Adatbányászat és Perszonalizáció az Oracle9i-ben
|
|
- Erik Fehér
- 9 évvel ezelőtt
- Látták:
Átírás
1
2 Adatbányászat és Perszonalizáció az Oracle9i-ben
3 Oracle9i adatbányászat szeptember 6. Fekete Zoltán Palaczk Péter
4 Agenda Oracle9i Database Teljes e-business Intelligence infrastruktúra Mi is az adatbányászat? Oracle9i Data Mining Oracle9i Personalization Personalization demonstráció
5 Hagyományos elemző szerverek Adat integrációs motor Data Warehouse motor OLAP motor Bányászati motor
6 Oracle9i analitikus platform Oracle9i Data Warehousing ETL OLAP Adatbányászat
7 Oracle9i Teljes e-üzleti intelligencia infrastruktúra
8 Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a a d a t o k
9 Oracle9i Application Server az üzleti intelligencia alkalmazások futtatásához M e t a a d a t o k Portal Jelentések, lekérdezések BI Components Personalization Hello! We have recommendations for you.
10 Oracle9i Complete e-business Intelligence Oracle9iDB Data Warehousing Oracle9iAS Portal ETL OLAP Data Mining M e t a d a t a Query & Reporting BI Components Real-Time Personalization Hello! We have recommendations for you.
11 Az adatbányászat fogalmáról
12 Mi az adatbányászat? Röviden, az adatbányászat rejtett minták és kapcsolatok feltárása az adattömegben, a jobb üzleti döntések elősegítésére -- Robert Small, Two Crows
13 Oracle adattárházak és adatbányászat Az adattárház lehetővé teszi az adatbányászatot Az adatbányászat kiássa az adattárház rejtett kincseit Az adattárházak gyorsan növekszenek, gyorsabban sem hogy manuálisan ki lehetne aknázni a bennük rejlő tudást Az adatbányászat kiteljesíti az adattárházak ígéretét Felfedi a tudást, mely az adatot információvá alakítja
14 Lehetőség: adatbányászat az ügyfelek megértéséhez Ügyfél megtartás, elvándorlás csökkentés Ügyfelek csoportosítása és viselkedésük megértése Jövedelmezőség javítása Ügyfél megszerzési költségek csökkentése A jövedelmező ügyfelek megfelelő ajánlatokkal ellátása
15 Miért szükséges az adatbányászat? Pénzügyi példa: Mely ügyfeleknek legnagyobb a hajlandósága részt venni az új arany hitelkártya programban? Telekommunikációs példa: Mely vevők akarnak a konkurenciához távozni? Államigazgatási példa: Melyek azok az egészségügyi igények melyek mögött csalás lehet?
16 Tipikus adatbányászati ágazatok és alkalmazások Adatbázis marketing Pénzügyi management Telekommunikáció Egészségügy Manufacturing Biztosítás Kormányzat CRM Cross-Sell/Up-Sell Hitel Csalás ERP Quality Control
17 Data Mining példák Bank értékesítési hatékonyságát 1,1%-ról 20,5%-ra növelte Banki termék 4000 vásárlója mellé további lehetséges vásárlót találtak Telecommunikációs cég magas bevételt ígérő ügyfeleket talált a cégváltásra hajlamosak szegmensében Oracle Discoverer szemlélteti az adatbányászati eredményeket.
18 Oracle9i Data Mining
19 Oracle9i Data Mining Az alkalmazásokat kiegészíti a rejtett minták felismerésével Az Oracle9i Database-be beágyazott adatbányászat Java-alapú API, amely megfelel a JDM (JSR-73) fejlődő szabványnak (SUN Java Community Process, CWM, PPML, SQL/MM for Data Mining) Data Mining
20 Beágyazott adatbányászat az Oracle9i adatbázisba Egyszerűsíti a folyamatot, Nincs adatmozgatás és nincs adatduplikáció Nagy teljesítményt és skálázhatóságot biztosít nem csupán mintavétellel Partitioning nagy adatmenny. SELECT SAMPLE Adatbányászat Beágyazott adatbányászat
21 Az alkalmazások kiegészülnek predikcióval és betekintéssel az adatok mögé Oracle9i Data Mining Java API-val predikció alapú alkalmazások készülnek Az adatbányászat automatizálása az ügyfelek pontozására és valós idejű prediktálására Batch on-demand Az adatbányászati eredmények rögtön elemezhetők Oracle Discovererrel, OLAP kieg.
22 Data Mining az Oracle9i Database-be ágyazva Több algoritmus Naïve Bayes (osztályozás) - supervised Association Rules (asszociáció) - unsupervised Fejlődés: C&RT, neurális hálózatok, SOM... Alapértelmezett és részletes paraméterezés Több féle predikció Adott esemény valószínűsége A legvalószínűbb esemény Data Mining
23 Predikció és klasszifikáció Korábban rejtett információk a hívóközpont kezelőnek. Predikció és valószínűség.
24 Asszociációs szabályok felhasználása Asszociációk meghatározása Népszerű termék összeállítások (pl. kosár elemzés) Együttes előfordulások Kosár következő elemének megjóslása
25 Oracle CRM integráltan az Oracle Data Mininggal Automatizált adatbányászat Modell építés Ütemezés Pontozás listák Minták felderítése Predikciók A célzott kampányok hatékonyságát nagy mértékben javítja
26 ODM tevékenységek Modell építés Teszt (Naïve Bayes prediktív modellekhez) Lift számítás (Naïve Bayes modellekhez) Modell alkalmazása (scoring a Naïve Bayeshez)
27 Oracle9i Data Mining Az alkalmazások kiegészülnek predikcióval és elemzéssel Az alkalmazások nagyobb betekintést biztosítanak az ügyféladatokba, churn predikció, call center alkalmazásoknál Beágyazott adatbányászat az Oracle9i-be Egyszerűsített folyamat, nincs adatmozgatás, nagy teljesítményt és skálázhatóságot biztosít Java alapú API Üzleti intelligencia adatbázisok építéséhez Data Mining
28 Oracle9iAS Personalization
29 Oracle9i Perszonalizáció Valós idejű ajánlási motor Valós idejű ajánlási motor, 1:1 marketing kapcsolatok eléréséhez az Interneten Cross-selling és up-selling Web lap tartalom testreszabás, pl. hirdetések Tradicionális adatbányászat + Valós idejű Session környezet
30 Oracle9i Personalization Az adatbázis valós idejű ajánlást ad Ügyfél profil (történeti) Adattárház Oracle Powered Web Site Web Dinamikus Site Weblapok Advanced dynamic content Database driven Real-time, adaptive personalization Ajánlás
31 Ajánlás - feladatok Melyik N terméket fogja A a legvalószínűbben megvásárolni? Akik megvették az X terméket, hajlamosak-e mást is vásárolni? Mennyire valószínű, hogy A megveszi az X terméket? Melyik N cikket legvalószínűbb, hogy A megveszi, feltéve, hogy egy másik X terméket vásárol? Melyik N termék hasonlít legjobban az X termékhez egy adott dimenzió mentén?
32 Oracle9iAS Personalization alkalmazás BooksRus.com s Book Store - Netscape Egy Java könyvet keresek Hello, Mark BooksRus.com Jones. We think you will like these items. Hello, Mark Jones! Tekintse meg ajánlatunkat BooksRus.com Auctions. BooksRus.com 100 Hot Books m Valós idejű ajánlatok, további könyvek az érdeklődési körnek és profilnak megfelelően, és a meglepetés faktor.
33 Personalization szolgáltatások Hogyan működik? BooksRus.com BooksRus.com s Book Store - Netscape BooksRus.com BooksRus.com BooksRus.com 100 Hot Books Html kérés Web Server Html Code Generation <static sections> Customer IDBooksRus.com Profession BooksRus.com Field ScoreClassic Rap ActionThriller Poetry com BooksRus.co Auctions. m 100 Hot Books <dynamic sections created using JSP> Computer BooksRus. Consulting BooksRus.com Auctions The Brethren by John Grisham Html code Browser (Client) A session felhasználói adatok profil tisztításra kerülnek egy böngésző pontozódik profil és az megállapítása eredmény megjelenik a érdekében Web szerveren Oracle 9i Personalization Services
34 Web Personalization: Architektúra = Web Perszonalizációs termék része Történeti adat Web Szerver Perszonalizácós API Adattárház Prediktív modellek offline létrehozása Oracle9i adatbázis Előre felépített modell és adat Ajánlási kérés (session információt tartalmaz) Ajánlási motor Ajánlás Valós időben végrehajtja a modellt és visszaadja az ajánlásokat Oracle9i adatbázis előre definiált sémával
35
Adatbányászat az Oracle9i-ben. Fekete Zoltán vezető termékmenedzser Zoltan.Fekete@oracle.com
Agenda Az Oracle9i adattárház tulajdonságai Adatbányászat az Oracle9i-ben DM, Personalization az Oracle9i-ben, architektúra Integrált adatbányászat az Oracle CRM-ben Szünet Perszonalizációs felhasználási
Adatbányászat és Perszonalizáció architektúra
Adatbányászat és Perszonalizáció architektúra Oracle9i Teljes e-üzleti intelligencia infrastruktúra Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a
Oracle adatbányászati platform. Fekete Zoltán vezető termékmenedzser Zoltan.Fekete@oracle.com
Oracle adatbányászati platform Fekete Zoltán vezető termékmenedzser Zoltan.Fekete@oracle.com E-business Intelligence piaci trendek A teljes ügyfél életciklus során az összes értékesítési ponton felkeresni
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter Bevezető az Oracle9i adattárházas újdonságaihoz Elemzési és vezetői információs igények 80:20 az adatgyűjtés javára! Adattárházak kínálta
Palaczk Péter A marketing folyamatok adattárház alapú támogatása
Palaczk Péter A marketing folyamatok adattárház alapú támogatása A hatékony marketingtámogatás alapjai Infrastrukturális feltételek Működő vállalati adattárház Megbízható ügyféladatok Beüzemelt adatbányászati
Adattárházak. Fekete Zoltán. BI&W termékmenedzser Oracle Hungary
Adattárházak Fekete Zoltán BI&W termékmenedzser Oracle Hungary Adattárházak Bevezetés Oracle infrastruktúra A betöltési oldal - ETL Jelentések OLAP Adatbányászat Üzleti környezet A kihívások... Dereguláció
A tudás handrendbe állítása, azaz SPSS PES
A tudás handrendbe állítása, azaz SPSS PES...és hogyan történt mindez a Vodafone Hungary Zrt-nél Cseh Zoltán, PhD konzultációs igazgató SPSS Hungary Hagyományos hadászati egységek Légi elhárítás Gyalogság
Az Oracle 9i Platform az. e-üzleti Intelligencia. szolgálatában. Radnai Szabolcs. BI&W üzletág vezető Oracle Corporation
Az Oracle 9i Platform az e-üzleti Intelligencia szolgálatában Radnai Szabolcs BI&W üzletág vezető Oracle Corporation Oracle9i Platform, Forró területek Perszonalizált hozzáférés Információkhoz és Alkalmazásokhoz
A webanalitika változó világa 4 felvonásban
A webanalitika változó világa 4 felvonásban Arató Bence, BI Consulting Email: arato@bi.hu, Twitter: @aratob Traffic Meetup, 2013.02.06 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia
Üzleti intelligencia - eszközöktől a megoldásokig
Atlanta Barcelona Berlin Vienna Budapest Bukarest Düsseldorf München Stuttgart Zurich www.ifua.hu Fekete Gábor ügyvezető partner 2007. március 21. Üzleti intelligencia - eszközöktől a megoldásokig IFUA
Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben.
Tartalom Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Előszó 1. Az adatbányászatról általában 19 1.1. Miért adatbányászat? 21 1.2. Technológia a rejtett információk
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt.
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt. Tartalom BI mérföld kövek Kezdeti architektúra és kontextus Lokális Adattárház Kialakítása CRM Evolúció Üzleti Intelligencia kiaknázó eszközök
The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
Microsoft SQL Server telepítése
Microsoft SQL Server telepítése Az SQL Server a Microsoft adatbázis kiszolgáló megoldása Windows operációs rendszerekre. Az SQL Server 1.0 verziója 1989-ben jelent meg, amelyet tizenegy további verzió
BI megoldás a biztosítói szektorban
Dobos Zoltán 2009 szeptember 10 BI megoldás a biztosítói szektorban Tartalom Üzleti felhasználási területek a biztosítói szektorban Cognos megoldások a biztosítói szektor részére 2 Fókusz területek Értékesítési
1 Copyright 2011, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 7
1 Copyright 2011, Oracle and/or its affiliates. All rights 2011 November 8 th Budapest Fel a fellegekbe! Oracle alkalmazások szolgáltatásként az Oracle CRM, ERP, HR Visky Máté Vezető CRM Tanácsadó Sonnevend
<Insert Picture Here> Közeli jövőkép az üzleti intelligenciáról
Közeli jövőkép az üzleti intelligenciáról Radnai Szabolcs Üzleti Intelligencia Üzletfejlesztési vezető - Kelet-közép Európa régió Az üzleti intelligencia feladata Embedded Business
Big Data az adattárházban
Big Data az adattárházban A párbaj folytatódik? Néhány fontos Big Data projekt Cég Téma Adat Újfajta Mennyiség Saját adat? Típus Google Influenza Google I big I Előjelzés előjelzés Farecast Xoom Chicagoi
Segítség, összementem!
Segítség, összementem! Előadók: Kránicz László Irimi János Budapest, 2013. április 10. ITFI - Adatintegrációs Kompetencia Központ ITFI - Adatintegrációs Kompetencia Központ Tartalomjegyzék 2 Az Adattárház
Kővári Attila, BI projekt
Innovatív BI konferencia, 2011-11-22 Kővári Attila, BI projekt Az előadás bemutatja, milyen lehetőségeket és problémákat rejtenek magukban az önkiszolgáló BI rendszerek. Foglalkozik az ilyen rendszereknél
Infor PM10 Üzleti intelligencia megoldás
Infor PM10 Üzleti intelligencia megoldás Infor Üzleti intelligencia (Teljesítmény menedzsment) Web Scorecard & Műszerfal Excel Email riasztás Riportok Irányít Összehangol Ellenőriz Stratégia Stratégia
Analitikus CRM. Radnai Szabolcs Szabolcs.Radnai@oracle.com
Analitikus CRM Radnai Szabolcs Szabolcs.Radnai@oracle.com Integrált CRM megoldások A CRM a legfontosabb hajtóerő az adattárház/adatpiaci rendszerek kiépítésére Mûködõ rendszerek Ttranzakciók Adatpiacok
Component Soft 1994-2013 és tovább
Component Soft 1994-2013 és tovább IT szakemberek oktatása, tanácsadás Fő témáink: UNIX/Linux rendszerek, virtualizációs, fürtözési, tároló menedzsment és mentési technológiák Adatbázisok és middleware
Think customer 2001. Hatékony ügyfélszolgálat és megvalósítási módszertan. WorkShop
Think customer 2001 Hatékony ügyfélszolgálat és megvalósítási módszertan WorkShop Tóthné Katona Márta eadvisor Oracle Hungary Hogyan is kezdjünk hozzá? Értsük meg üzleti környezetünket: melyek a problémáink
Alkalmazások teljesítmény problémáinak megszűntetése
Alkalmazások teljesítmény problémáinak megszűntetése tapasztalatok a Compuware dynatrace APM szoftverrel RAIFFEISEN BANK ZRT. Melegh Csanád Alkalmazás üzemeltetési osztályvezető Előzmények Performancia
Big Data adattárházas szemmel. Arató Bence ügyvezető, BI Consulting
Big Data adattárházas szemmel Arató Bence ügyvezető, BI Consulting 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia és adattárházak területén A BI Consulting szakmai igazgatója A BI.hu
Integrált Kampánymenedzsment Rendszer kialakítása
HOUG 2014 Siófok Integrált Kampánymenedzsment Rendszer kialakítása Bíró Dávid Senior manager Értékesítési Igazgatóság Kakas Gábor IT projekt manager IT Fejlesztési Igazgatóság I. Üzleti igények Üzleti
Papp Attila. BI - mindenkinek
Papp Attila BI - mindenkinek 100% 28% 2012 A kiterjesztett BI piac alakulása BAM/CEP 0.23 Other Data 2 Warehouse 10.5 CRM Analytics 1 Data Integration, Data Quality 3 2010 57 mrd USD BI Services 30 2011
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20.
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20. 1 2 3 4 5 6 7 8 Pentaho eszköztára Data Integrator Spoon felület Spoon
SAS Enterprise BI Server
SAS Enterprise BI Server Portik Imre vezető szoftverkonzulens SAS Institute, Magyarország A SAS helye a világban 280 iroda 51 országban 10,043 alkalmazott 4 millió felhasználó világszerte 41,765 ügyfél
Az alábbiak közül melyek a vállalati stratégia típusok?
Az alábbiak közül melyek a vállalati stratégia típusok? Piacorientált, dinamikus, jövőorientált, integratív Költségvezető, megkülönböztető, koncentráló HELYES Innovatív, stabilizáló, leépítő Vízió, misszió
The Power To Develop. i Develop
The Power To Develop 2001 Alkalmazások fejlesztése Oracle9i Alkalmazás rel Molnár Balázs Értékesítési konzultáns Oracle Hungary Miről is lesz szó? Mi az Oracle9i AS, technikailag? Hogyan működik Oracle9i
Soltész Gábor. Önéletrajz Budapest, Lechner Ödön fasor em 26. a.
Soltész Gábor Önéletrajz SZEMÉLYI ADATOK Születési dátum: 1983.07.09 Születési hely: Lakcím: Dunaújváros 1095 Budapest, Lechner Ödön fasor 1. 2. em 26. a Telefonszám: +36/20-466-7553 Email: Weboldal: solteszgabor@solteszgabor.com
Pentaho 4: Mindennapi BI egyszerűen. Fekszi Csaba Ügyvezető 2011. október 6.
Pentaho 4: Mindennapi BI egyszerűen Fekszi Csaba Ügyvezető 2011. október 6. 1 2 3 4 5 Bevezetés Pentaho-ról röviden - áttekintő Mindennapi BI egyszerűen a Pentaho 4 újdonságai Pentaho összefoglaló Alkalmazás
Így kampányolunk mi. Hans Zoltán. Szolgáltatás Fejlesztés és Online Irányítás vezető. IBM-SPSS üzleti reggeli (Budapest) 2010.09.22.
Így kampányolunk mi Hans Zoltán Szolgáltatás Fejlesztés és Online Irányítás vezető IBM-SPSS üzleti reggeli (Budapest) 2010.09.22. LIFE INSURANCE PENSION INVESTMENT Tartalom AEGON Útkeresések Esettanulmány
Cloud computing. Cloud computing. Dr. Bakonyi Péter.
Cloud computing Cloud computing Dr. Bakonyi Péter. 1/24/2011 1/24/2011 Cloud computing 2 Cloud definició A cloud vagy felhő egy platform vagy infrastruktúra Az alkalmazások és szolgáltatások végrehajtására
A J2EE fejlesztési si platform (application. model) 1.4 platform. Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem
A J2EE fejlesztési si platform (application model) 1.4 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11.13. A J2EE application model A Java szabványok -
Oracle9i Alkalmazás Szerver Üzleti folyamat integráció. Molnár Balázs Vezető értékesítési konzultáns Oracle Hungary
Oracle9i Alkalmazás Szerver Üzleti folyamat integráció Molnár Balázs Vezető értékesítési konzultáns Oracle Hungary Üzleti folyamat integráció Kereskedők Beszállítók Partnerek Alkalmazás Disztribútor Belső
A USER Kft - mint Open Text partner - bemutatása
A USER Kft - mint Open Text partner - bemutatása SAP konferencia 2008.szeptember 22. Tihany Copyright 2008 Open Text Inc. All rights reserved. Kárász Vilmos Sales Manager USER KFT vilmos.karasz@user.hu
Fejlesztés, működtetés, felügyelet Hatékony infrastruktúra IBM szoftverekkel
IBM Software Group Fejlesztés, működtetés, felügyelet Hatékony infrastruktúra IBM szoftverekkel Rehus Péter Szoftver üzletág igazgató 2005. február 2. 2003 IBM Corporation On demand igény szerinti működési
Szolgáltatás Modellezés. Tivoli Business Service Management
Szolgáltatás Modellezés Tivoli Business Service Management Üzleti Szolgáltatás Felügyelet 2 Üzleti Szolgáltatás: alkalmazások, köztes alkalmazások, biztonsági, tároló, hálózati, és más infrastruktúra elemek
Üzleti szabálykezelés
Üzleti szabálykezelés Az Alerant és a BCA üzleti szabálykezelési szolgáltatásai Darmai Gábor technológiai igazgató 2008. június 25. A Alerant Al t Zrt. Z t Az 3. Nagyvállalati fókusz (TOP50 vállalat megcélzása)
A Java EE 5 plattform
A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11. 13. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési
Jogosultság-monitorozó rendszer kialakítása
Jogosultság-monitorozó rendszer kialakítása Csizmadia Attila CISA Jogosultságkezelés jelentősége Miért fontos? Mindenkinek van valamilyen válasza A válaszok különböző megközelítésűek lehetnek Egy közös
Cloud computing Dr. Bakonyi Péter.
Cloud computing Dr. Bakonyi Péter. 1/24/2011 Cloud computing 1/24/2011 Cloud computing 2 Cloud definició A cloud vagy felhő egy platform vagy infrastruktúra Az alkalmazások és szolgáltatások végrehajtására
Hogyan lehet megakadályozni az üzleti modellezés és az IT implementáció szétválását? Oracle BPM Suite
Hogyan lehet megakadályozni az üzleti modellezés és az IT implementáció szétválását? Oracle BPM Suite Petrohán Zsolt Vezető tanácsadó zsolt.petrohan@oracle.com Napirend Oracle Fusion Middleware BPM kihívásai
Oracle Enterprise Manager: Az első teljesértékű felhő üzemeltetési megoldás
2011 November 8. New York Palota Hotel Boscolo Budapest Oracle Enterprise Manager: Az első teljesértékű felhő üzemeltetési megoldás Sárecz Lajos, Vezető tanácsadó Oracle Hungary Átfogó felhő üzemeltetés
SAP BUSINESSOBJECTS PROFITABILITY AND COST MANAGEMENT (PCM) BEMUTATÁSA
SAP BUSINESSOBJECTS PROFITABILITY AND COST MANAGEMENT (PCM) BEMUTATÁSA MODELL ALKOTÁS, TECHNIKAI ÉS ARCHITECKTURÁLIS KÉRDÉSEK 1. MODELLEZÉS A modellezés a PCM Model Builder moduljának felhasználóbarát,
Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem
A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2008. 04. 17. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési
Self service reporting fogások, technikák és megoldások controllereknek, nem csak Excel alapon
Self service reporting fogások, technikák és megoldások controllereknek, nem csak Excel alapon Reporting, dashboarding önkiszolgáló módon Anton Dávid Havas Levente Debrecen, 2017.10.26. Mobil fogyasztás
IT trendek és lehetőségek
Mivel készüljünk? IT trendek és lehetőségek Kovács András Üzleti hajtóerők Költséghatékonyság Produktivitás Ügyfélkezelés Meghatározó technológia trendek Operatív alkalmazások & alkalmazás fejlesztés Analitikus
Konszolidáció és költségcsökkentés a gyakorlatban. Az Országos Tisztifőorvosi Hivatal Oracle adatbázis konszolidációja
Konszolidáció és költségcsökkentés a gyakorlatban Az Országos Tisztifőorvosi Hivatal Oracle adatbázis konszolidációja Az Xperteam Zrt. Szolgáltatásaink Oracle termékekkel kapcsolatos kiemelkedő szakismeret:
Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4.
Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4. Omnit Solutions 2007 óta a piacon BI & adattárház tanácsadás 20 fős csapat Oracle, IBM és Pentaho
I. CRM elmélete és gyakorlata. II. Stratégiai elemek. III. Strukturális megoldások
Transzformáció -CRM Értékesítési stratégiák I. CRM elmélete és gyakorlata II. Stratégiai elemek III. Strukturális megoldások 1 Customer Relationship Management egy filozófia Értékesítés Ügyfél Marketing
2011. November 8. Boscolo New York Palace Budapest. Extrém teljesítmény Oracle Exadata és Oracle Exalogic rendszerekkel
2011. November 8. Boscolo New York Palace Budapest Extrém teljesítmény Oracle Exadata és Oracle Exalogic rendszerekkel Integrált rendszerek - Engineered Systems Együtt tervezett hardver és szoftver Egyedi
Oracle E-Business Suite üzemeltetés a Rába Járműipari Holding Nyrt.-nél
Oracle E-Business Suite üzemeltetés a Rába Járműipari Holding Nyrt.-nél 1 Kósa György Szenior Rendszermérnök (Oracle OCP és MSSQL DBA, EBS DBA) T-Systems Magyarország Zrt. Kósa György - T-Systems Magyarország
Copyright 2012, Oracle and/or its affiliates. All rights reserved.
1 Oracle Felhő Alkalmazások: Gyorsabb eredmények alacsonyabb kockázattal Biber Attila Igazgató Alkalmazások Divízió 2 M I L L I Á RD 4 1 PERC MINDEN 5 PERCBŐL 5 6 Ember használ mobilt 7 FELHŐ SZOLGÁLTATÁS
Copyright 2012, Oracle and/or its affiliates. All rights reserved.
1 Oracle Konfiguráció Kezelő Gruhala Izabella 2013. Április 8. 2 Agenda Mi az Oracle Konfiguráció Kezelő (Configuration Manager - OCM)? Milyen adatokat gyűjt a Konfiguráció Kezelő? Előnyök, jellemzők,
RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál. Szakács Balázs - Telenor Magyarország Szücs Imre United Consult
RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál Szakács Balázs - Telenor Magyarország Szücs Imre United Consult Miről lesz szó? Telenor bemutatása Eszközválasztás háttere Igények
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu Számonkérés 2 Papíros (90 perces) zh az utolsó gyakorlaton. Segédanyag nem használható Tematika 1. félév 3 Óra Dátum Gyakorlat 1. 2010.09.28.
Az üzleti analitika meghatározó szerepe az ügyfélélmény területén. Radnai Szabolcs Üzletfejlesztési igazgató ECEMEA BA
Az üzleti analitika meghatározó szerepe az ügyfélélmény területén Radnai Szabolcs Üzletfejlesztési igazgató ECEMEA BA Trabant 601 1964-1991 2 Az ügyfél egyéni bánásmódra vágyik Ügyfél interakciók optimalizálása
hagyományos médiaperformancia és e-kereskedelem mit tanulhat az egyik a másiktól Nagy Barnabás Magyar Telekom
hagyományos médiaperformancia és e-kereskedelem mit tanulhat az egyik a másiktól Nagy Barnabás Magyar Telekom Most A klasszikus hirdetésekben, kampányolásban már nincsenek nagy lehetőségek Elértük a maximumot
AZ IGAZI BIG DATA hogyan használják a világban és egyáltalán használják-e hazánkban?
AZ IGAZI BIG DATA hogyan használják a világban és egyáltalán használják-e hazánkban? Médiapiac 2015 Eger, 2015.03.18 Dévényi Edit Dunai Albert K&H Bank és Biztosító 1 Nem értek hozzá! Mi tart vissza? Túl
Dr. Sasvári Péter Egyetemi docens
A magyarországi vállalkozások Üzleti Intelligencia használatának vizsgálata Dr. Sasvári Péter Egyetemi docens II. IRI Társadalomtudományi Konferencia, 2014. április 25-26. Nové Zámky (Érsekújvár) Gymnázium
Tudásalapú információ integráció
Tudásalapú információ integráció (A Szemantikus Web megközelítés és a másik irány) Tanszéki értekezlet, 2008. május 14. 1 Miért van szükségünk ilyesmire? WWW: (Alkalmazások) Keresés a weben (pl. összehasonlítás
Projektvezetői döntések támogatása webbányászattal
NETWORKSHOP 2008 2008. március 17-19. Dunaújváros, Dunaújvárosi Főiskola Projektvezetői döntések támogatása webbányászattal Bóta László Ph.D. hallgató (BME) Eszterházy Károly Főiskola, Eger BI (Business
Gyors sikerek adatbányászati módszerekkel
Gyors sikerek adatbányászati módszerekkel Kezdő adatbányászati workshop Petrócziné Huczman Zsuzsanna 2015.10.13. Bemutatkozás BME, műszaki informatika szak, adatbányászati szakirány Citibank Data Explorer
ÜZLETI I TELLIGE CIA - VIZUALIZÁCIÓ
Budapest Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék ÜZLETI I TELLIGE CIA - VIZUALIZÁCIÓ Elméleti segédanyag Készítette: Kovács Dániel László 2007. november Tartalomjegyzék
COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT
COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM CÉGTÖRTÉNET 1990 Alapítás 1990 Informatikai fejlesztések kezdete 1992 Felsőfokú informatikai képzési rendszer kidolgozása a kormányzat részére
VIR alapfogalmai. Előadásvázlat. dr. Kovács László
VIR alapfogalmai Előadásvázlat dr. Kovács László Információ szerepe Információ-éhes világban élünk Mi is az információ? - újszerű ismeret - jelentés Hogyan mérhető az információ? - statisztikai - szintaktikai
Projekt beszámoló. NEWSIT News basedearlywarning System forintradaytrading: Hír alapú Korai Figyelmeztető Rendszer Napon belüli Kereskedéshez
Projekt beszámoló Projekt azonosítója: Projektgazda neve: Projekt címe: DAOP-1.3.1-12-2012-0080 Pénzügyi Innovációs Iroda Kft. NEWSIT News basedearlywarning System forintradaytrading: Hír alapú Korai Figyelmeztető
Lépésről lépésre - a siker útján
Lépésről lépésre - a siker útján Az Oracle E Business-Suits rendszer használata közel 2 évtizeden keresztül: a v8.6-tól a legújabb R12.1.3-ig Moczó István Konzultációs Igazgató Oracle Hungary Kft. Tóthné
Esri Magyarország Felhasználói Konferencia 2015.10.08. Portal for ArcGIS. Kisréti Ákos 2015.10.08.
Esri Magyarország Felhasználói Konferencia 2015.10.08. for ArcGIS Kisréti Ákos 2015.10.08. Az ArcGIS Platform Web GIS megoldások Tűzfal Hibrid Server Az ArcGIS Platform Web GIS komponensek Alkalmazások
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék 2013/14 2. félév 5. Gyakorlat Dr. Kulcsár Gyula egyetemi docens Tartalomjegyzék Klasszikus termelésirányítási
Inbound marketing. Damjanovich Nebojsa, Senpai Consulting, HubSpot viszonteladó
Inbound marketing Damjanovich Nebojsa, Senpai Consulting, HubSpot viszonteladó Rólam Inbound marketing tanácsadó, HubSpot viszonteladó Tanácsadó a Fortune 500 cégeknek Elismert tréner és konferencia előadó
Átlátni és rendszerezni Az adatbányászat, a CRM és a piackutatás kapcsolata
Átlátni és rendszerezni Az adatbányászat, a CRM és a piackutatás kapcsolata Aki mostanában konferenciákon, elõadásokon jár, vagy különbözõ marketinggel kapcsolatos szaklapokat olvas, nehezen kerülheti
Oracle adatkezelési megoldások helye az EA világában. Előadó: Tar Zoltán
Oracle adatkezelési megoldások helye az EA világában Előadó: Tar Zoltán Témák Bemutatkozás Enterprise Architecture bemutatása Mi az az EA? TOGAF bemutatása OEAF bemutatása Oracle megoldások Oracle termékek
Teljes Életút Bázis Adatok
A családtámogatási ellátások folyósításának korszerűsítése TÉBA Teljes Életút Bázis Adatok Előadó: Kálmánné Schlichter Ilona A családtámogatási ellátások 1. A családok támogatásáról szóló 1998. évi LXXXIV.
Gáspár Bencéné Vér Katalin * AZ ÜZLETI INTELLIGENCIA RENDSZEREINEK KIALAKULÁSÁRÓL
123 Gáspár Bencéné Vér Katalin * AZ ÜZLETI INTELLIGENCIA RENDSZEREINEK KIALAKULÁSÁRÓL Az igazi szûk keresztmetszet nem technológiai, nem pénzügyi, de még csak nem is információs szûkösség. A kényszertényezõ
IBM Software Group Archiválási technológiák - tartalomkezelés Kovács László Az információ kezelésének evolúciója Struktúrált adatok kezelése '60s Alkalmazások '70s Adatbázisok alkalmazásokra optimalizálva
GE ITSG Industrial Technology Services Group
GE ITSG Industrial Technology Services Group CTO Industrial TSG Principal Tech Security Service Management Service Delivery Service Support Application Infrastructure BTL Plastics BTL Security Program
Infrastruktúra menedzsment - eszközeink és alkalmazásaink felügyelete ma és holnap ZENworks / OnDemand
Infrastruktúra menedzsment - eszközeink és alkalmazásaink felügyelete ma és holnap ZENworks / OnDemand Hargitai Zsolt rendszermérnök zhargitai@novell.com Napirend A desktopmenedzsment problémái, kihívásai
Az információs rendszerek funkcionális változásai a kis és középvállalkozások szemszögéből. DE ATC AVK Gazdasági- és Agrárinformatikai Tanszék
MAGISZ Fórum 2004. augusztus 27. Az információs rendszerek funkcionális változásai a kis és középvállalkozások szemszögéből. Dr. Herdon Miklós - Rózsa Tünde DE ATC AVK Gazdasági- és Agrárinformatikai Tanszék
Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):
Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki
Gazdasági informatika alapjai
PSZK Mesterképzési és Távoktatási Központ / H-1149 Budapest, Buzogány utca 10-12. / 1426 Budapest Pf.:35 II. évfolyam Név: Neptun kód: Kurzus: Tanár neve: HÁZI DOLGOZAT 2. Gazdasági informatika alapjai
Vezetői információs rendszerek
Vezetői információs rendszerek Kiadott anyag: Vállalat és információk Elekes Edit, 2015. E-mail: elekes.edit@eng.unideb.hu Anyagok: eng.unideb.hu/userdir/vezetoi_inf_rd 1 A vállalat, mint információs rendszer
Oszlassuk el a Ködöt. Bordás Csaba. Ericsson. Mi a CloudTV és mi érhető el ebből a piacon? HTE MediaNet konferencia Egerszalók, október 5.
Oszlassuk el a Ködöt Mi a CloudTV és mi érhető el ebből a piacon? Bordás Csaba Ericsson HTE MediaNet konferencia Egerszalók, 2017. október 5. TV Szolgáltatások fejlődése CLASSIC PAY TV OTT PAY TV CLOUD
Waberer s BI a BO-n túl. WABERER S INTERNATIONAL Nyrt. Szatmári Johanna, Tobak Tamás
Waberer s BI a BO-n túl WABERER S INTERNATIONAL Nyrt. Szatmári Johanna, Tobak Tamás 2018.09.10 Tartalom Kik vagyunk a Waberer s számokban Digitális transzformáció a Waberer s-nél Üzleti igények és kihívások
Seacon Access and Role Management
Innovatív Információbiztonsági Megoldások Seacon Access and Role Management Csizmadia Attila CISA Jogosultságkezelés jelentősége Miért fontos? Mindenkinek van valamilyen válasza A válaszok különböző megközelítésűek
VIHIMA07 Mobil és vezeték nélküli hálózatok A mobil backhaul vezetékes technológiái 1. Mobil backhaul követelmények
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamosmérnöki szak, mesterképzés Multimédia rendszerek és szolgáltatások főspecializáció Vezetéknélküli rendszerek és
ÁLMODJ NAGYOT, KEZDD KICSIBEN, HALADJ GYORSAN
ÁLMODJ NAGYOT, KEZDD KICSIBEN, HALADJ GYORSAN Integrált marketing stratégia egy szakmai szövetségnél Schlégl Tímea Kommunikációs és operatív igazgató LÉPÉSEK A DÖNTÉSIG 1. 2. Szervezet 4. 3. Célok 6. 5.
Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16.
Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Tracsek Ferenc igazgató Alapvető változások kora Az IT iparágban alapvető
A felhasználó megismerése: újdonságok a személyre szabási technológiákban
A MARKETING ESZKÖZEI A felhasználó megismerése: újdonságok a személyre szabási technológiákban Manapság a legtöbb szervezetnél egymás követik az e-üzleti kezdeményezések. Egyre nyilvánvalóbb, hogy az e-üzleti
Excel ODBC-ADO API. Tevékenységpontok: - DBMS telepítés. - ODBC driver telepítése. - DSN létrehozatala. -Excel-ben ADO bevonása
DBMS spektrum Excel ODBC-ADO API Tevékenységpontok: - DBMS telepítés - ODBC driver telepítése - DSN létrehozatala -Excel-ben ADO bevonása - ADOConnection objektum létrehozatala - Open: kapcsolat felvétel
Térinformatika adatbázisból. GisOpen 2007 konferencia, 2007. március 12-14
Térinformatika adatbázisból Előzmények GVOP 4.2.2 pályázat Állami támogatás tartalomipari és közcélú tartalomszolgáltatás fejlesztésére UKIG pályázat Közcélú On-line Útinformációs Rendszer megvalósítására
Retro adatbányászat. Kovács Gyula Andego Tanácsadó Kft.
Retro adatbányászat Kovács Gyula Andego Tanácsadó Kft. Adattárház Fórum 2012 Magunkról 2010-ben alapították magánszemélyek (az alapítók több mint egy évtizedes BI tapasztalatokkal rendelkeznek) Andego
Ügyfélkapcsolat menedzsment rendszerek nyílt forráskódú szoftverekkel. Herdon Miklós, Kaderják Gyula, Simon András
Ügyfélkapcsolat menedzsment rendszerek nyílt forráskódú szoftverekkel Herdon Miklós, Kaderják Gyula, Simon András Mi a CRM? A Customer Relationship Management, vagyis az ügyfélkapcsolat-menedzsment kifejezés
I. RÉSZ. Tartalom. Köszönetnyilvánítás...13 Bevezetés...15
Tartalom 5 Tartalom Köszönetnyilvánítás...13 Bevezetés...15 I. RÉSZ AZ ALAPOK... 17 1. fejezet Egy kis történelem...19 A korai MIS rendszerektől az alapgondolatig...19 Operatív és analitikus rendszerek
Oracle cloudforgatókönyvek
Oracle cloudforgatókönyvek Tóth Csaba vezető architect 1 A PUBLIKUS FELHŐ piaci növekedése 207 MILLIÁRD $ $109 MILLIÁRD $ $91 MILLIÁRD $ 2011 2012 2016 2 Source: Gartner PRIVÁT PUBLIKUS HIBRID 3 ÜZLETI
Az Oracle Fusion szakértői szemmel
Az Oracle Fusion szakértői szemmel Pigniczki László ügyvezető igazgató ProMigCon Kft. HOUG 2017. november 8. ProMigCon Kft. 2009 novemberében alakult. Alapvető tevékenység: Oracle E-Business Suite bevezetés,