-ódszer (elektródterek koncentrációváltozásának érésével), átviteles galvánele cellapotenciáljának összehasonlítása az átvitel nélküli eleével. 2
13 Az elektrokéia áttekintése. Hoogén Heterogén Egyensúlyi elektrokéia (áraentes rendszerek) Elektrolitoldatok terodinaikája: elektrolitos disszociáció ionok terodinaikája és aktivitása Galváneleek/galváncellák és elektródok terodinaikája: elektrokéiai cellák cella- és elektródpotenciál elektródok típusai Dinaikus elektrokéia (árajárta rendszerek) Elektrolitok vezetése: elektrolitos vezetés ionozgékonyság Kohlrausch-törvények Elektródfolyaatok kinetikája: csereáraok túlfeszültség Tafel-egyenlet Butler-Voler-egyenlet elektrolízis akkuulátorok HETEROGÉN DINAMIKUS ELEKTROKÉMIA 1. Tapasztalatok (árasűrűség túlfeszültség, kapcsolatuk, csereára(ok), Tafel-egyenlet,...) 2. A tapasztalatok értelezése (a kettősréteg és odelljei, Volta- és Galvani-potenciál; az elektródfolyaat kinetikája, a Butler Voleregyenlet; ELEKTRÓDFOLYAMATOK a túlfeszültség alsó és felső határa, polarizáció, diffúziós határára) KINETIKÁJA 3. Gyakorlati elektrokéia (áraterelő galváneleek, akkuulátorok, tüzelőanyag-cellák, polarográfia, (HETEROGÉN DINAMIKUS voltaetria, ELEKTROKÉMIA) elektrolízis, korrózió) 14 15 Elektródfolyaatok kinetikája (heterogén dinaikus elektrokéia) Az egyensúlyi elektrokéia (az elektrolitoldatok, a galváneleek és az elektródok terodinaikája) az egyensúlyi állapotokat, a változások terodinaikai lehetőségét írja le. Az ilyen rendszerekben ne folyik ára, a terheletlen galvánele ne végez unkát, az elektródokon nincs változás. A neegyensúlyi elektrokéia [dinaikus elektrokéia] dinaikai folyaatokat tárgyal, ilyenkor a rendszer nincs egyensúlyban, hane változásban van: ára folyik az oldatban és az elektródokon, anyag le- vagy kiválás van az elektródfelületeken: az egyensúlyi potenciáltól eltérő kapocs-, ill. túlfeszültség érvényesül. 16 Elektródfolyaatok kinetikája (heterogén dinaikus elektrokéia) A dinaikus elektrokéia a galváneleekben lejátszódó spontán vagy az elektrolízisben kikényszerített folyaatok feszültség- és áraviszonyait, elsősorban az elektródtörténések idő- és térbeliségét írja le. Mind a galváneleek, ind az elektrolízis egértéséhez szükséges az elektródfolyaatok kinetikájának és echanizusának iserete. 17 Elektródfolyaatok kinetikája (heterogén dinaikus elektrokéia) Az elektród és az elektrolitoldat határfelületének történéseiről a akroszkopikus érések fontos tapasztalatokat adnak, hozzájárulnak az elektródfolyaatok olekuláris értelezéséhez is. 18 1. Tapasztalatok Mennyiségek a dinaikus elektrokéiában: a) Az áraerősség téakörében: A reakciósebesség definíciója heterogén reakcióban: terékfluxus = k[részecske] A két elektródfolyaatban: v ox = k c [Ox], ill. v red = k a [Red] Az elektródfolyaat sebességének értéke: j árasűrűség (j) = áraerősség / felület [A c -2 ] [Megjegyzés: az ilyen rendszerekben ohikus ellenállás jelentkezik (ai jól érhető).] 3
19 1. Tapasztalatok Mennyiségek a dinaikus elektrokéiában: b) A potenciál / feszültség téakörében: Az eredeti egyensúlyi potenciálok (E) helyett az áraterelő galváneleben vagy a űködő elektrolizáló cellában, az ezekben űködő, ún. polarizált elektródokon ettől eltérő potenciálértékek jelennek eg. Ezeket a következő fogalakkal írjuk le: Elektródokon: η túlfeszültség (polarizációs potenciál) Galváneleekben: kapocsfeszültség ( < E) [ne fix érték, függ a cella aktuális terhelésétől] Elekrolizáló cellában: η túlfeszültség ( > E) [i állítjuk be gyakorlati szepontok, célok alapján] Ezek indegyike iként az E is jól érhető. 2 1. Tapasztalatok Mennyiségek a dinaikus elektrokéiában: c) Árasűrűség, csereára(ok): A tapasztalatok szerint az η túlfeszültség változtatásával az elektródon érhető j árasűrűség változik: nőhet vagy csökkenhet, sőt eközben előjelet is válthat. Ez úgy értelezhető, hogy inden egyes elektródon egyidejűleg j c = Fk c [Ox] katódos, és j a = Fk a [Red] anódos árasűrűség lép fel. Az (aktuálisan érhető) j eredő árasűrűség a kettő különbsége: ha j a > j c, akkor j >, az eredő ára anódos, ha j a < j c, akkor j <, az eredő ára katódos, ha j a = j c, akkor j =, az eredő ára nulla. 1. Tapasztalatok 1. Tapasztalatok 21 Mennyiségek a dinaikus elektrokéiában: c) Árasűrűség, csereára(ok): (a) anódos és (b) katódos eredő árasűrűség: ja Fk a jc Fk c Red Ox 22 Mennyiségek a dinaikus elektrokéiában: d) A túlfeszültség árasűrűség kapcsolat típusai, a Tafel-egyenlet: Kis túlfeszültség esetén az árasűrűség lineárisan nő az alkalazott túlfeszültséggel: j = j f η (f = F/RT) Közepes túlfeszültség esetén egy tartoányban exponenciális (logaritikus) kapcsolatot érünk. Ez a 1 f tapasztalati Tafel-egyenlet: j j e, lnj lnj 1 f Nagy túlfeszültség esetén az árasűrűség axiuot, határértéket ér el: ez a diffúziós határára. oldat / anód oldat / katód Ha η <, úgy j < : ln( j) = ln j α f η 1. Tapasztalatok 2. A tapasztalatok értelezése 23 Mennyiségek a dinaikus elektrokéiában: d) A túlfeszültség árasűrűség kapcsolat típusai, a Tafel-egyenlet: A j árasűrűség az η túlfeszültség függvényében: 24 A tapasztalatok értelezéséhez isernünk kell: az elektród /elektrolit határfelület szerkezetét, összetételét: ez az elektroos kettősréteg és a Nernst-féle adszorpciós réteg leírását jelenti. a sebességeghatározó lépés echanizusát: ilyen a töltésátlépési folyaat Δ # G aktiválási szabadentalpiája, és hogyan ódosul ez az η túlfeszültség hatására. A diffúzió és az aktiválás szerepének tisztázása, valaint az η és az Δ # G közötti kapcsolat feliserése jelenti az alapját az elektródfolyaatok kinetikai leírásának. 4
1 n 25 2. A tapasztalatok értelezése a) Az elektród /elektrolit fázishatár szerkezete: Az oldat főtöegében az oldott anyag áralását a szilárd felület felé és attól el főleg a keverés okozta (gyors) konvekció biztosítja. A szilárd/folyadék fázishatáron indig (ne csak elektródok és elektrolitok esetén) kialakul egy erősen tapadó folyadékréteg: a Nernst-féle δ diffúziós réteg. E rétegen belül az anyagtranszport csak (lassú) diffúzióval történhet, ezért koncentrációgradiens alakul ki. Különleges szerkezete nincs. Vastagsága a keveréstől vagy az elektród forgásától függően 1-3 -1-2. [Forgó elektródon: δ = D 1/3 η 1/6 ω -1/2 ]. 26 2. A tapasztalatok értelezése a) Az elektród /elektrolit fázishatár szerkezete: Gouy Chapanféle diffúziós odell Helholtz-féle síkkondenzátor odell Stern-odell 2. A tapasztalatok értelezése 2. A tapasztalatok értelezése 27 a) Az elektród /elektrolit fázishatár szerkezete: A kettősrétegen belül az elektroos erőteret egy (e - ) elei töltés felülettől ért potenciáljával jelleezzük. A végtelenből a felülethez közelítve potenciálja exponenciálisan nő, ajd a felület síkszerű töltésének közelében állandósul (ψ Voltapotenciál). A felületen hirtelen egnő (χ felületi potenciál). A kettő együtt a φ Galvani-potenciál. Kísérletileg csak a Galvani-potenciál tanulányozható, ai lényegében az elektródpotenciál. 28 b) Az elektródfolyaatok kinetikájának értelezése, a Butler Voler-egyenlet: 1. Ha az Ox + e - = Red elektródreakcióban (katódos redukció) az elektródot pozitívabbá tesszük (polarizáljuk), akkor ezzel egnöveljük az elektródfolyaat aktiválási szabadentalpiáját: G c G F 2. A Red e - = Ox oxidációs anódfolyaatban negatív polarizáció hatására: Ga Ga 1 F E két ódosult aktiválási szabadentalpia-értékkel egkapjuk az eredő árasűrűség képletét, ai a j és η kapcsolatát tartalazza. Ez a Butler Voleregyenlet: c 2. A tapasztalatok értelezése 2. A tapasztalatok értelezése 29 b) Az elektródfolyaatok kinetikájának értelezése, a Butler Voler-egyenlet: 1. Ha az Ox + e - = Red elektródreakcióban (katódos [- G redukció) az elektródot pozitívabbá tesszük a (1 )F ]/RT a c a[re ]e (polarizáljuk), akkor ezzel egnöveljük az elektródfolyaat aktiválási szabadentalpiáját: [- G G c F ]/RT FBc[ Ox c ]eg F j j j FB d 2. A Red e - = Ox oxidációs anódfolyaatban negatív polarizáció hatására: G G 1 F a E két ódosult aktiválási szabadentalpia-értékkel egkapjuk az eredő árasűrűség képletét, ai a j és η kapcsolatát tartalazza. Ez a Butler Voleregyenlet: c a 3 b) Az elektródfolyaatok kinetikájának értelezése, a Butler Voler-egyenlet: redukció-oxidáció aktiválási profiljai = 1 = norál reakció profil potenciálkülönbség a külső és belső Helholtzréteg között az elektron átlépése az aktiválási vagy a reakciószabadentalpiában van 5
2. A tapasztalatok értelezése 2. A tapasztalatok értelezése 31 b) Az elektródfolyaatok kinetikájának értelezése, a Butler Voler-egyenlet: Abban az esetben, ha nincs túlfeszültség (η = ), a képlet az áraentes E cell cellapotenciálból szárazó j csereárasűrűséget adja eg: j = j a = j c Δ Ga 1 αfe /RT ja FBa[Red]e Δ Gc αfe /RT jc FBc[Ox]e A j csereára közvetlenül ne érhető, de pl. a Tafel-egyenlet ábrázolásakor η extrapolációval eghatározható. A j segítségével kapjuk a Butler Voler-egyenlet egyszerűbb alakját: j j [ e (1 ) f e f ] 32 c) A túlfeszültség határai: A túlfeszültség alsó határa: Kicsi túlfeszültségnél, aikor η <<,1 V, azaz fη << 1, akkor (e x = 1 + x + sorbafejtéssel): j = j [1 + (1 α) fη + 1 ( αfη) ] j fη Ekkor az Oh-törvény érvényes, és egyezően a tapasztalattal lineáris kapcsolat van j és η között. j j [ e (1 ) f e f ] 2. A tapasztalatok értelezése 2. A tapasztalatok értelezése 33 c) A túlfeszültség határai: A túlfeszültség felső határa: Ha η >,12 V (közepes túlfeszültség anódon), akkor a Butler Voler-egyenlet 2. tagja elhanyagolható, így j = j e (1 α)fη, azaz: ln j = ln j + (1 α)fη. Ha η <,12 V (közepes túlfeszültség a katódon), akkor az egyenlet 1. tagja elhanyagolható, így j = j e αfη, azaz: ln ( j) = ln j αfη. Ezek a Tafel-egyenletek. Kiérésükkel az α átlépési tényező és a j csereára-sűrűség határozható eg. j j [ e (1 ) f e f ] 34 d) A diffúziós határára: Közepesnél nagyobb túlfeszültségeknél a Nernst-féle diffúziós réteg haar kiürül, ert gyors a töltésátenet (féleválás). Az η további növelése ne növeli az árasűrűséget, ert az elektród-folyaat sebességét a Nernst-féle rétegen keresztüli diffúzió sebessége határozza eg. Kialakul a j li diffúziós határára-sűrűség. Értéke a dc/dx koncentrációgradienstől, a D diffúziós állandótól, és a δ rétegvastagságtól függ: zfdc jli zfj zfdc jli zfjli HETEROGÉN REAKCIÓK FOLYAMATOK SZILÁRD FELÜLETEKEN HETEROGÉN REAKCI ÓK (Eddig a g és a l fázisú hoogén reakcióktól volt szó.) A heterogén reakciók két fázis határán játszódnak le. A változás lehet fizikai vagy kéiai, lehet nukleációs vagy nukleáció-entes, lehet katalitikus vagy ne katalitikus. Kobinációk: s-l, s-g, s-s, l-l (itt csak példák, részletek ajd a kolloidikában): olvadás, fizikai oldódás, adszorpció (derítés) kilúgozás, felületkezelés (eloxálás, foszfátozás) elektródreakciók (később) korrózió csapadékképződés, kristályosodás, stb. 36 6
FELÜLETI JELENSÉGEK ALKALMAZÁSI PÉLDÁK ÁTTEKINTÉS: A heterogén (kontakt) katalízis (gáz/szilárd) a vegyiparban nagyon jelentős (>9%) [kinetika] Elválasztástechnikai ódszerek [egyensúly]: kroatográfiák (oszlop-, papír-, vékonyréteg-, gáz-, folyadék-, igen sok változatban), ioncserélők (terészetes [zeolitok stb.] és esterséges [űgyanták]), carbo edicinalis-tól a talajűködésen át a szennyvíztisztítókig rengeteg helyen Elektrolízis, galváneleek 37 I. A felület a) fogala, jellege; b) keletkezése, növekedése, nagysága; c) összetétele, szerkezete. Vizsgálóódszerek. II. Az adszorpció a) jellege: fiziszorpció és keiszorpció b) értéke: egyensúly adszorpciós izoterák: Languir-, BET- és ás egyenletek c) sebessége: az adszorpció, a deszorpció és a felületi diffúzió kinetikája III. Felületek katalitikus aktivitása a) heterogén katalízis b) adszorpció és katalízis. Languir Hinshelwood és Eley Rideal-echanizus. 38 a) A felület fogala, jellege a) A felület fogala, jellege akroszkopikus tapasztalat a geoetriai nagyság ne reális érték (NaCl vs. kréta) a: atoi-olekuláris dienzióban kezeljük kristályok felületét vizsgáljuk és használjuk(az aorf anyagok is vizsgálhatók) a kristályokat atook, ionok vagy olekulák alkotják: ato-, ion-, olekularácsok a kristályok elei cellákból épülnek fel, ezek alapján van 7 kristályrendszer, fontos a rácsfelület geoetriai szerkezete, az atook távolsága, stb. Az atook elhelyezkedése nagyon változatos: sík kristályfelületen egy zeolit típusú anyagban 39 4 a) A felület fogala, jellege b) A felület kialakulása, növekedése Az atook elhelyezkedése nagyon változatos: Jellegzetes zeolit-szerkezet: levágott oktaéderek, kis, kocka alakú üregek és egy nagy központi üreg. Ez a szerkezet igen nagy fajlagos felületet eredényez. egy zeolit típusú anyagban A felület a néhány olekulányi (atonyi) kristálygóc növekedése során alakul ki (olvadékból, oldatból, gázkondenzálással). Kialakulhat (növeszthető): tökéletes egykristály, de általános (és szinte fontosabb) a (kristály)- hibás reális kristály (gyakran polikristály), és az ilyen hibás felület kialakulhat aprítással (kristály eltörésével). [A felület nagyságának eghatározását lásd később.] 41 42 7
b) A felület kialakulása, növekedése Kulcsfogalo: a hibahely (eltérés a tökéletestől). Annyira fontos, hogy gyakran esterségesen idézik elő (pl. a tökéletes AgBr ne fényérzékeny.) Nyilvánvaló a lap, az él és a csúcs közötti különbség: ás-ás az atook/ionok környezete, ennek révén potenciális energiája. Kétszer kétféle típus/fajta (gyakran keverednek): geoetriai ill. kéiai hibák, aik egjelenhetek a felületen vagy a kristály belsejében. b) A felület kialakulása, növekedése Geoetriai hibák: felületen vagy a kristályban A felületi geoetriai hibák néhány típusa: sík terasz (ez igazából ne hiba) lépcső beszögellés csúcs egyedi ato 43 44 b) A felület kialakulása, növekedése Belső (geoetriai) hibák: a diszlokációk a növekedés során alakulnak ki, együtt nőnek a kristállyal, pl. csavardiszlokáció a csavartengely körül; ellentétes csavardiszlokáció terraszt eredényez b) A felület kialakulása, növekedése Kéiai hibák: kis eltérés az összetételben egyszerű lyuk = ponthiba = vakancia: hiányzik egy ato/ion egy rácsponton beékelődik a rácsba egy többlet ato/ion: ez egy intersticiális rácsele (egyúttal gyakran geoetriai rácshibát is okoz) 45 pl. fotoeulzióknál: Ag + lecsapás sok Br -dal, kevés I jelenlétében pl. félvezetőket esterséges szennyezőkkel állítanak elő: ezeket bediffundáltatják, belelövik, stb. a rácsba (szilárdtest-fizika) 46 c) A felület összetétele és szerkezete A szilárd anyag friss felületét a gázolekulák gyors ütközések révén azonnal beborítják. Ez a kinetikus gázelélet alapján száolható: Z W = p 2πk B T Levegőben (M ~ 29 g/ol, 1 at, 25 C): Z W = 3 1 27 2 s 1. Mivel 1 19 ato/ 2 van, ezért inden egyes rácsatoon 1 8 /s ütközés történik, azaz a friss kristályrács-felületet a gázolekulák gyakorlatilag rögtön ellepik (adszorbeálódnak). 47 a) jellege Az adszorpció tehát ennyiségi többlet a felületen és egyúttal a kölcsönhatás révén valailyen inőségi (szerkezeti, energetikai) változás is. CO olekulák adszorpciója platina (111) felületen: a) kis borítottságnál az eredeti rácsszerkezet egarad b) nagyobb borítottságnál etastabilis férács alakul ki [Az abszorpció: elnyelődés (feldúsulás) egy ásik fázisban.] 48 8
a) jellege Az adszorpció fogalai: adszorbens: a egkötő anyag (nagy felülettel) adszorptívu: a egkötött anyag (adszorbát) A deszorpció: az adszorpcióval ellentétes irányú folyaat, az adszorptívu leválása a felületről. Az adszorpció ennyiségi jellezője, értéke: a Θ relatív borítottság: elfoglalt adszorpciós helyek száa Θ = összes adszorpciós helyek száa Θ az adszorpciós folyaat során változik és adott körülények (anyagok, p, T) között egyensúlyi állapotot, értéket ér el. Θ = V/V ax (V ax 1 rétegre) Az adszorpció sebessége: Θ változása az időben. 49 a) jellege Az adszorpció inőségi jellezője a felületi kötődés jellege és erőssége. Ennek alapján van: fiziszorpció keiszorpció kis Δ ad H θ [kj/ol] < nagy távolság többrétegű ne specifikus olekulaszerkezet arad obilis olekulák van der Waals kölcsönhatás nagy Δ ad H θ << kis távolság egyrétegű rendszerint specifikus olekulaszerkezet változik lokalizált (kötött) olekulák kéiai [kovalens] kötés 5 a) jellege b) értéke A kétféle adszorpció seatikus ábrázolása (az ábra egy hasonló jelenségre vonatkozik, de a fizi- és a keiszorpció lényegét is jól tükrözi.) A fiziszorpció (P)a felülettől nagyobb távolságon és kisebb energiájú kötődést jelent, a keiszorpcióra (C) a felülethez közelebb és erősebben kötődő adszorbátu jellező. 51 Kétirányú, egyensúlyi folyaat (ellenirány: deszorpció): dinaikus egyensúly áll fenn a gáztéri adszorbens és az adszorbátu között. Az egyensúly (az adszorpció értéke) függ: a felület és a gáz kéiai inőségétől, a p nyoástól és a T hőérséklettől. Az egyensúly leírási ódja: az adszorpciós izotera (Θ függése a nyoástól állandó hőérsékleten) Languir-, BET-, Tyokin-, Freudlich-féle izoterák Irreverzíbilis adszorpció: nagyon jobbra tolt egyensúly!? 52 b) értéke Az egyensúly függése a gáz nyoásától. A Languir-féle adszorpciós izotera levezetése: (Ez az egyrétegű keiszorpcióra érvényes a többrétegű fiziszorpciót a BET-izotera írja le.) Négy feltevésen alapszik: az adszorpció reverzíbilis egyensúlyi folyaat, csak onoolekuláris réteg adszorbeálódik, a felület inden aktív helye egyenértékű, a egkötődés szoszéd-független. Ez a négy feltevés gyakran igen jól teljesül, áskor csak részlegesen érvényes. 53 b) értéke A dinaikus egyensúlyt az adszorpciós (k a ) és a deszorpciós (k d ) folyaat hozza létre, tartja fent: A(g) + M(s, felület) AM(s, felület) Az adszorpció sebessége ( a borítatlan felülettel): dθ [N = az összes helyek száa) dt = k ap N 1 Θ A deszorpció sebessége ( a borított felülettel): dθ dt = k d NΘ Egyensúlyban a két sebesség egyenlő. Ebből: Θ = Kp 1 + Kp ahol K = k a k d 54 9
b) értéke b) értéke A Languir-izotera egyenlet ábrázolása különböző K értékekre: Linearizálása: p ahol V = p + 1 Az adszorpció a olekula disszociációjával is járhat Θ = V [X 2 2X]. Ekkor a Languir-egyenlet: V KV V adszorpció: dθ dt = k ap N 1 Θ 2 deszorpció: dθ dt = k d NΘ 2 55 Egyensúlyban ezek egyenlők: Kp Θ = 1 + Kp Ilyen esetben a borítottság kevésbé függ a nyoástól! 56 b) értéke Az egyensúly függése a hőérséklettől: Az adszorpció rendszerint exoter folyaat, ezért értéke csökken a T eelésével. Mint egyensúlyi folyaatra, a van t Hoff-egyenlettel a K hőérsékletfüggéséből száítható a Δ ad H θ izoszter adszorpciós entalpia (hétköznapi nevén: adszorpciós hő): ln K T = Δ adh θ RT 2 θ ebből ln p 1/T = Δ adh θ R b) értéke A többrétegű fiziszorpcióra a BET (Brunnauer Eett Teller) -izotera érvényes: V cz = V on 1 z 1 1 c z ahol z = p p p*: akroszkopikus vastag adszorbeált folyadékréteg fölötti gőznyoás V: az adszorbeált gáz térfogata V on : az egyrétegű teljes borítottságot jellező térfogat c: a rendszerre jellező állandó Szilárd felületek eghatározására BET-készülékeket alkalaznak. 57 58 b) értéke A BET izotera is linearizálható: z 1 z V = 1 + c 1 z cv on cv on A V on értékéből a felület (olekuláris dienziójú) nagysága száolható. Ilyen érések alapján a (porózus) szilárd anyagok felülete több (tíz) 2 /g érték (ai kb. 1 6 - szorosa az 1 g-os töör göb geoetriai felületének). 59 c) A felületi folyaatok sebessége (ost csak az adszorpció, a deszorpció és a felületi ozgás, tehát ég ne a heterogén katalízis) Jellező adat a egkötődési valószínűség (s): s = a részecskék adszorpciójának sebessége a felülettel való ütközés gyakorisága a száláló a nyoásváltozás sebességével érhető, a nevező a kinetikus gázeléletből száolható. Következtetés: a felületre érkezést, az ütközést a diffúziós helykeresés, ajd egkötődés követi. A deszorpció aktiválást igénylő, kinetikailag elsőrendű folyaat. Vizsgálata nagyon tanulságos. 6 1
Heterogén katalízis ez ár kéiai változást, azaz reakciót jelent! Katalizátor (int korábban tárgyaltuk, itt is): sebességet növel (oda-vissza azonosan), egyensúlyt ne ódosít, új reakció utat nyit kisebb aktiválási energiával, önaga visszaképződik. Heterogén katalízis: rendszerint a katalizátor van a reaktáns(ok)tól és terék(ek)től eltérő fázisban. Forálkinetikailag a szokásos sebességi egyenletekkel ezek a heterogén folyaatok is leírhatók. A olekuláris echanizus tisztázása itt is fontos. 61 Példák katalizált reakciók aktiválási energiáira: Reakció Katalizátor E a (kj/ol) 2 HI H + I - 184 Au 15 Pt 59 2NO 2 N 2 + 2O 2-245 Au 121 Pt 134 2NH 3 N 2 + 3H 2-35 W 162 62 A echanizus: a reakció nyilván a szilárd felületen játszódik le (kontakt katalízis). Két eset: indkét reaktáns adszorbeálódik a felületen és az ott lejátszódó reakció után távozik a terék(ek), csak az egyik reaktáns adszorbeálódik és a ásik ezzel reagál, ajd a terék(ek) eltávozik. Eközben gyakran a szilárd felület szerkezete is átalakul legalábbis átenetileg. A heterogén katalízisre általánosan érvényes elélet ég ne született, sokféle egközelítés isert. Ezek adott esetben (nagyon) jók, pontosak, de ne általánosíthatók inden esetre. 63 Languir Hinshelwood-echanizus: indkét reaktáns (A és B) keiszorbeálódik sztöchioetria: A + B P kinetika: v = k Θ A Θ B Ha a Languir-izotera érvényes (gyakran igen): K A p A K B p B Θ A = Θ 1 + K A p A + K B p B = B 1 + K A p A + K B p B Ebből következik a sebességi egyenlet alakja ai kísérletileg érhető, illetve ellenőrizhető: kk A K B p A p B v = k Θ A Θ B = 1 + K A p A + K B p 2 B 64 Eley Rideal-echanizus: a reakció egy adszorbeált (A) és egy gázfázisú (B) olekula között játszódik le: sztöchioetria: A + B P kinetika: v = k Θ A p B Ha A-ra érvényes a Languir-izotera (gyakran): v = k Θ A p B = k K Ap A p 1 + K A p B A Sokkal gyakoribb a Languir Hinshelwoodechanizus, de vannak példák az Eley Ridealechanizusra is (pl. H 2 (gáz) + D 2 (ad)). 65 Klasszikus szervetlen példák: kontakt kénsavgyártás, aóniaszintézis, salétrosavgyártás. Példák szerves vegyipari heterogén katalízisre: Katalizátortípus reakciótípus konkrét példák Féek Félvezető oxidok és szulfidok hidrogénezés dehidrogénezés oxidáció Fe, Ni, Pt, Ag NiO, ZnO, MgO deszulfurizálás Bi 2 O 3 /MoO 3, MoS 2 Szigetelő oxidok dehidratálás Al 2 O 3, SiO 2, MgO Savak polierizáció H 3 PO 4, H 2 SO 4 izoerizáció SiO 2 /Al 2 O 3 krakkolás alkilezés zeolitok 66 11
A heterogén katalitikus aktivitás jellegzetes vulkángörbéje a háro áteneti fésorra: Az elég erős kötődés (a olekula kötéseinek fellazulása) és a ég elégséges ozgékonyság aránya az áteneti féeknél a periódusos rendszer egyes soraiban az oszlopszá függvényében vulkánalakú axiuot utat. 67 A heterogén (kontakt) katalízis gyakorlata: Rendszerint hordozós katalizátorokat alkalaznak (sok katalizátor igen drága, és a porózus hordozóval nagy fajlagos felület érhető el), nyílt, áralásos reaktorokban dolgoznak, kokatalizátorok ég gyorsítanak. A katalizátorokat időnként regenerálják, ert vannak inhibítorok, sőt katalizátorérgek is, ezért fontos a reaktánsok előtisztítása. A katalizátor gyakran ne csak gyorsít, hane irányít is (orto- helyett eta-szubsztitúció; a C-oxidációja eddig enjen (C-OH, C=O, COOH). Gyakori a gyökös echanizus (az erős keiszorpció hoolitikus kötéshasítást idéz elő). 68 12