Nonrelativistic, non-newtonian gravity

Hasonló dokumentumok
Superconformal symmetry in many appearances

( ) 3. Okawa, Fujisawa, Yasutake, Yamamoto, Ogata, Yamada in prep.

Construction of a cube given with its centre and a sideline

Local fluctuations of critical Mandelbrot cascades. Konrad Kolesko

Unification of functional renormalization group equations

On The Number Of Slim Semimodular Lattices

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Tudományos Ismeretterjesztő Társulat

Dependency preservation

Schwarz lemma, the Carath eodory and Kobayashi metrics and applications in complex analysis

Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011

u u IR n n = 2 3 t 0 <t T

Cluster Analysis. Potyó László

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

Tudományos Ismeretterjesztő Társulat

Az Einstein egyenletek alapvet megoldásai

EXKLUZÍV AJÁNDÉKANYAGOD A Phrasal Verb hadsereg! 2. rész

EN United in diversity EN A8-0206/419. Amendment

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

Sinkovicz Péter, Szirmai Gergely október 30

Széchenyi István Egyetem

Rigidity properties and transformations of Finsler manifolds

Haussmann/Rantner/Cerrito/Zw. PR A75, Enss/Haussmann/Zw. Ann. Phys. 326, Schmidt/Rath/Zw. arxiv: Efimov physics

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

Correlation & Linear Regression in SPSS

Can/be able to. Using Can in Present, Past, and Future. A Can jelen, múlt és jövő idejű használata

Please stay here. Peter asked me to stay there. He asked me if I could do it then. Can you do it now?

Statistical Inference

A klímaváltozás természetrajza

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek

Választási modellek 3

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő

Mapping Sequencing Reads to a Reference Genome

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Nemzetközi Kenguru Matematikatábor

Tudományos Ismeretterjesztő Társulat

Eötvös Loránd Tudományegyetem Informatikai Kar. Additív számelméleti függvények eloszlása

Előszó.2. Starter exercises. 3. Exercises for kids.. 9. Our comic...17

Mezőgazdasági gépesítési tanulmányok Agricultural Engineering Research MŰANYAG CSOMAGOLÓ- ÉS TAKARÓ FÓLIÁK REOLÓGIAI VIZSGÁLATA

Probl me J1 - Le trident

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo


Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium

Expansion of Red Deer and afforestation in Hungary

practices Mosaic and timed mowing Mosaic and timed mowing Mosaic and timed mowing 10 m wide fallow strips (4 parcels)

USER MANUAL Guest user

Szundikáló macska Sleeping kitty

Utazás Szállás. Szállás - Keresés. Szállás - Foglalás. Útbaigazítás kérése. ... kiadó szoba?... a room to rent? szállásfajta.

A katalógusban szereplő adatok változásának jogát fenntartjuk es kiadás

EPILEPSY TREATMENT: VAGUS NERVE STIMULATION. Sakoun Phommavongsa November 12, 2013

N É H Á N Y A D A T A BUDAPESTI ÜGYVÉDEKRŐ L

Alternating Permutations

GEOGRAPHICAL ECONOMICS B

Budapest By Vince Kiado, Klösz György

Relativisztikus pont-mechanika

r tr r r t s t s② t t ① t r ② tr s r

TestLine - Angol teszt Minta feladatsor

Hoyk Edie-Kovács András Donát 2 -Tompa Mihály 3

Programozás burritokkal

FOSS4G-CEE Prágra, 2012 május. Márta Gergely Sándor Csaba

TANMENETJAVASLATOK. Általánosságban: egy lecke mindig egy heti anyagot jelent, a heti óraszámnak megfelelően.

Discussion of The Blessings of Multiple Causes by Wang and Blei

ANGOL NYELVI SZINTFELMÉRŐ 2014 A CSOPORT

1. feladat: Hallgasd meg az angol szöveget, legalább egyszer.

ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Genome 373: Hidden Markov Models I. Doug Fowler

OLYMPICS! SUMMER CAMP

7 th Iron Smelting Symposium 2010, Holland

A logaritmikus legkisebb négyzetek módszerének karakterizációi


KN-CP50. MANUAL (p. 2) Digital compass. ANLEITUNG (s. 4) Digitaler Kompass. GEBRUIKSAANWIJZING (p. 10) Digitaal kompas

20 éves a Térinformatika Tanszék

Correlation & Linear Regression in SPSS

TÉRGAZDÁLKODÁS - A TÉR MINT VÉGES KÖZÖSSÉGI ERŐFORRÁS INGATLAN NYILVÁNTARTÁS - KÜLFÖLDI PÉLDÁK H.NAGY RÓBERT, HUNAGI

Mr. Adam Smith Smith's Plastics 8 Crossfield Road Selly Oak Birmingham West Midlands B29 1WQ

Szövettan kérdései Ami a terápiát meghatározza és ami segíti Dr. Sápi Zoltán

Gravitáció mint entropikus erő

ANGOL NYELVI SZINTFELMÉRŐ 2012 A CSOPORT. to into after of about on for in at from

Poliamid csövek, Sorozat TU1. Katalógus füzetek

ANGOL SZINTFELMÉRŐ. Cégnév: Kérem egészítse ki John és Mary beszélgetését a megadott szavakkal! A szavak alakján nem kell változtatnia!

Az elektron-foton kölcsönhatás (folyamatok)

FÖLDRAJZ ANGOL NYELVEN

KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: július 8.

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

BÍRÁLATOK ÉS KONFERENCIÁK

Regional Expert Meeting Livestock based Geographical Indication chains as an entry point to maintain agro-biodiversity

Összefoglalás. Summary. Bevezetés

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

Fluktuáló terű transzverz Ising-lánc dinamikája

elemi gerjesztéseinek vizsgálata

KELET-ÁZSIAI DUPLANÁDAS HANGSZEREK ÉS A HICHIRIKI HASZNÁLATA A 20. SZÁZADI ÉS A KORTÁRS ZENÉBEN

Learn how to get started with Dropbox: Take your stuff anywhere. Send large files. Keep your files safe. Work on files together. Welcome to Dropbox!

Tel.: (+361) , FAX: (+361) vagy Honlap:

OROSZ MÁRTA DR., GÁLFFY GABRIELLA DR., KOVÁCS DOROTTYA ÁGH TAMÁS DR., MÉSZÁROS ÁGNES DR.

Átírás:

Nonrelativistic, non-newtonian gravity Dieter Van den Bleeken Bog azic i University based on arxiv:1512.03799 and work in progress with C ag ın Yunus IPM Tehran 27th May 2016

Nonrelativistic, non-newtonian gravity Gravity in various regimes c LT 1 c LT 1 k (1) µν = 1 c 4 T (0) µν Φ = ρ G µν = G N c 4 T µν? G N L 5 T 3 G N L 5 T 3

Nonrelativistic, non-newtonian gravity Gravity in various regimes c LT 1 c LT 1 k (1) µν = 1 c 4 T (0) µν Φ = ρ G µν = G N c 4 T µν? G N L 5 T 3 G N L 5 T 3 [Dautcourt] Newton-Cartan gravity

Motivation Outline From NG towards GR NC gravity/geometry From GR to NC NC NG dimensional reduction in NC From GR to TTNC Example Legend NG = Newtonian Gravity NC = Newton-Cartan GR = General Relativity TT = Twistless Torsional

Motivation Outline From NG towards GR NC gravity/geometry From GR to NC [Cartan; Trautman; Kunzl] Review [Dautcourt; Tichy, Flanagan] NC NG dimensional reduction in NC From GR to TTNC New Related work [Afshar, Bergshoeff, Hartong et al.] Example Legend NG = Newtonian Gravity NC = Newton-Cartan GR = General Relativity TT = Twistless Torsional

Motivation Isn t GR our best theory of gravity? our most complicated theory of gravity all aproximation schemes are welcome

Motivation Isn t GR our best theory of gravity? our most complicated theory of gravity all aproximation schemes are welcome Why nonrelativistic? c is quite large in SI units more recently condensed matter on non-flat backgrounds non-relativistic holography

Motivation Isn t GR our best theory of gravity? our most complicated theory of gravity all aproximation schemes are welcome Why nonrelativistic? c is quite large in SI units more recently condensed matter on non-flat backgrounds non-relativistic holography Why non-newtonian? analytic description of strong gravity! isn t this an empty set? actually, no... is this a physically relevant regime? wasn t this done 50 years ago? please let me know!

From NG towards GR c LT 1 c LT 1 k (1) µν = 1 c 4 T (0) µν Φ = ρ G N L 5 T 3 G µν = G N c 4 T µν? G N L 5 T 3

From NG towards GR Geometrize Newtonian gravity a = Φ geodesic equation Γ i 00 = i Φ Φ = ρ curvature condition R 00 (Γ) = ρ

From NG towards GR Geometrize Newtonian gravity a = Φ geodesic equation Γ i 00 = i Φ Φ = ρ curvature condition R 00 (Γ) = ρ covariantize this: Newton-Cartan geometry/gravity

Newton-Cartan geometry/gravity Geometry fields: τ µ, h µν, Γ λ µν constraints: τ µ h µν = 0, h [µν] = 0, Γ λ [µν] = 0 µ τ ν = 0 µ h νλ = 0 h λ(µ R ν) λρσ(γ) = 0

Newton-Cartan geometry/gravity Geometry fields: τ µ, h µν, Γ λ µν constraints: τ µ h µν = 0, h [µν] = 0, Γ λ [µν] = 0 µ τ ν = 0 µ h νλ = 0 h λ(µ R ν) λρσ(γ) = 0 Gravity EOM: R µν (Γ) = τ µ τ ν ρ

Newton-Cartan geometry/gravity Geometry fields: τ µ, h µν, Γ λ µν constraints: τ µ h µν = 0, h [µν] = 0, Γ λ [µν] = 0 µ τ ν = 0 µ h νλ = 0 h λ(µ R ν) λρσ(γ) = 0 Gravity EOM: R µν (Γ) = τ µ τ ν ρ Manifest 1+3 dim coordinate invariance Equal to Newtonian gravity when τ µ = δ 0 µ, h µ0 = 0, h ij = δ ij, Γ j 0i = 0

From GR to Newton-Cartan c LT 1 c LT 1 k (1) µν = 1 c 4 T (0) µν Φ = ρ G N L 5 T 3 G µν = G N c 4 T µν R µν (Γ) = ρτ µ τ ν G N L 5 T 3

From GR to Newton-Cartan Large c expansion g µν (c) = i= 1 Ansatz: (2i) g µν c 2i (-2) g µν = τ µ τ ν g µν (c) = i=0 (2i) g µν c 2i (natural via x 0 = ct)

From GR to Newton-Cartan Large c expansion g µν (c) = i= 1 Ansatz: (2i) g µν c 2i (-2) g µν = τ µ τ ν g µν (c) = i=0 (2i) g µν c 2i (natural via x 0 = ct) Solving invertibility leads to (0) g µν = h µν (0) g µν = 2τ (µ C ν) + h µν (2) g µν = τ µ τ ν + 2τ (µ h ν)λ C λ where τ µ τ ν + h µλ h λν = δ µ ν

Large c expansion From GR to Newton-Cartan g µν (c) = i= 1 (2i) g µν c 2i g µν (c) = i=0 (2i) g µν c 2i Ansatz: (-2) g µν = τ µ τ ν (natural via x 0 = ct) Solving invertibility leads to (0) g µν = h µν (0) g µν = 2τ (µ C ν) + h µν (2) g µν = τ µ τ ν + 2τ (µ h ν)λ C λ where τ µ τ ν + h µλ h λν = δ µ ν Metric compatibility & finite Levi-Civita implies that µ τ ν = 0 µ h νλ = 0 K µν = 2 [µ C ν] Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ

From GR to Newton-Cartan (0) (0) g µν = τ µ τ ν g µν = h µν (0) (2) g µν = 2τ (µ C ν) + h µν g µν = τ µ τ ν + 2τ (µ h ν)λ C λ Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ Expand Einstein equations (for perfect fluid) (-4) R µν = R (-2) µν = 0 automatic (0) R µν = (0) T µν R µν (Γ) = ρ τ µ τ ν

Newton - Cartan Newtonian Gravity c LT 1 c LT 1 k (1) µν = 1 c 4 T (0) µν Φ = ρ G N L 5 T 3 G µν = G N c 4 T µν R µν (Γ) = ρτ µ τ ν G N L 5 T 3

Newton - Cartan Newtonian Gravity The dof s of NC manifest themselves after partial gauge-fixing Diff 4 Diff 3 (t) R ij = 0 j K ji = 2h jk [i ḣ j]k i G i = 1 2 hij ḧ ij + 1 4ḣijḣij 1 4 K ijk ij + 4πρ where G i = i Φ Ċi Φ = C 0

Newton - Cartan Newtonian Gravity The dof s of NC manifest themselves after partial gauge-fixing Diff 4 Diff 3 (t) R ij = 0 j K ji = 2h jk [i ḣ j]k i G i = 1 2 hij ḧ ij + 1 4ḣijḣij 1 4 K ijk ij + 4πρ where G i = i Φ Ċi Φ = C 0 Standard argument: 1) In 3d Ricci flat = flat 2) C i is harmonic, hence constant 3) NC=NG Conclusion: nonrelativistic non-newtonian gravity doesn t exist

Newton - Cartan Newtonian Gravity The dof s of NC manifest themselves after partial gauge-fixing Diff 4 Diff 3 (t) R ij = 0 j K ji = 2h jk [i ḣ j]k i G i = 1 2 hij ḧ ij + 1 4ḣijḣij 1 4 K ijk ij + 4πρ where G i = i Φ Ċi Φ = C 0 Standard argument: 1) In 3d Ricci flat = flat 2) C i is harmonic, hence constant 3) NC=NG Or does it?

Newton - Cartan Newtonian Gravity The dof s of NC manifest themselves after partial gauge-fixing Diff 4 Diff 3 (t) R ij = 0 j K ji = 2h jk [i ḣ j]k i G i = 1 2 hij ḧ ij + 1 4ḣijḣij 1 4 K ijk ij + 4πρ where G i = i Φ Ċi Φ = C 0 Standard argument: 1) In 3d Ricci flat = flat 2) C i is harmonic, hence constant 3) NC=NG Or does it? What about higher dimensions?

Newton - Cartan Newtonian Gravity The dof s of NC manifest themselves after partial gauge-fixing Diff 4 Diff 3 (t) R ij = 0 j K ji = 2h jk [i ḣ j]k i G i = 1 2 hij ḧ ij + 1 4ḣijḣij 1 4 K ijk ij + 4πρ where G i = i Φ Ċi Φ = C 0 Standard argument: 1) In 3d Ricci flat = flat 2) C i is harmonic, hence constant 3) NC=NG What about other energy-momentum? Or does it? What about higher dimensions?

Newton - Cartan Newtonian Gravity The dof s of NC manifest themselves after partial gauge-fixing Diff 4 Diff 3 (t) R ij = 0 j K ji = 2h jk [i ḣ j]k i G i = 1 2 hij ḧ ij + 1 4ḣijḣij 1 4 K ijk ij + 4πρ where G i = i Φ Ċi Φ = C 0 Standard argument: 1) In 3d Ricci flat = flat 2) C i is harmonic, hence constant 3) NC=NG What about other energy-momentum? Or does it? What about higher dimensions? dimensional reduction

Newton - Cartan Newtonian Gravity dimensional reduction We showed c GR NC KK KK [arxiv: 1512.03799] EMD c NCMD Here is NCMD i i Ω = 1 4 Ω3 F ij F ij i ( Ω 3 E i) = 1 2 Ω3 K ij F ij i ( Ω 3 F ij) = 0 ΩR ij = i j Ω + 1 2 Ω3 F i k F jk j ( ΩK j i ) = Ω i (h jk ḣ jk ) + j (Ωḣij) 2 i Ω + Ω 3 F ij E j i ( ΩG i ) = 1 4 Ω (ḣij ḣ ij K ij K ij + 2h ij ḧ ij ) + 1 2 Ω3 E i E i + Ω

From GR to Twistless Torsional NC c LT 1 c LT 1 k (1) µν = 1 c T (0) 4 µν Φ = ρ G N L 5 T 3 G µν = G N c 4 T µν R µν (Γ) = ρτ µ τ ν G N L 5 T 3

From GR to Twistless Torsional NC c LT 1 c LT 1 k (1) µν = 1 c T (0) 4 µν Φ = ρ G N L 5 T 3 G µν = G N c 4 T µν R µν (Γ) = ρτ µ τ ν G N L 5 T 3

From GR to Twistless Torsional NC Large c expansion Solving invertibility Metric compatibility & finite Levi-Civita implies that µ τ ν = 0 µ h νλ = 0 K µν = 2 [µ C ν] Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ

From GR to Twistless Torsional NC Large c expansion Solving invertibility Metric compatibility & finite Levi-Civita implies that µ τ ν = 0 µ h νλ = 0 K µν = 2 [µ C ν] Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ +τ λ [µ τ ν] + h λρ ( C µ [ν τ ρ] + C ν [µ τ ρ] C ρ [µ τ ν] ) Torsional Newton - Cartan geometry

From GR to Twistless Torsional NC Large c expansion Solving invertibility Metric compatibility & finite Levi-Civita implies that µ τ ν = 0 µ h νλ = 0 K µν = 2 [µ C ν] Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ +τ λ [µ τ ν] + h λρ ( C µ [ν τ ρ] + C ν [µ τ ρ] C ρ [µ τ ν] ) Expanding Einstein equations (-4) R µν = 0 τ [µ ν τ λ] = 0 [µ τ ν] = τ [µ a ν] Twistless Torsional NC geometry

From GR to Twistless Torsional NC Large c expansion Solving invertibility Metric compatibility & finite Levi-Civita implies that µ τ ν = 0 µ h νλ = 0 K µν = 2 [µ C ν] Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ +τ λ [µ τ ν] + h λρ ( C µ [ν τ ρ] + C ν [µ τ ρ] C ρ [µ τ ν] ) Expanding Einstein equations (-4) R µν = 0 τ [µ ν τ λ] = 0 [µ τ ν] = τ [µ a ν] (-2) R µν = τ µ τ ν D ρ a ρ D µ = (nc) µ a µ

From GR to Twistless Torsional NC Large c expansion Solving invertibility Metric compatibility & finite Levi-Civita implies that µ τ ν = 0 µ h νλ = 0 K µν = 2 [µ C ν] Γ λ µν = 1 2 hλρ ( µ h ρν + ν h µρ ρ h µν )+τ λ (µ τ ν) +h λρ τ (µ K ν)ρ +τ λ [µ τ ν] + h λρ ( C µ [ν τ ρ] + C ν [µ τ ρ] C ρ [µ τ ν] ) Expanding Einstein equations (-4) R µν = 0 τ [µ ν τ λ] = 0 [µ τ ν] = τ [µ a ν] (-2) R µν = τ µ τ ν D ρ a ρ D µ = (nc) µ a µ (0) ) R µν = R (nc) µν +D (ĥρν ρ â µ 1 (nc) (nc) 2aρ ρ ĥ µν a ρ τ (µ ν)ˆτ ρ + 1 2 τ µτ ν a 2ˆτ 2

Schwarzschild ( ds 2 = c 2 1 2m ) c 2 r Example dt 2 + ( 1 2m ) 1 c 2 dr 2 + r 2 dω 2 r = c 2 dt 2 + 2m r dt2 + dr 2 + r 2 dω 2 + O(c 2 )

Schwarzschild ( ds 2 = c 2 1 2m ) c 2 r Example dt 2 + ( 1 2m ) 1 c 2 dr 2 + r 2 dω 2 r = c 2 dt 2 + 2m r dt2 + dr 2 + r 2 dω 2 + O(c 2 ) τ 0 = 1, τ i = 0 h ij = δ ij, h µ0 = 0 C 0 = m r, C i = 0

Schwarzschild ( ds 2 = c 2 1 2m ) c 2 r Example dt 2 + ( 1 2m ) 1 c 2 dr 2 + r 2 dω 2 r = c 2 dt 2 + 2m r dt2 + dr 2 + r 2 dω 2 + O(c 2 ) τ 0 = 1, τ i = 0 h ij = δ ij, h µ0 = 0 C 0 = m r, C i = 0 This solves NC eom Φ = C 0 = m r Newtonian gravity of point mass dτ = 0 a µ = 0 no torsion

Example Schwarzschild (extremely massive) ( ds 2 = c 2 1 2M ) ( dt 2 + 1 2M r r ) 1 dr 2 + r 2 dω 2

Example Schwarzschild (extremely massive) ( ds 2 = c 2 1 2M ) ( dt 2 + 1 2M r r ) 1 dr 2 + r 2 dω 2 τ µ = ( 1 2M r ) 1/2 δ t µ, h µν = ( 0 0 0 0 ( 0 1 2M ) 1 0 0 r 0 0 r 2 0 0 0 0 r 2 sin 2 θ ) C µ = 0

Example Schwarzschild (extremely massive) ( ds 2 = c 2 1 2M ) ( dt 2 + 1 2M r r ) 1 dr 2 + r 2 dω 2 τ µ = ( 1 2M r ) 1/2 δ t µ, h µν = ( 0 0 0 0 ( 0 1 2M ) 1 0 0 r 0 0 r 2 0 0 0 0 r 2 sin 2 θ ) C µ = 0 This solves TTNC eom Φ = C 0 = 0 vanishing Newtonian potential! dτ 0 a µ = M r 2 ( 1 2M r curved spatial geometry! ) 1 δ r µ non-vanishing torsion! Nonrelativistic non-newtonian gravity

Summary & outlook Two punch lines: nonrelativistic gravity is more than a Newtonian potential Appearance of TTNC out of GR In progress/to do: precise relation with bottom up TTNC add energy momentum gauge fixed version precise physical interpretation real world applications?

Gaussian normal coordinates There always exist coordinates such that (on a patch) ds 2 = c 2 dσ 2 + g ij dx i dx j doesn t that imply we can always remove the torsion?

Gaussian normal coordinates There always exist coordinates such that (on a patch) ds 2 = c 2 dσ 2 + g ij dx i dx j doesn t that imply we can always remove the torsion? The transformation to GN coordinates is not compatible with (standard) large c expansion Schwarzschild (extremely massive) ds 2 = c 2 dσ 2 + 2M r(σ, ρ) dρ2 + r(σ, ρ) 2 dω 2 = c 2 dσ 2 + c 4/3 ( 9 2 M ) 2/3 σ 4/3 dω 2 + O(c 1/3 ) r(σ, ρ) = ( ) 2/3 3 2 2M(cσ + ρ)