NAA a gyakorlatban, standardizációs módszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NAA a gyakorlatban, standardizációs módszerek"

Átírás

1 Korszerű Nukleáris Elemanalitikai Módszerek és Alkalmazásaik I. félév VII. előadás NAA a gyakorlatban, standardizációs módszerek SZIKLAINÉ LÁSZLÓ IBOLYA sziklai.ibolya@energia.mta.hu MTA Energiatudományi Kutatóközpont, Nukleáris Analitikai és Radiográfiai Laboratórium 1121 Budapest, Konkoly Thege Miklós u , X. ép. 310/A ELTE TTK, 2015

2 Tartalom A neutron aktivációs analízis (NAA) standardizációs módszerei: abszolút, relatív és komparátor standardizálás. A k 0 -standardizálási módszer. k 0 -NAA módszerrel mérhető elemek, kimutatási határok. A k 0 -módszer elve és paramétereinek meghatározása. k 0 -NAA eljárás főbb lépései, mintaelőkészítés és besugárzás. k 0 -NAA kiterjesztése epitermikus aktiválásra, Epibóros-NAA. Analitikai számítások éskorrekciók. Minőségbiztosítás (Quality Conrol). 2

3 Előzmények Az NAA-nak két fő módszere alakult ki. Az egyes elemeket a már besugárzott mintából kémiailag elválasztjuk (roncsolásos). A másik a kémiai elválasztás nélküli (roncsolásmentes) vizsgálat, amikor a besugárzott minta gamma spektrumát mérve, az egyes komponenseket felezési idejük és jellemző gamma vonalaik energiája alapján azonosítjuk. A roncsolásmentes módszer nagy előnye, hogy egy nyomelemképet ad a mintáról (panorámaanalízis), ami pl. a régészeti alkalmazás területén (festék analízis) sokszor követelmény. A nagy számú összehasonlító standard preparálása és mérése azonban jelentős többletmunkát igényelt és számos hiba forrása is volt. A multielemes aktivációs analitikai vizsgálatok megkövetelték a standardizálás egyszerűsítését, erre több próbálkozás történt az abszolút és az egy komparátoros módszerek és az általánosan használható k 0 -standardizálási módszer kifejlesztésével. 3

4 Abszolút standardizálás Ismétlés Ismeretlen tömeg kiszámítása m = M N A p, (Φ th σ th + Φ e I 0 ) N p/t m SDC m : a vizsgálandó elem tömege M: atomtömeg N p : csúcsterület N A : Avogadro szám : izotóp-előfordulás p : teljesenergia-csúcs hatásfok : a mérendő E energiájú gammavonal abszolút intenzitása th : termikus neutronfluxus, e : epitermikus neutronfluxus, th : termikus hatáskeresztmetszet (2200 m/s neutron sebességnél) I 0 : rezonancia integrál (integrális hatáskeresztmetszet epitermikus neutronokra) S= 1-exp(- t i ) telítési, D=(exp(- t d ) bomlási, C= 1-exp(- t m ) mérési faktorok : bomlási állandó = ln2/t 1/2 ahol T 1/2 a felezési idő t i : besugárzási idő, t m : mérési idő, t d : hűtési idő 4

5 Abszolút standardizálás Az NAA egyik legegyszerűbb, elvi módja a vizsgálandó elem tömegének számítására. Az N p, t i, t m és t d, paraméterek elegendő pontossággal mérhetők. Követelmények Az p abszolút detektálási hatásfok nagy pontosságú kisérleti meghatározása. Az M, N A,, és paraméterek megfelelő pontossággal és precizitással ismertek (bizonytalanság 1%), nukleáris adatbázisban hozzáférhetők. Problémás lehet az aktivációs hatáskeresztmetszet (, I 0 ) és egyes bomlási állandók pontatlansága. A neutrontér paraméterek ( th és e ) kisérleti meghatározásának bizonytalansága elérheti az 5-20%-ot. Hátrány Csak az adott mérési összeállításra alkalmazható, a mérés összbizonytalansága >20% is lehet. Példa az alkalmazásra: Cs-135, I-129 nuklidok meghatározása nukleáris hulladékokban (nincs elemi standard, nincs k 0 ). 5

6 135 Cs meghatározása radioaktív hulladékban 135 Cs meghatározás jelentősége, alkalmazások: radioaktív hulladékok minősítése, környezeti minták elemzése, kormeghatározás 135 Cs/ 137 Cs izotóparány alapján Probléma: 135 Cs: Tisztán béta bomló izotóp, EβMax =205 kev, t1/2=2,3 millió év, nagy hasadási hozammal keletkezik, a Cs mobilitása révén a 135 Cs potenciális környezetszennyező 6

7 Megoldások a 135 Cs mérésére 136 Cs: 135 Cs(n,γ) 136 Cs (NAA) σ th =8,7 barn; I 0 =66 barn ( 135 Cs), t 1/2 =13 nap Eγ=818 kev (99,7%), 1048 kev (79,7%) Nincs elemi standard, NAA módszerrel abszolút standardizálással Nukleáris adatok bizonytalansága bizonytalansága mérés 135m Cs: LINAC besugárzás (nem elég érzékeny) 135 Cs: meghatározás direkt módon ICP-MS-sel 7

8 Nukleáris adatok: 135 Cs(n, ) 136 Cs Dátum Irodalom 135 Cs(n, ) 136 Cs A.P.Baerg et al:can. J. Phys. 36 (7) 1958 p N.E. Holden:Handbook of Chemistry and Physics Katoh et al.:j. Nucl. Sci. and Techn. 34, 5 (May 1997) Fundamental data for the transmutation of nucl. waste. J. Radioanal. Chem. 239 (3) 1999 p. 455 σ 0, barn Eredmények I 0, barn Q 0 = I 0 /σ 0 Megjegy. 8,7±0,5 61,7 ±2,3 7,09 sima és Cd-os bes. 90±20 8,3±0,3 37,9 ±2,7 4,57 sima és Cd-os bes. 8,3±0,3 38,1 ±2,6 4, Chart of the Nuclides 8, , Mughabghab: Atlas of Neutron Resonances. Chart of the Nuclides ,8±0,9 97±7 16,7 Japán Nuclear Data Center, Japan Atomic Energy Agency (JAEA 8,704 62,46 7,17 8

9 Relatív standardizálás A vizsgálandó mintával közösen, a mérendő elemek ismert tömegű mennyiségét (m s ) tartalmazó (kémiai) standardot is aktiválunk azonos körülmények között, homogénnek tekinthető neutrontérben. A meghatározandó m x tömeg: m x = Np tm D C Np tm D C minta standard m s, S minta =S standard Ismétlés A sp = N p/t m elemi standard specifikus számlálási sebessége S D C m Mérés A minta és standard mérése külön-külön, de azonos detektorral és mérési geometriában történik, valamint a nuklid ugyanazon energiájú sugárzását használjuk fel a kiértékelésnél. Előnye Szükségtelen a neutrontér jellemzése és a nukleáris konstansok ismerete ( th, epi,, I 0,... p.). Hátránya Munkaigényes (multielemes meghatározások), kedvező esetben 1% körüli pontosság érhető el, amit a standard előkészítési eljárás, a standard kémiai fomája, stabilitása határoz meg. 9

10 Komparátor standardizálás A mintával együtt egyetlen, alkalmasan kiválasztott standardot besugározunk, minden elemet egy komparátorra vonatkoztatunk. A k c faktorok kisérleti meghatározása minden vizsgálandó elemre Komparátorként leggyakrabban nagytisztaságú Au-, Ir-, Co-, Zn-, Cu-, Ni- vagy Fe elem ismert tömegével együtt sugározzuk be, együtt mérjük. A vizsgálandó mintákat a komparátorral együtt aktiváljuk, a k c faktorok imeretében a mennyiségi analízis elvégezhető. A k c faktor állandó, ha a mérési körülmények mindig azonosak (pl. új detektor üzembehelyezése a k c -faktorok újramérését eredményezi) és az aktiváló forrás neutrontere, termikus/epitermikus neutronfluxus aránya nem változik (BME Oktató Reaktor). Budapesti Kutatóreaktor: az időben változó neutrontér (10 napos zónaciklus, zónarendezések, izotópgyártás) miatt itt nem alkalmazható. 10

11 Általánosan használható standardizálási módszer Követelmények Elemi standardok használatának kiküszöbölése Minimális nukleáris adat felhasználás A besugárzás időtartama alatti neutronfuxus nagy pontosságú mérése (kevés, könnyen kezelhető monitor (fólia, drót)) A mérő detektorok pontos kalibrálásának kidolgozása Pontforrástól eltérő minták mérése Teljes hibaanalízis, nyomonkövethetőség 11

12 A k 0 módszer elve és paramétereinek meghatározása I. Mivel a Budapesti Kutatóreaktornál stabil, jól termalizált és nagy fluxusú (Ф s >10 13 n/cm 2 s) besugárzó csatornák vannak, laboratóriumunkban a Genti Egyetemmel való együttműködés keretében kidolgozott k 0 -standardizálási módszert használjuk (Simonits és mtsai., 1975, 1982). A k 0 -módszer elve Egy tetszőleges, meghatározandó elem standardját és egy komparátort (*) besugározva a mért számlálási sebességekre felírható: Np t m Np t m = w w S D C M θ S D C M θ σ 0 σ f+q 0 0 f+q ε p 0 ε p Q 0 = I 0 k σ 0 -tényező th 12

13 A k 0 módszer elve és paramétereinek meghatározása II. A k 0 -tényező Olyan nukleáris konstans, amely két elem specifikus aktivitásainak (A sp ) hányadosa tiszta termikus fluxusban (Ф e = 0) történő besugárzáskor. Besugárzási és mérési geometriától független. Adott magreakcióban keletkező nuklid, adott gamma-sugárzására jellemző A k 0 tényezők kísérleti meghatározása Au komparátorra. 1., Csupasz monitor módszerrel, ha f és Q 0 adatok nagy pontossággal ismertek k 0,Au (x) = A sp,x A sp,au f+q 0,x f+q 0,Au ε p,au ε p,x 2., Kadmium-különbség módszer (Cd-árnyékolással és anélkül besugározva) k 0,Au (x) = A sp,x A sp,au A sp,x Cd A sp,au Cd ε p,au ε p,x 13

14 A k 0 módszer elve és paramétereinek meghatározása III. Az irodalmi k 0 - tényezőket általában az arany komparátorra adják meg, egyetlen stabil izotópja és jellemző gamma-sugárzása van, az (n, ) magreakció nukleáris adatai (Q 0, T 1/2 ) jól ismertek. 197 Au(n, ) 198 Au, T 1/2 = nap, E = kev, k 0,Au 1 Ugyanakkor minden olyan izotóp használható komparátorként, amelyek k 0,Au (komp) tényezője pontosan ismert, illetve előzetesen meghatározott: k 0,komp (x) = k 0,Au (x) k 0,Au (komp), A k 0 - tényezők az irodalomban rendelkezésre állnak 144 (n, ill. (n,f) magreakcióra (k0-database-2012). 14

15 Elemi koncentráció számítása I. Az ismeretlen elem koncentrációja a W tömegű mintában a következő összefüggés alapján számítható: c x (ppm) = Np,x tm S D C W A sp,au 1 k 0,Au (x) f+q 0,Au ( ) f+q 0,x ( ) ε p,au ε p,x 10 6 f = Φ th Φ e, Q 0 = I 0 σ th, A sp,x = : epitermikus alaktényező N p,x t m S D C W 15

16 Elemi koncentráció számítása II. Bármely (n, ) reakció felhasználható analitikai célra, ha a jellemző k 0,Au (x) tényezők, a Q 0 és a felezési idő adatok nagy pontossággal ismertek. Kisérletileg meg kell határozni : az aktiváláskor fennálló f fluxusarányt (termikus/epitermikus) epitermikus alaktényezőt a detektor hatásfokának pontos energiakalibrálását 16

17 A reaktor neutronspektrumának jellemzése Ismétlés A termikus reaktor neutronspektruma igen széles energiatartományt fog át, melyet önkényesen három csoportra szokás felosztani. -termikus neutronfluxus (termikus neutronok, amelyek a környezettel termikus egyensúlyban vannak, energiájuk Maxwell-Bolzmann eloszlást követ (E<0.5 ev). Az (n, ) reakciók hatáskeresztmetszete neutron sebesség (1/v törvény) -epitermikus neutronfluxus (0,5 <E<100 ev ), ideális esetben 1/E -hasadási /gyorsneutronfluxus (100 ev<e<20 MeV) A termikus/epitermikus spektrum alakja függ a reaktor típusától, teljesítményétől, az aktív zóna kialakításától, a besugárzó hely elhelyezkedésétől. 17

18 Termikus nukleáris reaktor tipikus neutronfluxus-eloszlása (A. Stopic, J. Benett 2013) 18

19 Termikus/epitermikus fluxusarány meghatározása f = Φ th fluxusarány meghatározására több kisérleti módszer (Cd arány) ismert, Φ e de legegyszerűbben cirkónium monitor alkalmazásával végezhető el. A Zr multiizotópos elem, két izotópjának aktiválását nagyon eltérő Q 0 érték jellemez, ezek nagy pontossággal ismertek. A mérhető gamma-vonalak nagy energiájúak (gamma-abszorpció elhanyagolható), koincidenciától mentesek. 94 Zr(n, ) 95 Zr Q 0 =5.31 és 96 Zr(n, ) 97 Zr Q 0 =251.6 k 0,Au (1) k ε p,1 Q 0,Au (2) ε 0,1 A sp,1 Q p,2 A 0,2 sp,2 f = A sp,1 k 0,Au (1) A sp,2 k ε p,1 0,Au (2) ε p,2 (1) 95 Zr ( kev), (2) 97 Zr (743.3 kev) 19

20 Az paraméter szerepe I. Az 1/E lefutású epitermikus neutron spektrum csak bizonyos feltételek mellett teljesül. Az epitermikus neutronfluxus jól közelítheő az 1/E 1+α függvénnyel, ahol : az epitermikus alaktényező Az ideálistól való eltérés mérésére és a szükséges korrekciókra módszert dolgoztak, az (n, γ) reakciók többségénél a rezonanciák száma >100 E r effektív rezonanciaenergia fogalmának bevezetése I 0 ( ) és Q 0 ( ) számolása (I 0 és Q 0 = I 0 értékek táblázatokban) σ th a reakció sebesség számításánál bevezetett E r effektív rezonanciaenergia értékek alapján (Ryves) történik. Q 0 α = Q E r α α + 1 (0.55) α 20

21 Az paraméter szerepe II. Az értéke általában könnyűvizes moderátoroknál a zónához közeli, gyengén termalizált csatornákban negatív vagy nulla, Más típusú reaktoroknál (pl. grafit, nehézvíz moderált) értéke elérheti a +0.2-es értéket is. Egyes, kis teljesítményű reaktoroknál a besugárzó csatornák paraméterei évekig nem változnak, nagyobb teljesítményűeknél (intenzívebb fűtőelemkiégés) a gyakori zónaátrendezés miatt a csatornák paraméterei változnak. 21

22 Termikus/epitermikus fluxusarány és egyidejű meghatározása Három különböző módszer besugárzás Cd-árnyékolásban, Cd-árnyékolás és csupaszon, csak árnyékolás nélkül a hármas csupasz fólia monitorozási módszer a 94 Zr 96 Zr és 197 Au izotópok felhasználásával. A k 0 -standardizációs módszer alkalmazása során használt monitorok jellemző nukleáris adatai Target izotóp Keletkező izotóp 94 Zr 95 Zr Felezési idő nap E (kev) k 0,Au E r (ev) Q E E Zr 97 Zr 97m Nb óra E Au 198 Au 2.7 nap

23 HPGe detektor kalibrált pontforrásokkal mért hatásfokgörbéje (d=25 cm) 23

24 A detektor kalibrálásához használt izotópstandardok Nuclide Code Supp lier Activity kbq Ref. Date (MM-DD-YYYY) Co PTB :00:00 Ba PTB :00:00 Cs PTB :00:00 Eu OMH % :00:00 Ra PTB :00:00 Am PTB :00:00 Kiegészítő standardok (reaktorban vagy gyorsítóban előállított ) Cr-51, Co-56 Zn-65 Au-198, Ag-110m, Se-75,... 24

25 A k 0 -NAA módszerrel mérhető elemek 25

26 Különböző elemekre INAA-val mért kimutatási határok környezeti mintákban M. Kubesová, k0 standardization in neutron activation analysis, PhD Thesis,

27 Rövid felezési idejű radionuklidok alapján meghatározható elemek (T 1/2 =15s - 5 h ) 27

28 Közepes felezési idejű radionuklidok alapján meghatározható elemek (T 1/2 = 5h 10 nap ) 28

29 Hosszú felezési idejű radionuklidok alapján meghatározható elemek (T 1/2 10 nap ) 29

30 k 0 - NAA eljárás főbb lépései Mintaelőkészítés Besugárzás A radioaktivitás mérése A spektrumok kiértékelése Analitikai számítások 30

31 Mintaelőkészítés I. Minimális mintaelőkészítés (homogenizálás, felületi maratás, mosás, szárítás, szemcseméret szerinti szétválasztás,..). Nedvességtartalom (talaj, környezeti, biológiai minták,..), száraz/nedves faktor meghatározása külön mintán, a mintával azonos körülmények mellett (1-3 g minta, 105 C, súlyállandóságig) Hiteles anyagminták (referenciaanyagok) esetében előírás szerint. Homogenitás ellenőrzése (5-8 random minta analízise, koncentráció meghatározás 5-6 elemre). 31

32 Mintaelőkészítés II. Laboratóriumi eszközök tisztítása, minták tárolása Bemérések (néhány mg 200 mg) Minták előkészítése besugárzáshoz Rövid idejű aktiválás: pasztilla, PE mintatartó, Vespel hordozó tok Hosszú idejű aktiválás: Heraeus Suprasil, nagytisztaságú kvarc ampulla, 6 cm hosszú, 6 mm, zárt kvarc ampulla, Al fólia csomagolás Speciális besugárzó geometria (Cd tok, hűtés) 32

33 Mintaelőkészítés, besugárzás és mérés során használt eszközök 33

34 A besugárzást követő mintakezelés Kvarc ampullák tisztítása : felületi szennyezés eltávolítása HF, ecetsav, HNO 3 marató eleggyel Szennyező komponensek koncentrációjának ellenőrzése: nagytisztaságú Al fólia, Whatman 41 szűrőpapír, kvarc, PE, teflon (PTFE) csomagoló anyagokban, blank korrekció 34

35 Besugárzási és mérési időparaméterek megválasztása csoportos optimalizációs számítások és tapasztalati megfontolások alapján A várható aktivitás számítása a besugárzandó minta ismert tömege, a korábban meghatározott fluxusparaméterek, mérési geometria, detektor hatásfok alapján. A besugárzás helyén fennálló hőmérsékleti és sugárzási viszonyok figyelembe vétele (nedvességtartalom, szerves komponensek,..). A neutrontér inhomogenitás kedvezőtlen hatásának csökkentése (besugárzó tok forgatása a besugárzás ideje alatt). 35

36 Budapesti Kutatóreaktor Reaktor típus Tartály-típusú, berillium reflektorral Könnyűvízzel moderált és hűtött Üzemanyag VVR-SZM (-M2)típusú, korábban 36% 235 U dúsítás, November, 19.9 % 235 U dúsítás 40 besugárzó csatora (anyagvizsgálat, izotópgyártás) NAA célra: függőleges csatornák Fűtőelem Fűtőkötegek száma Hőteljesítmény Átlagos teljesítmény Hűtőrendszer Primer hűtőkör ki és belépő átlaghőmérséklete Maximális neutronfluxus Alumínium mátrixba foglalt fémurán ill. UO (egyensúlyi zóna) 10 MW 39.7 kw/l (a zónában) Kétkörös zárt (primer és szekunder kör) Q nominal :1650 m 3 /h, T be : 45 o C, T ki : 50 o C ~2.1 x n/cm 2 s (termikus) ~1 x n/cm 2 s (gyorsfluxus) 36

37 Rövid ciklusú besugárzás (20 s -5 perc) Pneumatikus csőposta (Budapesti Kutatóreaktor) Фth = n/cm 2 s f = th/ epi = 37, = (az epitermikus neutronfluxus jól közelítheő az 1/E 1+α függvénnyel, ahol : epitermikus alaktényező) 10 elem Izotópok: 24 Na, 27 Mg, 28 Al, 38 Cl, 49 Ca, 51 Ti, 52 V, 56 Mn, 66 Cu, 139 Ba 37

38 Termikus neutronfluxus ingadozása a besugárzó tokon belül <5%, illetve a minta tartó tokon belül <0.5% 38

39 Jellemző besugárzási és mérési paraméterek Besugárzási idő : 2 min Mérési paraméterek (Geo: detektor - minta távolság, mm) 1 st 2 nd Minta Geo (mm) tm (perc) td (perc) Geo (mm) tm (perc) td (óra) Növény Talaj Monitor Geo tm td (mm) (perc) (óra) Zr Au

40 Hosszú ciklusú besugárzás (12-24 óra) Budapesti Kutatóreaktor Forgó csatorna (No 17, =54 mm) Фth= n/cm 2 s f = th/ epi= 47 = elem (talaj minta) Izotópok: 24 Na, 42 K, 46 Sc, 47 Ca, 51 Cr, 59 Fe, 60 Co, 65 Zn, 72 Ga, 76 As, 82 Br, 85 Sr, 86 Rb, 99 Mo, 122 Sb, 124 Sb, 131 Ba, 134 Cs, 140 La, 141 Ce, 187 W, 239 Np, 233 Pa B Pneumatikus csőposta 40

41 Jellemző besugárzási és mérési paraméterek Besugárzási idő: 24 h Mérési paraméterek(geo: detektor- minta távolság, mm) Minta 1 st 2 nd 3 rd Geo (mm) tm (perc) td (óra) Geo (mm) tmeas (perc) td (nap) Geo (mm) tm (óra) td (nap) Növény Talaj Monitor Zr Au Fe

42 A radioaktivitás mérése, spektrumok kiértékelése (ld. Szentmiklósi L. előadása) Mérés: Gamma-spektrométer és egy alacsony hátterű vaskamrába telepített HPGe félvezető detektor (energia felbontása 1.75 kev, relatív hatásfoka 36% a 60 Co radionuklid kev energiájú gammavonalára). Kalibráció: Energia-kalibráció, teljesenergia-csúcs detektálási hatásfok kalibráció, félérékszélesség és nonlinearitás kalibráció (laborgyakorlat). Gamma-spektrum kiértékelés: Hypermet-PC, HyperLab programok (automatikus csúcskeresést, energia kalibrációt, a talált csúcsok illesztését, a területük kiszámítását foglalja magába). 42

43 Gamma-spektroszkópia Ortec DSPEC 502 spektrométer, Canberra HPGe detektor 36% rel. hatásfok és 1.8 kev energia felbontás a 60 Co kev vonalára. 43

44 Sc-46 Eu-152 Zn-65 Geológiai minta gamma-spektrumának egy részlete a HyperLab-programmal illesztve. 44

45 k 0 -NAA kiterjesztése epitermikus aktivációs analízisre (ENAA) Biológiai minták esetében a főkomponensek jelentős aktiválódása miatt a mintákat a mérés előtt legalább 4-5 napig hűteni kell. A Na, K, Cl és Br tartalomból keletkező 24 Na, 42 K, 38 Cl, 80 Br és 82 Br izotópok jelenléte, amelyek uralják a -spektrumot, növelik a hátteret, sőt teljesen el is fedhetik az egyes elemek teljesenergiacsúcsait. A 24 Na felezési ideje (t 1/2 = 14,9 óra) összemérhető sok, a mintákban előforduló nyomelem nuklidjának felezési idejével, a 4-5 napos hűtési idő után ezek meghatározása a lecsökkent aktivitás miatt nem lehetséges. Geológiai minták esetében a hosszú félidejű (t 1/2 = 83,83 nap) intenzív 46 Sc is megnehezíti a ritkaföldfémek kimutatását. 45

46 KIINDULÁSI ALAPOK I. Az említett főkomponensek mindegyikére jellemző, hogy (n,γ) magreakciójuk hatáskereszmetszete az epitermikus tartományban is nagyrészt 1/v lefutású és az első gyenge rezonanciák csak a kev-es energiatartományban jelentkeznek (I 0 /σ 0 < 1). A 23 Na (n,γ) 24 Na magreakció hatáskeresztmetszete az energia függvényében 46

47 KIINDULÁSI ALAPOK II. Számos fontos nyomelem hatáskeresztmetszete ugyanakkor az ev-es tartományban erős rezonanciákat mutat Az 75 As (n,γ) 76 As magreakció hatáskeresztmetszete az energia függvényében. 47

48 Epitermikus aktiválás célja a főkomponensek (pl. Na, Ca, Sc biológiai és geológiai mintákban) zavaró hatásának csökkentése. Az epikadmiumos NAA a gyakorlatban jól kidolgozott módszer, a kadmium abszorpciós hatáskeresztmetszete barn a 113 Cdra (0,178 ev),. A kadmium árnyékolás alkalmazásának korlátai (olvadáspontja alacsony (320 o C), a maradék-aktivitása miatt ( 115m Cd, t 1/2 =44,6 nap) nem használható újra, költséges megmunkálás, csak kis méretű tok készíthető). Epibóros NAA előnyei magas olvadáspont ( 2445 ºC) nagyméretű, számos kvarcampulla befogadására alkalmas tok készíthető a bóros tok többször felhasználható ( a bór nem aktiválódik) a levágási energiája hangolható (10 ev- 300 ev) a felületsűrűség függvényében. 48

49 A besugárzáshoz stabil fluxusparaméterekkel rendelkező csatornát kellett választani, hogy a csupasz, illetve a Cd- és bórtokos besugárzás azonos körülmények között történjen. 1.52x10 13 f = th / epi = 48± 4% th = 1,46 x ± 1,51 x (cm -2 s -1 ) Termikus fluxus (cm -2 )s x x x x x10 13 ± 2% 1.38x10 13 No. 18 No.19 No. 20 No. 21 No. 22 No. 23 No. 24 No. 25 Zónarendezési kampány ( ) 49

50 Speciális besugárzási geometria EPIBÓROS NAA B-tok Cd-tok 500 mg/cm 2 felületsűrűség, E B =15,2 ev 50

51 Az (n,γ) reakcióra vonatkoztatott elnyomási faktort (bórviszony) az árnyékolás nélkül, illetve az abszorbens alkalmazásakor kapott specifikus aktivitások arányából számítható R B = A spec(csupasz) A spec(b), Az erősen aktiválódó, de az abszorbens alkalmazásakor jelentősen elnyomott nukliddal szembeni nyereség ( improvement factor ) R B(2) IF B = R B(1) R B (1) a kimutatandó és R B (2) pedig a zavaró nuklidra vonatkozik 51

52 Összesen 25 (n,γ) magreakció bórviszonyát (kísérletileg és számítással is ellenőrizve), valamint 50 (n,γ) magreakcióra a BKR 17/2-es besugárzó csatornára jellemző bórviszonyt határoztunk meg Elem As Magreakció Nukleáris adatok Mért Cd- és B arány Nyereségfaktor Ē r, ev I 0 / 0 R Cd R B (SD%) IF B (Na) IF B (Sc) 75 As(n,γ) 76 As ,6 4,2 6,2 (2) 6 9,8 Au 197 Au(n,γ) 198 Au 5,7 15,7 3,9 23,5 (2) 3 5 Br 81 Br(n,γ) 82 Br ,3-4,7 (2) 6,9 11,2 Ce 140 Ce(n,γ) 141 Ce , (4) 1,5 2,4 Co 59 Co(n,γ) 60 Co 136 1,99-44,1 (4) 2,2 3,6 Cs 133 Cs(n,γ) 134 Cs 9,27 13,2-15,1 (4) 3,8 6,3 Fe 58 Fe(n,γ) 59 Fe 637 0,97 50,0 92 (2) 0,5 2,5 Na 23 Na(n,γ) 24 Na , (6) - 1,3 Rb 85 Rb(n,γ) 86 Rb ,8-4,7 (3) 6,9 11,2 Sc 45 Sc(n, ) 46 Sc , (5) 0,6 - Se 74 Se(n,γ) 75 Se 29,4 10,8-12,7 (6) 4,2 6,8 Th 232 Th(n,γ ) 233 Th/ 233 Pa 54,4 11,5-8,8 (2) 5,0 8,2 Zr 94 Zr(n,γ) 95 Zr , ,3 (2) 4,9 8,1 96 Zr(n,γ) 97 Zr/ 97m Nb ,6 1,2 1,4 (2) 12,6 20,5 U 238 U(n,γ) 239 U/ 239 Np 16,9 103,4-4,4 (2) 7 11,5 W 186 W(n,γ) 187 W 20,5 13,7-9,8 4,7 7,8 52

53 (n, ) reakciók effektív rezonancia energiái és I 0 / 0 - viszonyai E r, kev Dy 165m Dy Ca R B = Sc 32 P Cr V 24 Na 197m Hg 27 Mg 51 Ti 45 Ca Ni Cl 139 Ba Al 141 Ce 1/v isotopes R B = Zr 90m Y K Ge m 37 S 65 I Ge 203 Zn Hg 143 Ce 64 Cu Fe Cu 147 Nd 87m 86 Rb 111m Sr Pd 56 69m Zn 94m Nb 77m Ge 77 Ge 101 Mo 97 Ru Mn Yb 161 Gd 123m Sn 85 Sr Ru 85m 170 Tm Sr Rb Pr Mo 103 Nd 60 Ru 115 Cd Co 133m72 Ga 151 Ba Nd 82 Br 191m Os Er 76 As m Sn Sn 140 La 194 Hf Os 199m Pt Pt 80 Br 80m Br 125 Sn 125m Sn 233 I Ba 108 Ag m Th Re Re Gd Pd 175 Hf 75 Se 124 Sb Gd Tb Sm 180m W 166 Hf m Lu Sb 134 Ho Cs m Ta Sm 154m Eu m AuAg 114m In 186 Re 194 Ir 116m In 152m Eu 169 Yb 104m Rh I 0 /σ 0 >10 E r > 10 R B < U 97 Zr E I 0 / 0

54 SRM NIST-613 üveg referencia anyag gammaspektruma (INAA,ENAA) fekete: abszorbens nélkül: tb=24 h, th=53 h, tm=1800 s, kék: B árnyékolással tb=24 h, th =6 h, tm=3600 s 54

55 Az ENAA módszer validálása 55

56 Analitikai és korrekciós számítások I. A Zr és Au monitorokra vonatkozó adatokból kiszámítjuk az f fluxusarányt és α paramétert a csupasz hármas monitor módszer egyenleteivel. Elemi koncentrációk számítása, majd az egyedi szórásokkal súlyozott átlagértékek számítása, azon radionuklidok esetében ahol több, jellemző csúcs is felhasználható a számolásokra, továbbá a különböző hűtési idők utáni (3-5 mérés) ismételt mérések alapján. Fe és Ni monitorok adataiból számítjuk a hasadási neutronfluxust a nukleáris interferenciák/zavaró magreakciókból adódó korrekciók számításához. 56

57 Analitikai és korrekciós számítások II. Korrekciók A kapott elemi koncentrácókat korrigálni kell a vakminták alapján meghatározott koncentrációkra: rövid idejű besugárzásoknál a szűrőpapírban lévő Na, Al, Cl és Br tartalomra, hosszú idejű besugárzásoknál a szűrőben és/vagy kvarcampulla anyagában lévő Na, K, Fe, Co tartalomra. Gyors neutronok hatására fellépő interferenciák korrekciója A zavaró magreakciók termék izotópja megegyezik egy az (n, ) folyamatban keletkezett izotóppal. pl. 23 Na(n,γ) 24 Na zavaró 27 Al(n, α) 27 Na és 24 Mg(n,p ) 24 Na. A Si, illetve Al gyors neutronokkal nukleáris interferenciát okoz az Al, Na és Mg mennyiségének meghatározásakor. A Cr és Mn mennyiségének meghatározásakor szintén korrigálni kell a mintában mért Fe tartalom alapján. 235 U izotóp hasadásából származó interferenciák korrekciója A minták urán tartalmától ( 10 ppm) függően korrekciót kell alkalmazni a Zr, Mo, Ba, La, Sm, Nd és Ce mennyiségének meghatározásakor. 57

58 A k 0 -NAA-ban használt számítógépes programok: neutronfluxus paraméterek, elemkoncentráció számítás, detektor hatásfok, izotóp azonosítás Korábban A KFKI AEKI laboratóriumában kifejlesztett, a k 0 -standardizálási módszeren alapuló RNAACNC program. (izotóp azonosítás, f,, th, epi, gyors, elemkoncentráció számítása, átlagérték és szórás, detektor hatásfok kalibráció). Jelenleg Kereskedelmi forgalomban: Kayzero for Windows, A Nemzetközi Atomenergia Ügynökség (IAEA) szolgáltatásával : k 0 -IAEA, Nemzetközi NAA laboratóriumok saját fejlesztései:kragten- INA, ERON,.. 58

59 k 0 -standardizálási módszeren alapuló RNAACNC program termikus neutronfluxus meghatározása 59

60 RNAACNC program: paraméter meghatározása 60

61 Termikus/epitermikus fluxusarány meghatározása 61

62 Elemi koncentráció meghatározása 62

63 Minőségbiztosítás (QC) I. Validálás: a teljesítményjellemzők (érzékenység, pontosság, precizitás, reprodukálhatóság, kimutatási határ,...) vizsgálata alapján bizonyítható, hogy a kidolgozott eljárás kielégíti az analitikai módszerrel szemben támasztott követelményeket. Hiteles anyagminták (referenciaanyagok) vizsgálata: a mintákhoz hasonló mátrixú Referenciaanyag (RM, Reference Material), Bizonylatolt referenciaanyag (CRM, Certified Reference Material) vizsgálata (NIST, IAEA, IRRM nemzetközi intézetekből) Blank minták rutinszerű mérése Spektrális interferenciák, háttérmérések Neutronfluxus paraméterek in situ mérése 63

64 Minőségbiztosítás (QC) II. Nemzetközi összehasonlító vizsgálatokban való részvétel Proficiency Test (PT). A laboratóriumban mért adatok összehasonlítása az un. referencia értékekkel (a mintákat kibocsátó, referencia laboratórium által megadott, több labor által végzett mérés adatai alapján számított átlagérték). A matematikai statisztikai értékelés kritériumai Relative bias:(laboratóriumi átlagérték- referencia átlagérték)/referencia átlagérték *100 alapján, az elfogadási limit 20%. Z-score z score = X labor X referencia SD Az elfogadási limit Z-score (<3) Rel bias % = X labor X referencia X referencia 100, szórás (standard deviáció,sd) 64

65 Talajminták INAA mérési eredményei Relative bias elfogadási limit 20% 65

66 Talajminták INAA mérési eredményei (2013) KKFI ISE Elfogadási limit (-3 < Z-score <3) Fe Na K Sc Cr As CoZn Rb Zr Mo Sr Br Sb Cs Ba La Ce Nd W Th U KFKFI H ISE Fe Na K Sc Cr As CoZn Rb Zr Mo Sr Br Sb Cs Ba La Ce Nd W Th U

67 Összefoglalás-a módszer analitikai jellemzése Nagy érzékenység (60-70 elem esetében <0.01 μg). Az atommagokban lejátszódó magreakciókon alapul (izotópspecifikus). Multielemes eljárás, ami egyidejüleg több elem egymás melletti meghatározását teszi lehetővé (pl. Ritkaföldfémek), többnyire roncsolásmentes. A vizsgálatokhoz kis tömegű minta (1mg-100 mg elegendő. A mért jel és az elem mennyisége közötti összefüggés gyakorlatilag független a minta összetételétől. Külső szennyezők nem zavarnak (besugárzás után). Egyszerűen és igen pontosan lehet standardizálni, ezért elterjedten alkalmazzák standard referencia anyagok nyomelem-koncentrációinak hitelesítésére (Referencia módszer). 67

68 A módszer problematikája A NAA alkalmazása során a mért mennyiség (aktivitás) és az adott elem mennyisége között szigorúan lineáris összefüggés van, a linearitás csak kivételes esetekben torzul. A következő esetekben: a minta nagyobb koncentrációban tartalmaz neutronelnyelõ anyagot (pl bór, kadmium) a minta sűrűsége és átlagrendszáma nagyon magas (pl. ólomércben kell nyomelemeket meghatározni) mérés holtideje a 20%-ot meghalaldja ( ez kiküszöbölhető a minta- detektor távolság növelésével, holtidőkorrekció). 68

69 k 0 -NAA módszert alkalmazó laboratóriumok INW, Gent, Belgium IRMM, Geel, Belgium SCK-CEN, Mol, Belgium IRI, Delft, Netherland TU, Vienna, Austria Jozef Stefan Institute, Ljubljana, Slowenia Russian Academy, Moscow, Russia Hahn-Meitner Ins., Berlin, Germany TU, München, Germany Inst. Techn. E Nuclear, Sacavem, Portugal Nuclear Physics Inst., Rez, Czech CEA-CNRS, Gif-sur Yvette, France KFKI, Budapest, Hungary Ecole Polytechnique, Montreal, Canada Dalhousie Univ., Halifax, Canada NIST, Gaithersgurg, US University of Michigan, Ann Arbor, US JAERI, Tokai-Mura, Japan Nuclear Research Inst., Dalat, Vietnam Centro Energia Nuclear,Piracicaba, Brazil Inst. Peruano de Energ Nucl, Lima, Peru 69

70 Irodalom 1. Szabó E., Simonits A.: Aktivációs analízis. Műszaki Könyvkiadó, Budapest A. Simonits, F. de Corte, J. Hoste: Zirconium as a multi-isotopic flux ratio monitor and a single comparator in reactor-neutron activation analysis. J. Radioanal. Chem. (1976) 31, A. Simonits, F. de Corte, L. Moens, J. Hoste: Status and recent developments int he k0-standardization method. J. Radioanal. Chem. (1982) 72, De Corte F.: The k 0 -standardization method. Doktori értekezés. Rijksuniversiteit Gent, Gent De Corte F., Simonits A.: Recommended nuclear data for use in the k 0 standardization of neutron activation analysis Atomic Data and Nuclear Data Tables 85 (2003) Az elemanalitika korszerű módszerei. Akadémiai Kiadó, Budapest, Szerkesztette Záray Gyula. 7. M. Kubesová, k 0 - standardization in neutron activation analysis, PhD Thesis, Rez,

NAA a gyakorlatban, standardizációs módszerek

NAA a gyakorlatban, standardizációs módszerek NAA a gyakorlatban, standardizációs módszerek Dr. Szentmiklósi László Laboratóriumvezető MTA Energiatudományi Kutatóközpont, Nukleáris Analitikai és Radiográfiai Laboratórium 1121 Budapest, Konkoly-Thege

Részletesebben

NEUTRON AKTIVÁCIÓS ANALITIKAI GYAKORLAT

NEUTRON AKTIVÁCIÓS ANALITIKAI GYAKORLAT Magyar Tudományos Akadémia Energiatudományi Kutatóközpont 1121 Budapest, Konkoly Thege Miklós út 29-33. Postacím: 1525 Bp. 114, Pf.: 49. Telefon: 392 2222 NEUTRON AKTIVÁCIÓS ANALITIKAI GYAKORLAT az ELTE

Részletesebben

Prompt-gamma aktivációs analitika. Révay Zsolt

Prompt-gamma aktivációs analitika. Révay Zsolt Prompt-gamma aktivációs analitika Révay Zsolt Prompt-gamma aktivációs analízis gerjesztés: neutronnyaláb detektált karakterisztikus sugárzás: gamma sugárzás Panorámaanalízis Elemi összetétel -- elvileg

Részletesebben

Izotópkutató Intézet, MTA

Izotópkutató Intézet, MTA Izotópkutató Intézet, MTA Alapítás: 1959, Országos Atomenergia Bizottság Izotóp Intézete Gazdaváltás: 1967, Magyar Tudományos Akadémia Izotóp Intézete, de hatósági ügyekben OAB felügyelet Névváltás: 1988,

Részletesebben

Neutron Aktivációs Analitika

Neutron Aktivációs Analitika Neutron Aktivációs Analitika Irodalom: Alfassi, Z.B., 1994, Determination of Trace Elements,(Rehovot: Balaban Publ.) Alfassi, Z.B., 1994b, Chemical Analysis by Nuclear Methods, (Chichester: Wiley) Alfassi,

Részletesebben

NEUTRON AKTIVÁCIÓS ANALITIKAI GYAKORLAT

NEUTRON AKTIVÁCIÓS ANALITIKAI GYAKORLAT Magyar Tudományos Akadémia Energiatudományi Kutatóközpont 1121 Budapest, Konkoly Thege Miklós út 29-33. Postacím: 1525 Bp. 114, Pf.: 49. Telefon: 392 2222 NEUTRON AKTIVÁCIÓS ANALITIKAI GYAKORLAT a BME

Részletesebben

Elemanalitika hidegneutronokkal

Elemanalitika hidegneutronokkal Elemanalitika hidegneutronokkal Szentmiklósi László MTA Izotópkutató Intézet, Nukleáris Kutatások Osztálya szentm@iki.kfki.hu http://www.iki.kfki.hu/nuclear/ Mik azok a hideg neutronok? A neutron semleges

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek

Részletesebben

Uránminták kormeghatározása gamma-spektrometriai módszerrel (2. év)

Uránminták kormeghatározása gamma-spektrometriai módszerrel (2. év) Uránminták kormeghatározása gamma-spektrometriai módszerrel (2. év) Kocsonya András, Lakosi László MTA Energiatudományi Kutatóközpont Sugárbiztonsági Laboratórium OAH TSO szeminárium 2016. június 28. Előzmények

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Cs atomerőművi hűtővízben és radioaktív hulladékban

Cs atomerőművi hűtővízben és radioaktív hulladékban MTA Energiatudományi Kutatóközpont, Sugárbiztonsági Laboratórium RadAnal KFT. Cs atomerőművi hűtővízben és radioaktív hulladékban Nagy Péter, Vajda Nóra, Sziklainé László Ibolya, Kovács-Széles Éva, Simonits

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD

Részletesebben

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek 1. Atomspekroszkópiai módszerek 1.1. Atomabszorpciós módszerek, AAS 1.1.1. Láng-atomabszorpciós módszer, L-AAS 1.1.2. Grafitkemence atomabszorpciós

Részletesebben

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN Bujtás T., Ranga T., Vass P., Végh G. Hajdúszoboszló, 2012. április 24-26 Tartalom Bevezetés Radioaktív hulladékok csoportosítása, minősítése A minősítő

Részletesebben

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Bevezetés Kutatási háttér: a KFKI telephelyen végzett sugárvédelmi környezetellenőrző

Részletesebben

Röntgen-gamma spektrometria

Röntgen-gamma spektrometria Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet

Részletesebben

Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához. Kiss Gábor MTA Atomki és RIKEN Nishina Center

Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához. Kiss Gábor MTA Atomki és RIKEN Nishina Center Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához Kiss Gábor MTA Atomki és RIKEN Nishina Center A késő neutron kibocsájtás felfedezése R. B. Roberts, R. C. Meyer és

Részletesebben

Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában. Vajda N., Molnár Zs., Bokori E., Groska J., Mácsik Zs., Széles É.

Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában. Vajda N., Molnár Zs., Bokori E., Groska J., Mácsik Zs., Széles É. RADANAL Kft. www.radanal.kfkipark.hu MTA Izotópkutató Intézet www.iki.kfki.hu Nagy érzékenyégű módszerek hosszú felezési idejű nehéz radioizotópok analitikájában Vajda N., Molnár Zs., Bokori E., Groska

Részletesebben

Cs radioaktivitás koncentráció meghatározása növényi mintában (fekete áfonya)

Cs radioaktivitás koncentráció meghatározása növényi mintában (fekete áfonya) 137 Cs radioaktivitás koncentráció meghatározása növényi mintában (fekete áfonya) Szűcs László, Rózsa Károly Magyar Kereskedelmi Engedélyezési Hivatal A lakosság teljes sugárterhelése természetes mesterséges

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória Tanuló neve és kategóriája Iskolája Osztálya XLVI. Irinyi János Középiskolai Kémiaverseny 201. február 6. * Iskolai forduló I.a, I.b és III. kategória Munkaidő: 120 perc Összesen 100 pont A periódusos

Részletesebben

Nukleáris adatok felhasználása A nukleáris adatok mérésének módszerei és nehézségei

Nukleáris adatok felhasználása A nukleáris adatok mérésének módszerei és nehézségei Nukleáris adatok felhasználása A nukleáris adatok mérésének módszerei és nehézségei Orvosbiológiai célú nuklid kiválasztásának szempontjai Az előállítás módjának szempontjai: Milyen magreakció? Milyen

Részletesebben

KISMENNYISÉGŰ U-235 MEGHATÁROZÁSA CSŐPOSTÁVAL KOMBINÁLT KÉSŐNEUTRON SZÁMLÁLÁSSAL (OAH-ABA-22/16-M)

KISMENNYISÉGŰ U-235 MEGHATÁROZÁSA CSŐPOSTÁVAL KOMBINÁLT KÉSŐNEUTRON SZÁMLÁLÁSSAL (OAH-ABA-22/16-M) KISMENNYISÉGŰ U-235 MEGHATÁROZÁSA CSŐPOSTÁVAL KOMBINÁLT KÉSŐNEUTRON SZÁMLÁLÁSSAL (OAH-ABA-22/16-M) Szentmiklósi László, Hlavathy Zoltán, Párkányi Dénes, Janik József, Katona Csaba MTA EK Nukleáris Analitikai

Részletesebben

1. A neutronvisszaszórási hatáskeresztmetszet

1. A neutronvisszaszórási hatáskeresztmetszet Bevezetés Az értekezés azon munka összefoglalása, melyet 1999 februárjában még egyetemi hallgatóként kezdtem, 1999 szeptembere és 2002 augusztusa között mint PhD ösztöndíjas, 2002 szeptembere és 2003 júniusa

Részletesebben

RÖNTGEN-FLUORESZCENCIA ANALÍZIS

RÖNTGEN-FLUORESZCENCIA ANALÍZIS RÖNTGEN-FLUORESZCENCIA ANALÍZIS 1. Mire jó a röntgen-fluoreszcencia analízis? A röntgen-fluoreszcencia analízis (RFA vagy angolul XRF) roncsolás-mentes atomfizikai anyagvizsgálati módszer. Rövid idõ alatt

Részletesebben

RADIOKÉMIAI MÉRÉS. Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése. = felezési idő. ahol: A = a minta aktivitása.

RADIOKÉMIAI MÉRÉS. Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése. = felezési idő. ahol: A = a minta aktivitása. RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése A radioaktív bomlás valószínűségét kifejező bomlási állandó (λ) helyett gyakran a felezési időt alkalmazzuk (t

Részletesebben

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (3) a NAH-1-1755/2014 1 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: ISOTOPTECH Nukleáris és Technológiai Szolgáltató Zrt. Vízanalitikai Laboratórium

Részletesebben

Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában

Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában AAS ICP-MS ICP-AES ICP-AES-sel mérhető elemek ICP-MS-sel mérhető elemek A zavarások felléphetnek: Mintabevitel közben Lángban/Plazmában

Részletesebben

Név:............................ Helység / iskola:............................ Beküldési határidő: Kémia tanár neve:........................... 2013.feb.18. TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály,

Részletesebben

Paks Körmérés 2013: Körkép a hazai gamma-spektroszkópiáról

Paks Körmérés 2013: Körkép a hazai gamma-spektroszkópiáról Paks Körmérés 2013: Körkép a hazai gamma-spektroszkópiáról Pintér Tamás, Simonits András* és Menyhárt Ádám MVM Paksi Atomerőmű Zrt *MTA-EK NAL XXXIX. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2014.

Részletesebben

ALPHA spektroszkópiai (ICP és AA) standard oldatok

ALPHA spektroszkópiai (ICP és AA) standard oldatok Jelen kiadvány megjelenése után történõ termékváltozásokról, új standardokról a katalógus internetes oldalán, a www.laboreszközkatalogus.hu-n tájékozódhat. ALPHA Az alábbi standard oldatok fémek, fém-sók

Részletesebben

NEUTRONAKTIVÁCIÓS ANALÍZIS (NAA) II. rész

NEUTRONAKTIVÁCIÓS ANALÍZIS (NAA) II. rész NEUTRONAKTIVÁCIÓS ANALÍZIS (NAA) II. rész MTA AEKI Gméling Katalin, 2009. november 1 16. gmeling@iki.kfki.hu 1. NAA rövid története 2. NAA felépítése, technikai háttér 3. Spektrum kiértékelése 4. Mérés

Részletesebben

Radionuklidok meghatározása környezeti mintákban induktív csatolású plazma tömegspektrometria segítségével lehetőségek és korlátok

Radionuklidok meghatározása környezeti mintákban induktív csatolású plazma tömegspektrometria segítségével lehetőségek és korlátok Radionuklidok meghatározása környezeti mintákban induktív csatolású plazma tömegspektrometria segítségével lehetőségek és korlátok Stefánka Zsolt, Varga Zsolt, Széles Éva MTA Izotópkutató Intézet 1121

Részletesebben

NEUTRON SUGÁRZÁS ELLENI BIOLÓGIAI VÉDELEM VIZSGÁLATA MONTE CARLO MODELLEZÉSSEL

NEUTRON SUGÁRZÁS ELLENI BIOLÓGIAI VÉDELEM VIZSGÁLATA MONTE CARLO MODELLEZÉSSEL NEUTRON SUGÁRZÁS ELLENI BIOLÓGIAI VÉDELEM VIZSGÁLATA MONTE CARLO MODELLEZÉSSEL Hajdú Dávid 1,2, Zagyvai Péter 1,2, Dian Eszter 1,2,3 1 MTA Energiatudományi Kutatóintézet 2 Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése

RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése A radioaktív bomlás valószínűségét kifejező bomlási állandó (λ) helyett gyakran a felezési időt alkalmazzuk (t1/2).

Részletesebben

Magszintézis neutronbefogással

Magszintézis neutronbefogással Magszintézis neutronbefogással Kiss Miklós, Berze Nagy János Gimnázium Gyöngyös Magyar Fizikus Vándorgyűlés Debrecen, 2013. augusztus 21-24. Tartalom 1. A magok táblája 2. Elemgyakoriság 3. Neutrontermelés

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-23/16-M Dr. Szalóki Imre, fizikus, egyetemi docens Radócz Gábor,

Részletesebben

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl 1. oldal 15/2001. (VI. 6.) KöM rendelet az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban:

Részletesebben

Szentmiklósi László BEVEZETÉS IDŐFÜGGŐ FOLYAMATOK ALKALMAZÁSA. Ph. D. ÉRTEKEZÉS TÉZISEI. A PROMPT-γ AKTIVÁCIÓS ANALÍZISBEN

Szentmiklósi László BEVEZETÉS IDŐFÜGGŐ FOLYAMATOK ALKALMAZÁSA. Ph. D. ÉRTEKEZÉS TÉZISEI. A PROMPT-γ AKTIVÁCIÓS ANALÍZISBEN Ph. D. ÉRTEKEZÉS TÉZISEI BEVEZETÉS Szentmiklósi László IDŐFÜGGŐ FOLYAMATOK ALKALMAZÁSA A PROMPT-γ AKTIVÁCIÓS ANALÍZISBEN Témavezető: Dr. Révay Zsolt MTA Izotópkutató Intézet Egyetemi konzulens: Dr. Nagyné

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Methods to measure low cross sections for nuclear astrophysics

Methods to measure low cross sections for nuclear astrophysics Methods to measure low cross sections for nuclear astrophysics Mérési módszerek asztrofizikailag jelentős alacsony magfizikai hatáskeresztmetszetek meghatározására Szücs Tamás Nukleáris asztrofizikai csoport

Részletesebben

Radioizotópok az üzemanyagban

Radioizotópok az üzemanyagban Tartalomjegyzék Radioizotópok az üzemanyagban 1. Radioizotópok friss üzemanyagban 2. Radioizotópok besugárzott üzemanyagban 2.1. Hasadási termékek 2.2. Transzurán elemek 3. Az üzemanyag szerkezetének alakulása

Részletesebben

1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás

1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás 1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás Dr. Béres István 2019. június 13. HUMAN HEALTH ENVIRO NMENTAL HEALTH 1 PerkinElmer atomspektroszkópiai megoldások - közös szoftveres

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

In-situ mérés hordozható XRF készülékkel; gyors, hatékony nehézfémanalízis

In-situ mérés hordozható XRF készülékkel; gyors, hatékony nehézfémanalízis In-situ mérés hordozható XRF készülékkel; gyors, hatékony nehézfémanalízis MOKKA Konferencia, 2007.június 15. Sarkadi Adrienn Hordozható röntgenspektrométer környezetvédelmi alkalmazásokra Nehézfémek talajban

Részletesebben

A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA

A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA Széles Éva Nukleáris Újságíró Akadémia MTA IKI, Nukleáris anyagok a környezetben honnan? A nukleáris anyagok legfontosabb gyakorlati alkalmazási

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Az asztrofizikai p-folyamat kísérleti vizsgálata befogási reakciókban

Az asztrofizikai p-folyamat kísérleti vizsgálata befogási reakciókban Az asztrofizikai p-folyamat kísérleti vizsgálata befogási reakciókban Zárójelentés az F 043408 ifjúsági OTKA pályázatról Témavezető: Gyürky György A vasnál nehezebb elemek izotópjai a csillagfejlődés előrehaladott

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen Készítette: Battistig Nóra Környezettudomány mesterszakos hallgató A DOLGOZAT

Részletesebben

NEUTRON-KOINCIDENCIA MÉRÉS KOMBINÁLÁSA NEUTRON RADIOGRÁFIÁVAL KIS MENNYISÉGŰ HASADÓANYAG KIMUTATÁSÁRA (OAH-ABA-10/14-M)

NEUTRON-KOINCIDENCIA MÉRÉS KOMBINÁLÁSA NEUTRON RADIOGRÁFIÁVAL KIS MENNYISÉGŰ HASADÓANYAG KIMUTATÁSÁRA (OAH-ABA-10/14-M) NEUTRON-KOINCIDENCIA MÉRÉS KOMBINÁLÁSA NEUTRON RADIOGRÁFIÁVAL KIS MENNYISÉGŰ HASADÓANYAG KIMUTATÁSÁRA (OAH-ABA-10/14-M) Hlavathy Zoltán, Szentmiklósi László, Kovács Zsuzsanna Témafelvetés Cél: Módszer

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

9. A felhagyás környezeti következményei (Az atomerőmű leszerelése)

9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. A felhagyás környezeti következményei (Az atomerőmű leszerelése) 9. fejezet 2006.02.20. TARTALOMJEGYZÉK 9. A FELHAGYÁS KÖRNYEZETI KÖVETKEZMÉNYEI (AZ ATOMERŐMŰ LESZERELÉSE)... 1 9.1. A leszerelés szempontjából

Részletesebben

Vízminta radioaktivitásának meghatározása.

Vízminta radioaktivitásának meghatározása. 1 Vízminta radioaktivitásának meghatározása. 1. Bevezetés A természetes vizekben, így a Dunában is jelenlévő radioaktivitás oka a vízzel érintkező anyagokból kioldott természetes eredetű radioaktív izotópok

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben

RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék

RADIOKÉMIA SZÁMOLÁSI FELADATOK. 2005. Szilárdtest- és Radiokémiai Tanszék RADIOKÉMIA SZÁMOLÁSI FELADATOK 2005. Szilárdtest- és Radiokémiai Tanszék 1. Az atommag kötési energiája Az atommag kötési energiája az ún. tömegdefektusból ( m) számítható ki. m = [Z M p + N M n ] - M

Részletesebben

Az új Thermo Scientific icap TQ ICP-MS bemutatása és alkalmazási lehetőségei. Nyerges László Unicam Magyarország Kft április 27.

Az új Thermo Scientific icap TQ ICP-MS bemutatása és alkalmazási lehetőségei. Nyerges László Unicam Magyarország Kft április 27. Az új Thermo Scientific icap TQ ICP-MS bemutatása és alkalmazási lehetőségei Nyerges László Unicam Magyarország Kft. 2017. április 27. Thermo Scientific ICP-MS készülékek 2001-2012 2012-2016 icap Q 2016-

Részletesebben

A Paksi Atomerőműből származó kiégett üzemanyag hasznosítási lehetőségei

A Paksi Atomerőműből származó kiégett üzemanyag hasznosítási lehetőségei A Paksi Atomerőműből származó kiégett üzemanyag hasznosítási lehetőségei Brolly Áron, Hózer Zoltán, Szabó Péter MTA Energiatudományi Kutatóközpont 1525 Budapest 114, Pf. 49, tel.: 392 2222 A Paksi Atomerőműben

Részletesebben

Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán

Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán Horváth András, Kis Dániel Péter, Szatmáry Zoltán XV. Nukleáris Technikai Szimpózium 2016. december 8-9. Paks, Erzsébet Nagyszálloda

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Sugárbiztonságot növelő műszaki megoldások a Paksi Atomerőmű Zrt. Sugárfizikai Laboratóriumában

Sugárbiztonságot növelő műszaki megoldások a Paksi Atomerőmű Zrt. Sugárfizikai Laboratóriumában XXXVII. Sugárvédelmi Továbbképző Tanfolyam, 2012. április 24-26. Hajdúszoboszló Sugárbiztonságot növelő műszaki megoldások a Paksi Atomerőmű Zrt. Sugárfizikai Laboratóriumában Készítette: Orbán Mihály

Részletesebben

AZ MFGI LABORATÓRIUMÁNAK VIZSGÁLATI ÁRAI

AZ MFGI LABORATÓRIUMÁNAK VIZSGÁLATI ÁRAI 1. ELŐKÉSZÍTÉS Durva törés pofás törővel pofás törő 800 Törés, talaj porló kőzetek törése pofás törő+ Fritsch szinterkorund golyósmalommal max. 20 g +szitálás 1000 0,063 mm-es szitán Törés, kőzet masszív

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

A CSEPEL MŰVEK TALAJAINAK NEHÉZFÉM SZENNYEZETTSÉGE. Készítette: Szabó Tímea, Környezettudomány MSc Témavezető: Dr. Óvári Mihály, egyetemi adjunktus

A CSEPEL MŰVEK TALAJAINAK NEHÉZFÉM SZENNYEZETTSÉGE. Készítette: Szabó Tímea, Környezettudomány MSc Témavezető: Dr. Óvári Mihály, egyetemi adjunktus A CSEPEL MŰVEK TALAJAINAK NEHÉZFÉM SZENNYEZETTSÉGE Készítette: Szabó Tímea, Környezettudomány MSc Témavezető: Dr. Óvári Mihály, egyetemi adjunktus Bevezetés a talaj hazánk egyik legfontosabb erőforrása

Részletesebben

PROMPT GAMMA AKTIVÁCIÓS ANALÍZIS (PGAA) III. rész

PROMPT GAMMA AKTIVÁCIÓS ANALÍZIS (PGAA) III. rész PROMPT GAMMA AKTIVÁCIÓS ANALÍZIS (PGAA) III. rész MTA, Izotópkutató Intézet, Nukleáris Kutatások Osztálya Gméling Katalin, 2009. november 1 16. gmeling@iki.kfki.hu 1. PGAA rövid története 2. Legnevesebb

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA Ádámné Sió Tünde, Kassai Zoltán ÉTbI Radioanalitikai Referencia Laboratórium 2015.04.23 Jogszabályi háttér Alapelv: a lakosság az ivóvizek fogyasztása során nem kaphat

Részletesebben

1.ábra A kadmium felhasználási területei

1.ábra A kadmium felhasználási területei Kadmium hatása a környezetre és az egészségre Vermesan Horatiu, Vermesan George, Grünwald Ern, Mszaki Egyetem, Kolozsvár Erdélyi Múzeum Egyesület, Kolozsvár (Korróziós Figyel, 2006.46) Bevezetés A fémionok

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Radiokémiai neutronaktivációs analízis (RNAA)

Radiokémiai neutronaktivációs analízis (RNAA) Radiokémiai neutronaktivációs analízis (RNAA) Vajda Nóra Irodalom: R. Zeisler, N. Vajda, G. Kennedy, G. Lamaze, G. L. Molnár: Activation Analysis a Handbook of Nuclear Chemistry -ben (szerk. A. Vértes,

Részletesebben

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

Maghasadás (fisszió)

Maghasadás (fisszió) http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben

A felületi radioaktívszennyezettség-mérők mérési bizonytalansága

A felületi radioaktívszennyezettség-mérők mérési bizonytalansága Szűcs László Magyar Kereskedelmi Engedélyezési Hivatal A felületi radioaktívszennyezettség-mérők mérési bizonytalansága Mire alkalmas egy radioaktívszennyezettség-mérő? A radioaktívszennyezettség-mérők

Részletesebben

Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre

Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre Készítette: Szögi Antal és Machula Gábor XXXVII. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2012. április 24-26. ND-1005 közölt

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

A budapesti aeroszol PM10 frakciójának kémiai jellemzése

A budapesti aeroszol PM10 frakciójának kémiai jellemzése A budapesti aeroszol PM10 frakciójának kémiai jellemzése Muránszky Gábor, Óvári Mihály, Záray Gyula ELTE KKKK 2006. Az előadás tartalma - Mintavétel helye és eszközei - TOC és TIC vizsgálati eredmények

Részletesebben

Doktori munka. Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK. Alkotás leírása

Doktori munka. Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK. Alkotás leírása Doktori munka Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK Alkotás leírása Budapest, 1990. 2 KÖSZÖNETNYILVÁNÍTÁS A doktori munka célja az egyéni eredmény bemutatása. Feltétlenül hangsúlyoznom

Részletesebben

ATOMEMISSZIÓS SPEKTROSZKÓPIA

ATOMEMISSZIÓS SPEKTROSZKÓPIA ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése

Részletesebben

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében Molnár M., Rinyu L., Palcsu L., Mogyorósi M., Veres M. MTA ATOMKI - Isotoptech Zrt. Hertelendi Ede Környezetanalitikai

Részletesebben

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Bomláskor lágy - sugárzással stabil héliummá alakul át: 3 1 H 3 He 2 A trícium koncentrációját

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. április 22. A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis Értékelés: A beadás dátuma: 28. május 5. A mérést végezte: Puszta Adrián,

Részletesebben

A neutrontér stabilitásának ellenőrzése az MVM PA Zrt. Sugárfizikai Laboratóriumában

A neutrontér stabilitásának ellenőrzése az MVM PA Zrt. Sugárfizikai Laboratóriumában A neutrontér stabilitásának ellenőrzése az MVM PA Zrt. Sugárfizikai Laboratóriumában Szűcs László 1, Nagyné Szilágyi Zsófia 1, Szögi Antal 1, Orbán Mihály 2, Sós János 2, Károlyi Károly 2 1 Magyar Kereskedelmi

Részletesebben

235 U atommag hasadása

235 U atommag hasadása BME Oktatóreaktor 235 U atommag hasadása szabályozott láncreakció hasadási termékek: pl. I, Cs, Ba, Ce, Sr, La, Ru, Zr, Mo, stb. izotópok több mint 270 hasadási termék, A=72 és A=161 között keletkezik

Részletesebben

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

BOROK EREDETVIZSGÁLATÁRA HASZNÁLATOS ANALITIKAI KÉMIAI MÓDSZEREK ÁTTEKINTÉSE

BOROK EREDETVIZSGÁLATÁRA HASZNÁLATOS ANALITIKAI KÉMIAI MÓDSZEREK ÁTTEKINTÉSE BOROK EREDETVIZSGÁLATÁRA HASZNÁLATOS ANALITIKAI KÉMIAI MÓDSZEREK ÁTTEKINTÉSE Készítette: Kisdi Benedek ELTE TTK Környezettan BSc Témavezető: Dr. Tatár Enikő egyetemi docens 2016 Bevezetés A borkészítés

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Környezeti és személyi dózismérők típusvizsgálati és hitelesítési feltételeinek megteremtése az MVM PA ZRt sugárfizikai laboratóriumában

Környezeti és személyi dózismérők típusvizsgálati és hitelesítési feltételeinek megteremtése az MVM PA ZRt sugárfizikai laboratóriumában Környezeti és személyi dózismérők típusvizsgálati és hitelesítési feltételeinek megteremtése az MVM PA ZRt sugárfizikai laboratóriumában Szűcs László 1, Károlyi Károly 2, Orbán Mihály 2, Sós János 2 1

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok

Részletesebben

'lo.g^ MA-3214. Go 1 /V Z. \flz I SZOLGÁLATI TALÁLMÁNY

'lo.g^ MA-3214. Go 1 /V Z. \flz I SZOLGÁLATI TALÁLMÁNY pu-o-jt ( u. i ^ 'lo.g^ MA-3214 Go 1 /V Z. \flz I SZOLGÁLATI TALÁLMÁNY ELOÁRÁS SZILÁRD ANYAGOK BÓRTARTALMÁNAK ÉS ELOSZLÁ- SÁNAK MEGHATÁROZÁSÁRA NEUTRONAKTI VÁCI ÓS ANALÍZIS SEGÍTSÉGÉVEL MTA KÖZPONTI FIZIKAI

Részletesebben

Pató Zsanett Környezettudomány V. évfolyam

Pató Zsanett Környezettudomány V. évfolyam Pató Zsanett Környezettudomány V. évfolyam Budapest, Témavezető: Dr. Konzulensek: Dr. Dr. Dr. Homonnay Zoltán Varga Beáta Süvegh Károly Marek Tamás A csernobili baleset és következményei Mérési módszerek:

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben