Komputeralgebra rendszerek
|
|
- Ilona Budai
- 6 évvel ezelőtt
- Látták:
Átírás
1 I. Bevezető és történeti áttekintés Sándor Komputeralgebra Tanszék ELTE Informatika Kar D2.711A ősz
2 Tartalomjegyzék 1 Irodalom 2 Mi a komputeralgebra 3 Történeti áttekintés Rendszerek, algoritmusok, alkalmazások Az ősidők A rákészülés időszaka Azóta... 4 Egy üzleti és egy szabad szoftver A Maple Project A SAGE 5 Speciális és általános célú rendszerek 6 Előnyök, korlátok
3 Irodalom I Könyvek Járai Antal-Kovács Attila Komputeralgebra Informatikai Algoritmusok (sz: Iványi Antal) Elte Eötvös Kiadó, 2004 Kovács Attial Komputeralgebra a tudományokban és a gyakorlatban Alk. Mat. Lapok 18, 1998 André Heck Introduction to Maple Springer-Verlag, 2003 Geddes-Czapor-Labahn Algorithms for Computer Algebra Kluwer Academic, 1992 F. Winkler Polynomial Algorithms in Computer Algebra Springer,1996
4 Irodalom II Internet Néhány fontosabb internet oldal: Maple Sage Mathematica Wiki Egy összehasonlítás
5 Mi a komputeralgebra I Komputeralgebrai- vagy szimbolikus-algebrai rendszerek Szimbolikus számítások elvégzésére alkalmas számítógépes rendszerek (legtöbbször komoly numerikus és grafikus képességekkel). Az algebrai szó utal arra, hogy szimbolikus obejtktumokkal végzett műveletek algebrai eredetűek. A rendszerek alapfeladatai matematikai objektumok szimbolikus ábrázolása aritmetika ezekkel az objektumokkal Komputeralgebra mint tudományterület feladata... erre az aritmetikára épülő hatékony aloritmusok keresése, elemzése és megvalsóítása tudományos kutatásokhoz és alkalmazásokhoz. [JK]
6 Mi a komputeralgebra II Egy próba definíció 1 Algebrai struktúrákon futnak a programok. 2 Az eredmények pontosak, nincs numerikus hiba (egzakt aritmetika). 3 Az eredmények lehetnek formulák, matematikai objektumok.
7 Mi a komputeralgebra III Magyarázat I 1 Gyakran célszerű egy kifejezést algebrailag egyszerűbb alakra hozni, majd utána numerikusan kiértékelni. 2 Az x 2 + y 2 1 = 0 x y = egyszerű egyenletrendszer pontos megoldásai {( 1 1 2, 2 ),( 1 2, 1 2 )}
8 Mi a komputeralgebra IV Magyarázat II 3 Paraméteres problémáknál is formulát kapunk : x x 2 a dx = ln x2 a 2
9 Szimbolikus vs. numerikus számítások I A Csebisev polinomok A Csebisev polinomok : A Csebisev polinomok rekurzív definíciója T 0 (x) = 1; T 1 (x) = x; T k (x) = 2 x T k 1 (x) T k 2 (x), ha k >= 2
10 Szimbolikus vs. numerikus számítások II A Csebisev polinomok A Csebisev polinomok értéke néhány k - ra k T k (x) x 2 2 x x 3 3 x 4 8 x 4 8 x 2 + 1
11 Szimbolikus vs. numerikus számítások III A Csebisev polinomok FORTRAN program a Csebisev polinomok előállítására REAL T(5) READ(5,1) X T(1)=1.0 T(2)=X WRITE(6,2) T(1),T(2) DO 10 N=3,5 T(N)=2.0*X*T(N-1)-T(N-2) WRITE(6,2) T(N) 10 CONTINUE STOP 1 FORMAT(F5.2) 2 FORMAT(F9,4) END
12 Szimbolikus vs. numerikus számítások IV A Csebisev polinomok Csebisev polinom előállítása ALTRAN-ban PROCEDURE MAIN ALGEBRAIC(X:4) ARRAY(0:4) T INTEGER N T(0)=1 T(1)=X WRITE T(0),T(1) DO N=2,4 T(N)=2*X*T(N-1)-T(N-2) WRITE T(N) DOEND END
13 Szimbolikus vs. numerikus számítások V A Csebisev polinomok Ugyanez MAPLE-ben T 0 := 1; T 1 := x; for n from 2 to 4 do T n := expand (2 x T n 1 T n 2 ) end do;
14 Rendszerek, algoritmusok, alkalmazások Rendszerek, algoritmusok, alkalmazások E három, részben független tényező alakítja a komputeralgebra rendszerek fejlődését Rendszerek Programozási nyelvek, programozási módszerek Algoritmusok Maga a komputeralgebra Alkalmazások Az algoritmusok alkalmazására kialakított rendszerek Persze, a vas ról se feledkezzünk el.
15 Az ősidők Élet volt a komputerek előtt is A komputeralgebrában ma is kulcsfontosságú szerepük van : Euklideszi algoritmus Legnagyobb közös osztó keresése, invertálás véges testekben Kínai maradéktétel Homorfizmus invertálása Newton interpoláció Egyenletek megoldás
16 A rákészülés időszaka Az első fecske H. G. Kahrimanian (Temple University) assemblyben UNIVAC I-re Az első magasszintű programozási nyelvek : FORTRAN(1958), Algol(1960) Lisp : John McCarthy alkotta meg 1958-ban a MIT-en, 1960-ban publikálja. Ma is aktív életet él : AutoCad AutoLisp, Emacs, Scheme Wikipédia
17 A korai évek Az első rendszerek A M.I.T - en 1961 ben a SAINT (Symbolic Automatic INTegration) LISP-ben készült, heurisztikus algritmusokra épült FORMAC az IBM-nél FORTRAN, elemi függvéyek manipulása (polinomok is) Bell Laboratories, ALPAK FORTRAN ból hívható assembly rutinok PM polynomial manipulation MATHLAB - az első interaktív program LISP alapú, polinom és racionális fv. kezelés
18 Érlelődési fázis I SIN (Symbolic INtegration) , MIT már algoritmikus integrálást is használ, LISP alapú 1968, Stanford University, REDUCE, LISP alapú interaktív, fizikai kalkulációkra MATLAB-68 Symbolic Mathematical Laboratory 1967 grafikus kimenet CRT terminálra, több számítógépen hálózatban 1970 REDUCE-2 Algol szerű RLISP ben ALTRAN az ALPAK ból
19 Érlelődési fázis II A PM átdolgozásával keletkezik a SAC-1 (majd SAC-2, SAC/ALDES) CAMAL (CAMbridge ALgebra system) BCPL ben készül, égi mechanikai feladatokra, relativitáelméleti számításokra SCRATCHPAD több rendszer tudását integrálja 1971 MACSYMA, már határértékszámítás, szimbolikus integrálás ez a nagy ígéret
20 Az alkalmazási fázis A rendszerek kikerülnek a laborokból mérnökökhöz, kutatókhoz. REDUCE a legelterjedtebbé válik hordozhatósága miatt MACSYMA erőteljes algoritmikus fejlesztés Megjelennek a speciális cálú CAS-ek SAC/ALDES, SHEEP, TRIGMAN, SCHOONSCHIP Keletei fény Kievi Kibernetikai Egyetem, ANALITIK
21 PC-k, új programnyelvek University of Waterloo : MAPLE (Geddes, Gonet) először B-ben, majd C-ben SMP Symbolic Maipulation Program Stephen Wolfram, portábilis, szabály alapú MATHEMATICA, 1988 az első grafikus képességű rendszer + GUI! Stephen Wolfram, C alapú, saját nyelve az SMP hez hasonló DERIVE PC-kre; csak interaktív környezet Cayley, GAP (Group Algorithms And Programming) csoportelmélet, a Mathematica illetve a Maple mintájára FORM, MACULAY,LiE, PARI Persze, vannak, akik kimaradtak Ez sem teljes
22 Azóta... Tömegesedés Az internet elterjedése több frontos áttörés: gyors információáramlás, webmatek, a tudás mindneki számára elérhető Az üzleti rendszerek mellett széles körben elterjednek a szabad rendszerek. (Linux, GPL) A komputeralgebra bevonul az oktatásba, egyrész mint segédeszköz (kalkulus, diffegyenletek, lineáris algebra), másrészt saját jogán. Kitágul a rendszerekbe épített matematika horizontja: logika, kombinatorika, geometria, univerzális algebra
23 A Maple Project Rövid történet 1980 ban a Waterlo egyetemen K.O. Geddes, Gaston Gonnet, Morven Gentleman hozzák létre. Cél : egy kisebb komputereken is hatékony CAS létrehozatala től a Watcom kezeli 1988 ban Geddes és Gonnet megalapítják a Waterloo Maple Software, Inc. t. A Maple vezető CAS sá válik 1990 válság, Gonnet távozik. Mérföldkövek Maple V, 8. Jelenleg : 14 Autentikus lapok
24 A Maple Project Jellemzők A kernel C ben készült. A 10. verzió után a vizuális megjelenítés Java ban történik A matematikai csomagok jelentős része saját(algol W) Kétirányú kapcsolat Java, C, Fortran, VisualBasic felé Kliens szerver megolodásként is működik Nem olcsó
25 A SAGE Történet Ambíció : a Magma, Mathematica, Maple ingyenes szabadforrású alternatíváját megvalósítani. Motiváció : Ki hisz egy olyan szotver eredményének, amit az ára miatt nem tud megnézni? Alkotó : William Stein, Washington Egyetem 0.1. verzió: február verzió: február
26 A SAGE ellemzők Alapok : Python, objektumorientáltság. 150 szabadszoftvert integráltak hozzá Parancssoros (ipython) és GUI Web böngészőben. Beépített Wiki Verziókontroll Upgradelés internetről Szabad szerverek érhetők el
27 Speciális és általános célú rendszerek Általános célú rendszerek Nagy matematikai apparátus, kellő lomhasággal. Speciális célú rendszerek Specális területre optimalizáltak SCHOONSCHIP, CAMAL, SHEEP, STENSOR Speciális matematikai területek /systems_and_packages/per_purpose/special /systems.html
28 Előnyök, korlátok Előnyök Nagy mennyiségű algebrai számítás gyors elvégzése "Tévedhetetlen" Tud integrálni A matematika oktatás többszintű támogatása Kutatási munka felgyorsítása Korlátok A pontos aritmetika miatt gyakran exponenciálisan nő a számok és a kifejezések mérete Pszichológiai Numerikus problémák gyakran jobban kezelhetők hagyományos programozási nyelveken Bonyolultság, összetettség (általánosság <-> hatékonyság)
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Bevezető és történeti áttekintés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 17. TARTALOMJEGYZÉK 1 of 73 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Mi a komputeralgebra
Komputeralgebra rendszerek
Komputeralgebra rendszerek I. Bevezetés Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar D2.711A 2009-2010 tavasz Tartalomjegyzék 1 Előzetes 2 Komputeralgebra 3 Történeti
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Bevezető és történeti áttekintés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2017. február 12. TARTALOMJEGYZÉK 1 of 82 TARTALOMJEGYZÉK 1 Mi a komputeralgebra 2 Történet
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek A MAPLE és a SAGE felépítése Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 17. TARTALOMJEGYZÉK 1 of 1 TARTALOMJEGYZÉK TARTALOMJEGYZÉK 2 of 1 A MAPLE 3 of 1 ÖSSZETEVŐK
Matematika. Mathematica
Szili László és Tóth János Matematika és Mathematica ELTE Eötvös Kiadó Budapest, 1996 Lektorálta Pelikán József okleveles matematikus Ván Péter okleveles fizikus Nyelvi lektor Homonyik Andrea A fedelet
KOMPUTER-ALGEBRA RENDSZEREK VERIFIKÁCIÓJA
KOMPUTER-ALGEBRA RENDSZEREK VERIFIKÁCIÓJA Szoftver Verifikáció és Validáció, 2015 Ősz Vaitkus Márton Tartalom Motiváció Maple MiniMaple MiniMaple típusellenőrzése MiniMaple formális specifikációja MiniMaple
SageMath Képz k képzése Szabad komputer algebra rendszerek
SageMath Képz k képzése Szabad komputer algebra rendszerek Móra Péter Morgan Stanley 2012. március 27. SageMath (www.sagemath.org) 2005. február: William Stein (Uni. of Washington), Sage 0.1 SageMath (www.sagemath.org)
Komputeralgebrai Algoritmusok
Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Polinomok Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 80 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Egyváltozós polinomok Alapfogalmak
1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Kredit
2. MELLÉKLET Az oktatási koncepciója 1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Az informatika alapjai Tud. Min. 1 Automata hálózatok 2 V Dr. Dömösi Pál DSc 2 Automaták és
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Számkezelés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 53 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Az egzakt aritmetika Bignum aritmetika
Számítógép és számítástechnika használata matematikai modellezéshez
Számítógép és számítástechnika használata matematikai modellezéshez Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet Tartalom Mathematica alapjai
GeoGebra. A matematikai szabadszoftver tanuláshoz és tanításhoz
A matematikai szabadszoftver tanuláshoz és tanításhoz Papp-Varga Zsuzsanna vzsuzsa@elte.hu ELTE IK Média- és Oktatásinformatika Tanszék Pécs, 2011. május 28. Tartalom A GeoGebra program A GeoGebra oktatásban
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek A szimbolikus megoldó a MAPLE -ben Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. március 4. TARTALOMJEGYZÉK 1 of 41 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Funkció és
IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata
IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
AZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN
AZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN Kása Zoltán, kasa@cs.ubbcluj.ro Robu Judit, robu@cs.ubbcluj.ro Varga Ibolya, ivarga@cs.ubbcluj.ro Babes-Bolyai Tudományegyetem, Matematika
The Mathematical Explorer
The Mathematical Explorer The Mathematical Explorer A The Mathematical Explorer egy elektronikus tankönyv, mely 15 fejezetre oszlik: Prím számok, Kalkulus, Formulák, titkosítások, káosz elmélet, Riemann
TANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. A Wolfram Alpha tudásgép. https://www.wolframalpha.
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. A Wolfram Alpha tudásgép https://www.wolframalpha.com/ Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás
Bevezetés. Dr. Iványi Péter
Bevezetés Dr. Iványi Péter Programozási készség Számos munka igényel valamilyen szintű programozási készséget Grafikus a képfeldolgozót, Zenész a szintetizátort, Programozó a számítógépet programozza.
3. Az elektronikus számítógépek fejlődése napjainkig 1
2. Az elektronikus számítógépek fejlődése napjainkig Vázold fel az elektronikus eszközök fejlődését napjainkig! Részletesen ismertesd az egyes a számítógép generációk technikai újdonságait és jellemző
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Adatbázis rendszerek. dr. Siki Zoltán
Adatbázis rendszerek I. dr. Siki Zoltán Adatbázis fogalma adatok valamely célszerűen rendezett, szisztéma szerinti tárolása Az informatika elterjedése előtt is számos adatbázis létezett pl. Vállalati személyzeti
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata
IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030
Programtervező informatikus. Tanári. szakirányok mintatanterve. 2006. szeptemberétől
Programtervező informatikus alapszak - - Programtervező informatikus Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak oktató neve Diszkrét matematika PMB1101 2 2 K 5 MI Dr. Kurdics
Maple. Maple. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007
Maple Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007 A Maple egy matematikai formula-manipulációs (vagy számítógép-algebrai) rendszer, amelyben nem csak numerikusan, hanem formális változókkal
OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel)
Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel) Matematika képzés Az alapképzés (BSc) célja, hogy
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)
OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris
Szoftveripar és üzleti modellek
Szoftveripar és üzleti modellek Irodalom Michael A. Cusumano: The business of software Michael Hiltzik: Dealers of lightning Eric Raymond: A katedrális és a bazár Szoftver technológia Software engineering
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével. Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215 Célok: Ismerkedés a kao2kus dinamikával és ennek tanulmányozása. A
Matematika. 5-8. évfolyam. tantárgy 2013.
Matematika tantárgy 5-8. évfolyam 2013. Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről
Tóth János - Simon L. Péter - Csikja Rudolf. Differenciálegyenletek feladatgyűjtemény
Tóth János - Simon L. Péter - Csikja Rudolf Differenciálegyenletek feladatgyűjtemény 2011 Támogatás: Készült a TÁMOP 4.1.2.A/1 11/1 2011 0064 számú, a Természettudományos (matematika és fizika) képzés
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
Matematika alapszak (BSc) 2015-től
Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó
4. Előfeltételek (ha vannak) 4.1 Tantervi Nincs 4.2 Kompetenciabeli Feladatok kijelentéseinek megértése
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
Számítás(technika) a fizikában
Mechwart nap, 2017 Számítás(technika) a fizikában Dr. Kardos Ádám Tudományos főmunkatárs Debreceni Egyetem, Fizika Intézet Bemelegítés 2 Bemelegítés Két fajta fizikus létezik: A kísérleti fizikus: ő kísérleteket
FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.
TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok
Szakmai program 2015
2015 Célok és feladatok a szakközépiskolai képzésben A szakközépiskolában folyó nevelés-oktatás továbbépíti, kiszélesíti és elmélyíti az általános iskolai tantárgyi követelményeket. A szakközépiskolában
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Normálformák, algebrai reprezentáció Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. április 8. TARTALOMJEGYZÉK 1 of 113 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Az absztrakció
Környezettani alapismeretek Tantárgy kódja
Tantárgy neve Környezettani alapismeretek AIB1004 Meghirdetés féléve 1. Kreditpont 2 Heti kontakt óraszám (elm.+gyak.) 2+0 Kollokvium - Dr. Kiss Ferenc, főisk. tanár KT A környezettudomány főbb területeinek
Matematikai programok
Matematikai programok Mátrixalapú nyelvek MatLab Wettl Ferenc diái alapján Budapesti M szaki Egyetem Algebra Tanszék 2017.11.07 Borbély Gábor (BME Algebra Tanszék) Matematikai programok 2017.11.07 1 /
2006. szeptemberétől. kódja
- Programtervező informatikus Programtervező informatikus alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 1 2 3 4 5 6 7 8 9 10 Tantágy neve Tantárgy kódja Heti Tantárgyfelelős
Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)
Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat
DELTA (Δ) ÉS DÉ (d) Hegedűs János Leőwey Klára Gimnázium, Pécs az ELTE Természettudományi Kar PhD hallgatója hegejanos@gmail.com
DELTA (Δ) ÉS DÉ (d) Hegedűs János Leőwey Klára Gimnázium, Pécs az ELTE Természettudományi Kar PhD hallgatója hegejanos@gmail.com BEVEZETŐ PROBLÉMAFELVETÉS A diákoknak a sebesség szó hallatán kizárólag
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
A számítástechnika fejlődése
A számítástechnika fejlődése Az 1600-as évektől kezdődően az emberek igyekeztek olyan gépeket építeni, melyek megkönnyítik a számolást. A számítógépek fejlődését nagy lépésekben követjük. Az egymástól
Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok
Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."
"A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
16. modul: ALGEBRAI AZONOSSÁGOK
MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott
. Typeset by AMS -TEX 0
. Typeset by AMS-TEX 0 Numerikus alkalmazások 1 NUMERIKUS ALKALMAZÁSOK Tematika, feladatok 2003 1. LECKE Koordináta rendszer felvétele, pontok, egyenesek és szinek ábrázolása VB-ben MenuEditor használata
1. Előadás Matlab lényeges vonásai,
1. Előadás Matlab lényeges vonásai, adattípusok. Salamon Júlia Előadás I. éves mérnök hallgatók számára A Matlabról A MATLAB (MATrix LABoratory = mátrix laboratórium) egy interaktív, tudományos és műszaki
1. Fejezet: Számítógép rendszerek
1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Oktatott tárgyak a 2017/18. tanév I. félévében
Oktatott tárgyak a 2017/18. tanév I. félévében Tanító szak A felépítés és a működés kapcsolata a természetben A matematikai nevelés elméleti alapjai I. A pedagógus mesterség információ- és kommunikáció
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
A 2018-as Modellező (A) specializáció tanegységei. Számítógépes rendszerek
Programtervező informatikus Sc 2017,,, 2008 illetve programtervező informatikus 2018 Modellező (), Szoftvertervező (), Szoftverfejlesztő (), esti () inak tantárgyi lefedései 2017-es 2017-es 2017-es 2008-as
különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson amatematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. alapján 1-4. évfolyam 2 MATEMATIKA Az iskolai matematikatanítás célja,
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék
III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
E L T E T T K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 1998.
E L T E T T K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 1998. I. Képzési cél A szak a képzésben részesülõ tanárszakos hallgatót a következõ feladatok ellátására
5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Differenciálszámítás és integrálszámítás oktatása a középiskolában Maple szoftver segítségével
Differenciálszámítás és integrálszámítás oktatása a középiskolában Maple szoftver segítségével Szakdolgozat Készítette: Bányász József László V. informatika - matematika szakos hallgató Témavezető: Dr.
Mérési eredmények feldolgozásának módszerei. Cél
Cél Cél: Analitikai, fizikai- és kolloidkémiai, valamint technológia laboratóriumi gyakorlatok előkészítése. Mért adatok korrekt és értelmes (ki)értékelése. Analitikus gondolkozásmód fejlesztése. Feltételezett
OPENCV TELEPÍTÉSE SZÁMÍTÓGÉPES LÁTÁS ÉS KÉPFELDOLGOZÁS. Tanács Attila Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem
OPENCV TELEPÍTÉSE SZÁMÍTÓGÉPES LÁTÁS ÉS KÉPFELDOLGOZÁS Tanács Attila Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem OpenCV Nyílt forráskódú szoftver (BSD licensz) Számítógépes látás,
különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Operációs rendszerek. A Windows NT felépítése
Operációs rendszerek A Windows NT felépítése A Windows NT 1996: NT 4.0. Felépítésében is új operációs rendszer: New Technology (NT). 32-bites Windows-os rendszerek felváltása. Windows 2000: NT alapú. Operációs
MATEMATIKA 1-2.osztály
MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani
Matematikai programok
Matematikai programok Mátrixalapú nyelvek octave Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Wettl
Mérési eredmények feldolgozásának módszerei. Cél
Cél Cél: Analitikai, fizikai- és kolloidkémiai, valamint technológia laboratóriumi gyakorlatok előkészítése. Mért adatok korrekt és értelmes (ki)értékelése. Analitikus gondolkozásmód fejlesztése. Feltételezett
A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben
A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: nappali Képzési idő: 6 félév Az oktatás nyelve: magyar
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
- Matematikus. tanszék/ Tantárgyfelelős oktató neve szeptemberétől
- Matematikus Matematika alapszak - Tanári szakirányok mintatanterve "A" típusú tantárgyak 2006. szeptemberétől 7 8 9 10 tanszék/ oktató neve Környezettani alapismeretek AIB1004 2 0 K 2 KT Dr. Kiss Ferenc
Széchenyi István Szakképző Iskola
A SZAKKÖZÉPISKOLAI SZAKMACSOPORTOS ALAPOZÓ OKTATÁS ISKOLAI PROGRAMJA 9 12. évfolyam Érvényes a 2003-2004-es tanévtől felmenő rendszerben Átdolgozva, utolsó módosítás: 2004. április 26. A szakmacsoportos
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
A szoftverfejlesztés eszközei
A szoftverfejlesztés eszközei Fejleszt! eszközök Segédeszközök (szoftverek) programok és fejlesztési dokumentáció írásához elemzéséhez teszteléséhez karbantartásához 2 Segédeszközök szükségessége Szoftver
Architektúrák és operációs rendszerek: Bevezetés - Történelem
Architektúrák és operációs rendszerek: Balogh Ádám Lőrentey Károly Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Tartalomjegyzék 1. 2. 3. 4. 5. 6. 7. 8. Bevezetés
Matematika. Padányi Katolikus Gyakorlóiskola 1
Matematika Alapelvek, célok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.