Local fluctuations of critical Mandelbrot cascades. Konrad Kolesko

Hasonló dokumentumok
Performance Modeling of Intelligent Car Parking Systems

Construction of a cube given with its centre and a sideline

STATISTICAL ANALYSIS OF HIDDEN MARKOV MODELS

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

On The Number Of Slim Semimodular Lattices

Unification of functional renormalization group equations

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek

Nonrelativistic, non-newtonian gravity

Genome 373: Hidden Markov Models I. Doug Fowler

Schwarz lemma, the Carath eodory and Kobayashi metrics and applications in complex analysis

Tudományos Ismeretterjesztő Társulat

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests


Statistical Dependence

Statistical Inference

Alternating Permutations

Választási modellek 3


Diszkrét Véletlen Struktúrák, 2016 tavasz Házi feladatok

Efficient symmetric key private authentication

TestLine - Angol teszt Minta feladatsor

Correlation & Linear Regression in SPSS

Discussion of The Blessings of Multiple Causes by Wang and Blei

Region in which λ(a) is included. Which region D brings good response?

Cluster Analysis. Potyó László

Qualitative Logics and Equivalences for Probabilistic Systems

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Mapping Sequencing Reads to a Reference Genome

Simonovits M. Elekes Gyuri és az illeszkedések p. 1


Superconformal symmetry in many appearances

Probabilistic Analysis and Randomized Algorithms. Alexandre David B2-206

Klaszterezés, 2. rész

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

W

Characterizations and Properties of Graphs of Baire Functions


Cashback 2015 Deposit Promotion teljes szabályzat

To make long stories short from the last 24 years

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm


Combinatorics, Paul Erd}os is Eighty (Volume 2) Keszthely (Hungary), 1993, pp. 1{46. Dedicated to the marvelous random walk

Smaller Pleasures. Apróbb örömök. Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor

Ensemble Kalman Filters Part 1: The basics


Dense Matrix Algorithms (Chapter 8) Alexandre David B2-206

X Physique MP 2013 Énoncé 2/7

Dependency preservation

Véges szavak általánosított részszó-bonyolultsága

Publikációs lista. Vásárhelyi Bálint Márk

Fluktuáló terű transzverz Ising-lánc dinamikája

Supporting Information

A logaritmikus legkisebb négyzetek módszerének karakterizációi

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

KERÜLETI DIÁKHETEK VERSENYKIÍRÁS 2017.

Ahol a kvantum mechanika és az Internet találkozik

Word and Polygon List for Obtuse Triangular Billiards II

On Statistical Problems of Discrete and Continuous Time Autoregressive Processes

Adattípusok. Max. 2GByte

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Adattípusok. Max. 2GByte

Asymptotic properties of estimators in regression models. Baran Sándor

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression

Sebastián Sáez Senior Trade Economist INTERNATIONAL TRADE DEPARTMENT WORLD BANK

ACTA ACADEMIAE PAEDAGOGICAE AGRIENSIS

Eladni könnyedén? Oracle Sales Cloud. Horváth Tünde Principal Sales Consultant március 23.

Széchenyi István Egyetem

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz


Correlation & Linear Regression in SPSS

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel

Informatika E FAKT , = ±

PELL EGYENLETEK MEGOLDÁSA LINEÁRIS REKURZÍV SOROZATOK SEGÍTSÉGÉVEL

1 Feltételes várható érték. Példák E[X Y]-ra. 3 feltételes várható érték. 4 Martingálok. 5 Hivatkozások. F X Y (x y) P(X < x Y [y, y + y))

SQL/PSM kurzorok rész

Small Dynamical Heights for Quadratic Polynomials and Rational Functions

Magyar ügyek az Európai Unió Bírósága előtt Hungarian cases before the European Court of Justice

Hierarchical Abstraction for the Verification of State-based Systems

Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest

Csima Judit április 9.

Bevezetés a kvantum-informatikába és kommunikációba 2014/2015 tavasz

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája

16F628A megszakítás kezelése

Budapest By Vince Kiado, Klösz György

Programozás burritokkal














Átírás:

Local fluctuations of critical Mandelbrot cascades Konrad Kolesko joint with D. Buraczewski and P. Dyszewski Warwick, 18-22 May, 2015

Random measures µ µ 1 µ 2 For given random variables X 1, X 2 s.t. E [ e X 1 + e X 2] = 1 we are interested in random measures µ on [0, 1) satisfying self similar property: µ(b) = e X 1 µ 1 ( 2(B [0, 1/2)) ) + e X 2 µ 2 ( 2(B [1/2, 1) 1) ), where µ 1 µ 2 X 1, X 2 and Lµ = Lµ 1 = Lµ 2. Goal: Understand local properties of µ Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 2 / 19

Random measures µ µ 1 µ 2 For given random variables X 1, X 2 s.t. E [ e X 1 + e X 2] = 1 we are interested in random measures µ on [0, 1) satisfying self similar property: µ(b) = e X 1 µ 1 ( 2(B [0, 1/2)) ) + e X 2 µ 2 ( 2(B [1/2, 1) 1) ), where µ 1 µ 2 X 1, X 2 and Lµ = Lµ 1 = Lµ 2. Goal: Understand local properties of µ Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 2 / 19

Random measures µ µ 1 µ 2 For given random variables X 1, X 2 s.t. E [ e X 1 + e X 2] = 1 we are interested in random measures µ on [0, 1) satisfying self similar property: µ(b) = e X 1 µ 1 ( 2(B [0, 1/2)) ) + e X 2 µ 2 ( 2(B [1/2, 1) 1) ), where µ 1 µ 2 X 1, X 2 and Lµ = Lµ 1 = Lµ 2. Goal: Understand local properties of µ Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 2 / 19

Phase transition Define ψ(t) := log 2 E ( e tx 1 + e tx 2). By assumption ψ(0) = 1, ψ(1) = 0, ψ. 6 Supercritical Critical 5 4 3 2 Subcritical (x^(2) (x^(2) (x^(2) 1 0 0 1 2 3 4 5-1 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 3 / 19

Subcritical case ψ (1) = m < 0 Theorem (Liu) Suppose that ψ (1) = m < 0, then for any δ > 0, almost all realization of µ, µ-almost all x and sufficiently large n µ(b(x, 2 n )) 2 nm (1+δ) 2σ 2 n log log n µ(b(x, 2 n )) 2 nm+(1+δ) 2σ 2 n log log n, where σ 2 = ψ (1) ψ(1). Moreover µ(b(x, 2 n )) 2 nm (1 δ) 2σ 2 n log log n µ(b(x, 2 n )) 2 nm+(1 δ) 2σ 2 n log log n i.o. i.o. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 4 / 19

Subcritical case ψ (1) = m < 0 Theorem (Liu) Suppose that ψ (1) = m < 0, then for any δ > 0, almost all realization of µ, µ-almost all x and sufficiently large n µ(b(x, 2 n )) 2 nm (1+δ) 2σ 2 n log log n µ(b(x, 2 n )) 2 nm+(1+δ) 2σ 2 n log log n, where σ 2 = ψ (1) ψ(1). Moreover µ(b(x, 2 n )) 2 nm (1 δ) 2σ 2 n log log n µ(b(x, 2 n )) 2 nm+(1 δ) 2σ 2 n log log n i.o. i.o. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 4 / 19

Supercritical & critical case Barral, Rhodes, Vargas When ψ (1) > 0 then µ is purely atomic Barral, Kupiainen, Nikula, Saksman, Webb If ψ (1) = 0, then the random measure µ almost surely has no atoms. Moreover for any k and δ > 0, µ-a.e. x µ(b(x, 2 n )) e 6 log 2 n(log n+(1/3+δ) log log n) for sufficiently large n µ(b(x, 2 n )) e ( 2 log 2+δ) n log n i.o. µ(b(x, 2 n )) n k for sufficiently large n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 5 / 19

Supercritical & critical case Barral, Rhodes, Vargas When ψ (1) > 0 then µ is purely atomic Barral, Kupiainen, Nikula, Saksman, Webb If ψ (1) = 0, then the random measure µ almost surely has no atoms. Moreover for any k and δ > 0, µ-a.e. x µ(b(x, 2 n )) e 6 log 2 n(log n+(1/3+δ) log log n) for sufficiently large n µ(b(x, 2 n )) e ( 2 log 2+δ) n log n i.o. µ(b(x, 2 n )) n k for sufficiently large n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 5 / 19

Supercritical & critical case Barral, Rhodes, Vargas When ψ (1) > 0 then µ is purely atomic Barral, Kupiainen, Nikula, Saksman, Webb If ψ (1) = 0, then the random measure µ almost surely has no atoms. Moreover for any k and δ > 0, µ-a.e. x µ(b(x, 2 n )) e 6 log 2 n(log n+(1/3+δ) log log n) for sufficiently large n µ(b(x, 2 n )) e ( 2 log 2+δ) n log n i.o. µ(b(x, 2 n )) n k for sufficiently large n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 5 / 19

Supercritical & critical case Barral, Rhodes, Vargas When ψ (1) > 0 then µ is purely atomic Barral, Kupiainen, Nikula, Saksman, Webb If ψ (1) = 0, then the random measure µ almost surely has no atoms. Moreover for any k and δ > 0, µ-a.e. x µ(b(x, 2 n )) e 6 log 2 n(log n+(1/3+δ) log log n) for sufficiently large n µ(b(x, 2 n )) e ( 2 log 2+δ) n log n i.o. µ(b(x, 2 n )) n k for sufficiently large n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 5 / 19

Main theorem Theorem (D. Buraczewski, P. Dyszewski, K.K.) Let ψ (1) = 0, k N and δ > 0. Then for almost all realizations of µ, µ-almost all x [0, 1) and sufficiently large n we have ( µ(b(x, 2 n )) exp (1 + δ) ) 2σ 2 n log log n ( µ(b(x, 2 n ) n )) exp k i=1 log (i)n (log (k+1) n) 2 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 6 / 19

Main theorem Theorem (D. Buraczewski, P. Dyszewski, K.K.) Let ψ (1) = 0, k N and δ > 0. Then for almost all realizations of µ, µ-almost all x [0, 1) and sufficiently large n we have ( µ(b(x, 2 n )) exp (1 + δ) ) 2σ 2 n log log n ( µ(b(x, 2 n ) n )) exp k i=1 log (i)n (log (k+1) n) 2 e K1 n(log n+(1/3+δ) log log n) n k e (K2+δ) n log n Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 6 / 19

Notations Dyadic intervals on [0,1) vertices of a binary tree T x [0, 1) θ T. B(v) = {θ T : v oθ}. For a random measure µ ω we are interested in a pointwise estimates of µ ω (B(θ n )) on the enlarged measure space P(dω, dθ) := P(dω)µ ω (dθ) i.e. we are looking for deterministic φ 1, φ 2 s.t. φ 1 (n) µ ω (B(θ n )) φ 2 (n), for P-almost all (ω, θ) and large n. P can be replaced by P(dω, dθ) = P(dω)µ ω (dθ), where µ ω is the normalized measure µ ω. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 7 / 19

Notations Dyadic intervals on [0,1) vertices of a binary tree T x [0, 1) θ T. B(v) = {θ T : v oθ}. For a random measure µ ω we are interested in a pointwise estimates of µ ω (B(θ n )) on the enlarged measure space P(dω, dθ) := P(dω)µ ω (dθ) i.e. we are looking for deterministic φ 1, φ 2 s.t. φ 1 (n) µ ω (B(θ n )) φ 2 (n), for P-almost all (ω, θ) and large n. P can be replaced by P(dω, dθ) = P(dω)µ ω (dθ), where µ ω is the normalized measure µ ω. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 7 / 19

Notations Dyadic intervals on [0,1) vertices of a binary tree T x [0, 1) θ T. B(v) = {θ T : v oθ}. For a random measure µ ω we are interested in a pointwise estimates of µ ω (B(θ n )) on the enlarged measure space P(dω, dθ) := P(dω)µ ω (dθ) i.e. we are looking for deterministic φ 1, φ 2 s.t. φ 1 (n) µ ω (B(θ n )) φ 2 (n), for P-almost all (ω, θ) and large n. P can be replaced by P(dω, dθ) = P(dω)µ ω (dθ), where µ ω is the normalized measure µ ω. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 7 / 19

Branching random walk o P probability measure on the set of labeled trees X(v) the sum of random variables along the path between o and v (X(u) = X 2 + X 21 + X 212 ) {X(v)} v T Branching random walk (BRW) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 8 / 19

Branching random walk X 1 X 2 o P probability measure on the set of labeled trees X(v) the sum of random variables along the path between o and v (X(u) = X 2 + X 21 + X 212 ) {X(v)} v T Branching random walk (BRW) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 8 / 19

Branching random walk X 1 X 2 o X 11 X 12 P probability measure on the set of labeled trees X(v) the sum of random variables along the path between o and v (X(u) = X 2 + X 21 + X 212 ) {X(v)} v T Branching random walk (BRW) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 8 / 19

Branching random walk X 1 X 2 o X 11 X 12 X 21 X 22 P probability measure on the set of labeled trees X(v) the sum of random variables along the path between o and v (X(u) = X 2 + X 21 + X 212 ) {X(v)} v T Branching random walk (BRW) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 8 / 19

Branching random walk X 1 X 2 o X 11 X 12 X 21 X 22 X 212 u P probability measure on the set of labeled trees X(v) the sum of random variables along the path between o and v (X(u) = X 2 + X 21 + X 212 ) {X(v)} v T Branching random walk (BRW) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 8 / 19

Branching random walk X 1 X 2 o X 11 X 12 X 21 X 22 X 212 u P probability measure on the set of labeled trees X(v) the sum of random variables along the path between o and v (X(u) = X 2 + X 21 + X 212 ) {X(v)} v T Branching random walk (BRW) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 8 / 19

Stopping line Since E v =1 e X(v) = 1 and E v =1 X(v)e X(v) = 0 the equation Ef(Y ) := E f(x(v))e X(v) v =1 defines distribution of a driftless r.v. Y Let h be a harmonic function on some set A (a solution of a Dirichlet problem), V n = Y 1 + + Y n and σ = min{k : s + V k / A}. Then the process h(s + V min(n,σ) ) is a martingale. Let τ = {w : s + X(w) / A for the first time}, v τ = min(v, τ). Then Wn s = h(s + X(v τ ))e X(vτ ) is a martingale. v =n Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 9 / 19

Stopping line Since E v =1 e X(v) = 1 and E v =1 X(v)e X(v) = 0 the equation Ef(Y ) := E f(x(v))e X(v) v =1 defines distribution of a driftless r.v. Y Let h be a harmonic function on some set A (a solution of a Dirichlet problem), V n = Y 1 + + Y n and σ = min{k : s + V k / A}. Then the process h(s + V min(n,σ) ) is a martingale. Let τ = {w : s + X(w) / A for the first time}, v τ = min(v, τ). Then Wn s = h(s + X(v τ ))e X(vτ ) is a martingale. v =n Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 9 / 19

Stopping line Since E v =1 e X(v) = 1 and E v =1 X(v)e X(v) = 0 the equation Ef(Y ) := E f(x(v))e X(v) v =1 defines distribution of a driftless r.v. Y Let h be a harmonic function on some set A (a solution of a Dirichlet problem), V n = Y 1 + + Y n and σ = min{k : s + V k / A}. Then the process h(s + V min(n,σ) ) is a martingale. Let τ = {w : s + X(w) / A for the first time}, v τ = min(v, τ). Then Wn s = h(s + X(v τ ))e X(vτ ) is a martingale. v =n Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 9 / 19

Martingales Some natural martingales h 1: h(x) = x: W n = v =n e X(v) D n = v =n X(v)e X(v) A = [0, ), h(x) x 0: W s n = v =n h(s + X(v))1 [s+x(v )>0, for v v]e X(v) µ(b(v)) := lim n w =n, w<v X(w)e X(w) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 10 / 19

Martingales Some natural martingales h 1: W n = v =n e X(v) 0 h(x) = x: D n = v =n X(v)e X(v) D > 0 A = [0, ), h(x) x 0: W s n = v =n h(s + X(v))1 [s+x(v )>0, for v v]e X(v) µ(b(v)) := lim n w =n, w<v X(w)e X(w) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 10 / 19

Martingales Some natural martingales h 1: W n = v =n e X(v) 0 h(x) = x: D n = v =n X(v)e X(v) D > 0 A = [0, ), h(x) x 0: W s n = v =n h(s + X(v))1 [s+x(v )>0, for v v]e X(v) µ(b(v)) := lim n w =n, w<v X(w)e X(w) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 10 / 19

Martingales Some natural martingales h 1: W n = v =n e X(v) 0 h(x) = x: D n = v =n X(v)e X(v) D > 0 A = [0, ), h(x) x 0: W s n = v =n h(s + X(v))1 [s+x(v )>0, for v v]e X(v) µ(b(v)) := lim n w =n, w<v X(w)e X(w) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 10 / 19

W s n Wn s = h(s + X(v))1 [s+x(v )>0, for v v]e X(v) v =n For any s D define W s n W s P-a.s. and L 1 P s := W s h(s) P P[supp W s ] 1 1/s Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 11 / 19

P s = BRW 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 12 / 19

P s BRW = 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 12 / 19

P s BRW = 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 12 / 19

Spinal decomposition of P s BRW s 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW s 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW X 1 1 X 1 2 s 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW X 1 1 X 1 2 e X1 1 h(s + X 1 1 ) e X1 2 h(s + X 1 2 ) s 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 1 =s+x 1 2 S 0 =s 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW X 2 1 X 2 2 S 1 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW X 2 1 X 2 2 S 1 e X2 1 h(s1 + X 2 1) e X2 2 h(s1 + X 2 2) S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 1 S 2 =S 1 +X 1 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 1 S 2 X 3 1 X 3 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 1 S 2 X 3 1 X 3 2 e X3 1 h(s2 + X 3 1) e X3 2 h(s2 + X 3 2) S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 1 S 3 =S 2 +X3 1 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s Random tree T s with a distinguished ray Θ T s BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s P(T s dω) = P s (dω) BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

Spinal decomposition of P s P s (dω, dθ) := P(T s dω, Θ dθ) BRW S 5 S 4 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 13 / 19

P s vs. P We have P s P. The converse is not true, but for any set A P s (A) = 1 P(A) 1 ɛ(s), for some ɛ(s) 0 as s. In particular, if for any s > 0 P s (A) = 1 then P(A) = 1. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 14 / 19

Probabilistic interpretation of local fluctuations e (S 0 s) C 0 e (S 1 s) S 5 S 4 R 0 e (S 2 s) C 2 R 2 C 1 R 1 S 1 S 3 S 2 S 0 0 Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 15 / 19

Probabilistic interpretation of local fluctuations Under P s the sequence µ ω (B(θ n )) has the same law as e (Sk s) C k R k, k n where S k is a random walk starting form s conditioned to stay positive, R k independent random variables. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 15 / 19

Useful information We are looking for LIL for k n e S k+s C k R k, Hambly, Kersting, Kyprianou ψ(t) t lim sup n dt< iff S n > nψ(n) eventually S n 2nσ = 1 2 log log n nψ(n) < Sn < (1 + δ) 2nσ 2 log log n P s -a.s. for n sufficiently large Kyprianou 1 Ee tr tl(t) near 0 = ER γ < for γ < 1 In particular, by Borel-Cantelli lemma, R n < n 2 for all but finitely many n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 16 / 19

Useful information We are looking for LIL for k n e S k Rk, Hambly, Kersting, Kyprianou ψ(t) t lim sup n dt< iff S n > nψ(n) eventually S n 2nσ = 1 2 log log n nψ(n) < Sn < (1 + δ) 2nσ 2 log log n P s -a.s. for n sufficiently large Kyprianou 1 Ee tr tl(t) near 0 = ER γ < for γ < 1 In particular, by Borel-Cantelli lemma, R n < n 2 for all but finitely many n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 16 / 19

Useful information We are looking for LIL for k n e S k Rk, Hambly, Kersting, Kyprianou ψ(t) t lim sup n dt< iff S n > nψ(n) eventually S n 2nσ = 1 2 log log n nψ(n) < Sn < (1 + δ) 2nσ 2 log log n P s -a.s. for n sufficiently large Kyprianou 1 Ee tr tl(t) near 0 = ER γ < for γ < 1 In particular, by Borel-Cantelli lemma, R n < n 2 for all but finitely many n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 16 / 19

Useful information We are looking for LIL for k n e S k Rk, Hambly, Kersting, Kyprianou ψ(t) t lim sup n dt< iff S n > nψ(n) eventually S n 2nσ = 1 2 log log n nψ(n) < Sn < (1 + δ) 2nσ 2 log log n P s -a.s. for n sufficiently large Kyprianou 1 Ee tr tl(t) near 0 = ER γ < for γ < 1 In particular, by Borel-Cantelli lemma, R n < n 2 for all but finitely many n. Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 16 / 19

Upper bound Take any ψ such that ψ(t)dt <. We have that t e S k R k k n is eventually bounded by e kψ(k) k 2. k n On the other hand, if ψ(t)dt t k n = then e S k R k e Sn R n i.o. e nψ(n) R n i.o. δe nψ(n) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 17 / 19

Upper bound Take any ψ such that ψ(t)dt <. We have that t e S k R k k n is eventually bounded by e kψ(k). k n On the other hand, if ψ(t)dt t k n = then e S k R k e Sn R n i.o. e nψ(n) R n i.o. δe nψ(n) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 17 / 19

Upper bound Take any ψ such that ψ(t)dt <. We have that t e S k R k is eventually bounded by k nψ(n) k n On the other hand, if ψ(t)dt t k n e k polynomial(k). = then e S k R k e Sn R n i.o. e nψ(n) R n i.o. δe nψ(n) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 17 / 19

Upper bound Take any ψ such that ψ(t)dt <. We have that t e S k R k k n is eventually bounded by k nψ(n) e k. On the other hand, if ψ(t)dt t k n = then e S k R k e Sn R n i.o. e nψ(n) R n i.o. δe nψ(n) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 17 / 19

Upper bound Take any ψ such that ψ(t)dt <. We have that t e S k R k is eventually bounded by k n e nψ(n). On the other hand, if ψ(t)dt t k n = then e S k R k e Sn R n i.o. e nψ(n) R n i.o. δe nψ(n) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 17 / 19

Upper bound Take any ψ such that ψ(t)dt <. We have that t e S k R k is eventually bounded by k n e nψ(n). On the other hand, if ψ(t)dt t k n = then e S k R k e Sn R n i.o. e nψ(n) R n i.o. δe nψ(n) Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 17 / 19

Lower bound Take q > 1 and by N(n) := q log q n. Borel-Cantelli s lemma implies that for sufficiently large n, sup R k δ 0. q n <k q n+1 for some q. k n e Sk R k k n qn(n) k=n(n) e (1+δ) 2kσ 2 log log k R k e (1+δ) 2kσ 2 log log k R k δ 0 e (1+δ) 2qN(n)σ 2 log log(qn(n)) δ 0 e (1+δ) 2q 2 nσ 2 log log(q 2 n) e (1+2δ) 2nσ 2 log log n, Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 18 / 19

Lower bound Take q > 1 and by N(n) := q log q n. Borel-Cantelli s lemma implies that for sufficiently large n, sup R k δ 0. q n <k q n+1 for some q. k n e Sk R k k n qn(n) k=n(n) e (1+δ) 2kσ 2 log log k R k e (1+δ) 2kσ 2 log log k R k δ 0 e (1+δ) 2qN(n)σ 2 log log(qn(n)) δ 0 e (1+δ) 2q 2 nσ 2 log log(q 2 n) e (1+2δ) 2nσ 2 log log n, Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 18 / 19

Lower bound Take q > 1 and by N(n) := q log q n. Borel-Cantelli s lemma implies that for sufficiently large n, sup R k δ 0. q n <k q n+1 for some q. k n e Sk R k k n qn(n) k=n(n) e (1+δ) 2kσ 2 log log k R k e (1+δ) 2kσ 2 log log k R k δ 0 e (1+δ) 2qN(n)σ 2 log log(qn(n)) δ 0 e (1+δ) 2q 2 nσ 2 log log(q 2 n) e (1+2δ) 2nσ 2 log log n, Konrad Kolesko Local fluctuations of critical Mandelbrot cascades 18-22 May, 2015 18 / 19