Biomarkerek tervezése ab initio számítási módszerekkel
|
|
- Egon Kerekes
- 7 évvel ezelőtt
- Látták:
Átírás
1 Biomarkerek tervezése ab initio számítási módszerekkel Gali Ádám Wigner Fizikai Kutatóközpont Magyar Tudományos Akadémia ELFT Vándorgyűlés, Debrecen,
2 Miért érdekesek a biomarkerek? A végső cél: a biológiai folyamatokat molekuláris szinten kövessük élő szervezetekben in vivo érzékelés Alkalmazások: betegségek diagnózisa terápia személyre szabott gyógyszerek Hogyan tudjuk ezt megcsinálni?
3 Fluoreszcens biomarkerek kicsi nem mérgező funkcionalizálható a fénykibocsátásnak jó a kontrasztja hosszú időn át
4 Fluoreszcens biomarkerek egyfoton-gerjesztés kétfoton-gerjesztés Virutális állapot l em > l exc Stokes-eltolódás l em < l exc erős lézerfény nagyon fotostabil kell legyen
5 Biomarkerek alkalmazhatósága in vitro in vivo
6 In vivo alkalmazás Smith et al., Nature Nanotechnology 4, 710 (2009) biológiai ablak NIR tartományban
7 in vivo biomarkerek szigorú feltételei Nem mérgezőek Jól kiürülnek Diszpergálnak vizes közegben Fotostabilak Multifunkcionálisak Erős fénykibocsátásúak Abszorpció/emisszió a biológiai ablakban QDs
8 Available biomarkers
9 Egy létező in vivo detektor
10 Jelenlegi biomarkerek Nem mérgezőek Jól kiürülnek Diszpergálnak vizes közegben Fotostabilak Multifunkcionálisak Erős fénykibocsátásúak Abszorpció/emisszió a biológiai ablakban Festék QDs QD új megoldás kell
11 mindenekelőtt, bioinert nanokristályokat használjunk és tervezzük meg a kémiai összetételüket a legmodernebb atomi szimulációs technikákkal, hogy az emissziót a kívánt tartományba hangoljuk
12 Metodika Alapállapoti geometria: SC PW USP-vel, DFT-PBE (PWscf kód) SC PW PAW-val, DFT-PBE (VASP kód) (hf. levágás: 35 Ry; töltéssűrűség levágás: 280 Ry; vákuum méret: 10 Å) Alapállapot: Turbomole, teljeselektron aug-cc-pvtz bázis, DFT-PBE0 (25% Hartree-Fock kicserélődés bekeverése PBE funkcionálba) Abszorpciós spektrum: Casida típusú adiabatikus TDDFT PBE0 funkcionállal a TDDFT magjában Turbomole kódot használva Zero-phonon vonal (ZPL) és Stokes-eltolódás: TD-DFT erők segítségével!
13 A gyémánt biokompatibilis de lehet az törpeméretű (nano)?
14 Legkisebb gyémántketrecek: gyémántocskák Kiválasztott gyémántocskák [Landt et al., PRL 103, (2009)]
15 Optical gaps MAE: 0,15 ev [Landt et al., PRL 103, (2009)] DMC: [Drummond et al., PRL 95, (2005)]
16 Gyémántocskák & biomarkerek Festék QDs QD Diam. Nem mérgezőek Jó kiürülés Diszpergálnak vizes közegben? Fotostabilak Multifunkcionálisak Erős fénykibocsátásúak? Emisszió a biológiai ablakban Ötlet: használjunk kén kettős kötéseket
17 Adamantanethione kísérlet ~6.2 ev ~5.4 ev ~4.4 ev C 10 H 14 =S Hullámhossz (nm) RT Átmenetek: 1st: π π* (széles csúcs): 5.29 ev Rydberg ( nm): n 4s ( nm): 5.43 ev n 4py: 6.01 ev n 4pz: 6.15 ev rezgés segített átmenetek: cm -1 a 1 szimmetriájú C-C-C hajlító rezgések [K. J. Falk and R. P. Steer, Can. J. Chem, 66, 575 (1988)]
18 Adamantanethione elmélet C 2v szimmetria: b 2 b 1 dipól-tiltott! 5.32 ev 5.03 ev 5.31 ev n 4s adamantanethione-ban n π* más struktúrákban
19 Kenes gyémántocskák: optikai tiltottsávok láthatóban gerjesztés az adamantane-ban Möller csoport TU Berlinben próbálja szintetizálni ezeket... NIR gerjesztés a pentamantane-ban Vörös, Demjén, Szilvási & Gali, PRL, (2012) a=1; b=1,12; c=1,9,10; d=1,3,10,12; e=1,4,5,7-11; g=1-3,6-12; h=1-12.
20 Egy kis kitérő Színcentrumok a nanogyémántban?
21 Fényes NIR emisszió: SiV hiba a gyémántban 1.68-eV PL centrum mint egyedi forrás [Wang et al., At. Mol. Opt ] 1.68-eV PL centrum negatívan töltött SiV hiba [Goss et al., PRL ] 1.31-eV PL centrum semleges SiV hiba [D Haenens-Johansson et al., PRB ] szénvakanciák helye Csoportelméleti analízis: D 3d szimmetria; a 1g, a 2u, e u, e g pályák
22 Hidrogénes nanogyémántok legnagyobb kvantumbezártság határesete 1.1nm 1.3nm TD-DFT abszorpció és ZPL 1.8nm TD-DFT abszorpció ZPL extrapolálva az 1.3nm méretűből
23 SiV hiba hidrogénes nanogyémántban stabil még nagyon pici nanogyémántban is
24 SiV hiba a hidrogénes nanogyémántban kvantumbezártság SiV( ) ZPL: 1.85 ev 1.82 ev 1.78 ev 1.68 ev
25 occurency (#) y (m) Intensity (arb. u) intensity (arb. u.) SiV a nanogyémántban: az univerzum ajándéka Efremovka (CV3) and Orgueil (CI) meteoritok nanodiam. powder nm CVD diam. Imp. IIa diam. nanodiam. 1 (a) nm (a) (b) (c) nanodiam wavelength (nm) wavelength (nm) k 7 (c) nm (d) 48k k 16k nm peak position (nm) nm (b) x (m) fényes lumineszcencia & kvantumbezártság Vlasov, Gali, Wrachtrup et al., Nature Nanotechnology, under review (2013)
26 Újra egy kis kitérő gyémánt szilícium szilíciumkarbid
27 number of particle (normaled) 100 Az általunk készített SiC NC jellemzői méreteloszás Gauss average size 3 nm 40 5 nm diameter [nm] Streptavidin Beke, Gali et al., Applied Physics Letters (2011)
28 SiC NC: NIR kétfoton-gerjesztés és láthatóban emisszió demonstrálása CA1 piramis agysejt egerekben Beke, Rózsa, Gali et al., J. Mat. Res (2013).
29 SiC NC: Si-vakancia jellegű ponthibák M = V, Mo, W
30 SiC NC: divacancia jellegű ponthibák M = Mo, W
31 SiC NC: emisszió NIR tartományban jól megválasztott ponthibák NIR emissziós centrumként viselkedhetnek még nagyon kis SiC nanokristályokban is Somogyi, Zólyomi & Gali, Nanoscale, (2012)
32 Adalékolt SiC NC & biomarkerek Festék QDs QD SiC NC Nem mérgezőek Jó kiürülés Diszpergálnak vizes közegben Fotostabilak Multifunkcionálisak Erős fénykibocsátás Emisszió a biológiai ablakban az adalékolt SiC NC ideális in vivo biomarker
33 Kutatócsoport tagjai Vörös Márton Ivády Viktor Szász Krisztián Demjén Tamás Somogyi Bálint Thiering Gergő Beke Dávid Szekrényes Zsolt Zólyomi Viktor Szilvási Tibor Elisa Londero kísérletiek Alumni: Tamás Hornos Hugo Pinto Áron Szabó Thomas Chanier
34 Köszönetnyilvánítás Magyar Tudományos Akadémia EU research consortium & DIADEMS Országos Tudományos Kutatási Alap National Science Fund (USA) Knut & Alice Wallenberg Alap (Svédország)
Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával
Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával (munkabeszámoló) Szász Krisztián MTA Wigner SZFI, PhD hallgató 2013.05.07. Szász Krisztián Ponthibák azonosítása 1/ 13 Vázlat
RészletesebbenNanoszerkezetek tervezése és jellemzése biomarker, magnetométer és napelem alkalmazásokban. Gali Ádám. ELTE Ortvay kollokvium
Nanoszerkezetek tervezése és jellemzése biomarker, magnetométer és napelem alkalmazásokban Gali Ádám ELTE Ortvay kollokvium 2010.10.07. Nanokristály: nanométer átmérőjű kristályok Si nanokristály d 9nm;
RészletesebbenSzilícium-karbid nanokristályok vizsgálata első elvű számítási módszerekkel
Szilícium-karbid nanokristályok vizsgálata első elvű számítási módszerekkel Tézisfüzet Somogyi Bálint Témavezető: Dr. Gali Ádám Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék 2017 A
RészletesebbenALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok december 6. 18:00 Posztoczky Károly Csillagvizsgáló, Tata Posztoczky Károly
RészletesebbenFÉLVEZETÔ BIOMARKEREK VIZSGÁLATA ELSÔ ELVÛ SZÁMÍTÁSOKKAL Somogyi Bálint Budapesti Műszaki és Gazdaságtudományi Egyetem, Atomfizika Tanszék
FÉLVEZETÔ BIOMARKEREK VIZSGÁLATA ELSÔ ELVÛ SZÁMÍTÁSOKKAL Somogyi Bálint Budapesti Műszaki és Gazdaságtudományi Egyetem, Atomfizika Tanszék Gali Ádám Budapesti Műszaki és Gazdaságtudományi Egyetem, Atomfizika
RészletesebbenSzilícium karbid nanokristályok előállítása és jellemzése - Munkabeszámoló -
Szilícium karbid nanokristályok előállítása és jellemzése - Munkabeszámoló - Beke Dávid Balogh István Szekrényes Zsolt Veres Miklós Fisher Éva Fazakas Éva Bencs László Varga Lajos Károly Kamarás Katalin
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenLehet-e tökéletes nanotechnológiai eszközöket készíteni tökéletlen grafénból?
Lehet-e tökéletes nanotechnológiai eszközöket készíteni tökéletlen grafénból? Márk Géza, Vancsó Péter, Nemes-Incze Péter, Tapasztó Levente, Dobrik Gergely, Osváth Zoltán, Philippe Lamin, Chanyong Hwang,
RészletesebbenKutatási terület. Szervetlen és szerves molekulák szerkezetének ab initio tanulmányozása
Kutatási terület zervetlen és szerves molekulák szerkezetének ab initio tanulmányozása Cél: a molekulák disszociatív ionizációja során keletkező semleges és ionizált fragmentumok energetikai paramétereinek
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenAbszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
RészletesebbenKoherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
RészletesebbenRAMAN SZÓRÁS NANOKRISTÁLYOS GYÉMÁNTBAN
Veres Miklós RAMAN SZÓRÁS NANOKRISTÁLYOS GYÉMÁNTBAN HABILITÁCIÓS ELŐADÁS MTA SZFKI 2011. november 29. 1995-2000 MSc., Ungvári Állami Egyetem, Fizika Kar 2000-2003 BME TTK Fizika Doktori Iskola 2000- MTA
RészletesebbenQUANTUM DOTS Félvezető nanokristályok elméletben, gyakorlatban; perspektívák
QUANTUM DOTS Félvezető nanokristályok elméletben, gyakorlatban; perspektívák 2 2012. február 7. 10:30-10:50 Elmélet Ideális működés, várt eredmények, testreszabhatóság Alkalmazás: QD-LED Remote Phosphor
RészletesebbenPÉCSI TUDOMÁNYEGYETEM. Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában. Jánosi Tibor Zoltán
PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában PhD értekezés Jánosi Tibor Zoltán Témavezető: Dr.
RészletesebbenRaman spektroszkópia. Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman
Raman spektroszkópia Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman Speciális Raman esetek elektronikus SERS, tip enh. ROA near-field Kisérleti
RészletesebbenRagyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól
Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Kele Péter egyetemi adjunktus Lumineszcencia jelenségek Biolumineszcencia (biológiai folyamat, pl. luciferin-luciferáz) Kemilumineszcencia
RészletesebbenSpeciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
RészletesebbenDr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenSzubmolekuláris kvantuminterferencia és a molekuláris vezetőképesség faktorizációja
Szubmolekuláris kvantuminterferencia és a molekuláris vezetőképesség faktorizációja Magyar Fizikus Vándorgyűlés, Augusztus, 016 Manrique Dávid Zsolt david.zsolt.manrique@gmail.com Molekuláris Vezetőképesség
RészletesebbenAbszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
RészletesebbenBevezetés a fluoreszcenciába
Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1
RészletesebbenHogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenAbszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
RészletesebbenAbszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenOPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
RészletesebbenOTKA Nyilvántartási szám: K67886
OTKA Nyilvántartási szám: K67886 ZÁRÓJELENTÉS Témavezető neve: Gali Ádám ZÁRÓJELENTÉS A téma címe: Ponthibák vizsgálata széles tiltott sávú anyagokban a standard sűrűségfunkcionál elméleteken túli módszerekkel
RészletesebbenAMPLIFON - Országos Atlétikai Bajnokság Hallássérült diákok részvételével
100 m III. kcs. Fiú 1 Hatházi Hunor NH. Bp. 12,32 1 16 2 Korotki Dániel Eger 12,44 2 15 3 Kéri Dávid Debrecen 12,55 3 14 4 Csontó Ádám Eger 12,61 4 13 5 Pap Attila Bp. Siketek 12,77 5 12 6 Orsós Gábor
RészletesebbenNév... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
RészletesebbenA csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
RészletesebbenLumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet
Lumineszcencia Lumineszcencia Alapok, tulajdonságok Molekula energiája Spinállapotok Lumineszcencia típusai Lumineszcencia átmenetei A lumineszcencia paraméterei A lumineszcencia mérése Polarizáció, anizotrópia
RészletesebbenInfravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
RészletesebbenSzerves oldott anyagok molekuláris spektroszkópiájának alapjai
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára
RészletesebbenEREDMÉNYEK III. Régiós Csapatbajnokság 2009. október 11. Leveleki-víztározó
TRIANA TEAM BÉKÉSCSABA EREDMÉNYEK III. Régiós Csapatbajnokság 2009. október 11. Leveleki-víztározó csapat A B C D E F G H Össz. helyezés Fogott súly 2450 900 400 1750 100 4060 2440 5740 26840 Szektor eredmény
RészletesebbenElőzmények. a:sige:h vékonyréteg. 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása
a:sige:h vékonyréteg Előzmények 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása 5 nm vastag rétegekből álló Si/Ge multiréteg diffúziós keveredés során a határfelületek
RészletesebbenBordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano
Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenLumineszcencia centrumok kialakítása és spektrális jellemzése nanogyémántban. Ph.D. értekezés
Lumineszcencia centrumok kialakítása és spektrális jellemzése nanogyémántban Ph.D. értekezés Himics László Témavezető: Dr. Koós Margit az MTA doktora MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai
RészletesebbenA fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás
A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla
RészletesebbenE (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
RészletesebbenUV-VIS spektrofotometriás tartomány. Analitikai célokra: nm
UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben
RészletesebbenXXXVIII. KÉMIAI ELŐADÓI NAPOK
Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye XXXVIII. KÉMIAI ELŐADÓI NAPOK Program és előadás-összefoglalók Szegedi Akadémiai Bizottság Székháza Szeged,
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenLézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok
Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei
RészletesebbenLumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós
Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia
RészletesebbenKémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S
Szalay SzalayPéter Péter egyetemi egyetemi tanár tanár ELTE, ELTE,Kémiai Kémiai Intézet Intézet Elméleti ElméletiKémiai Kémiai Laboratórium Laboratórium F o t o n o k k e r e s z tt ü z é b e n a D N S
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Részletesebben59. Fizikatanári Ankét
59. Fizikatanári Ankét 1957. Budapest, 1. Középiskolai Fizikatanári Ankét Ha 1960-ban nem maradt volna el, akkor az idei lenne a 60. középiskolai ankét. 1977. Nyíregyháza, I. Általános Iskolai Fizikatanári
RészletesebbenLumineszcencia spektrometria összefoglaló
Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek
RészletesebbenKvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
RészletesebbenAbszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
RészletesebbenOH ionok LiNbO 3 kristályban (HPC felhasználás) 1/16
OH ionok LiNbO 3 kristályban (HPC felhasználás) Lengyel Krisztián MTA SZFKI Kristályfizikai osztály 2011. november 14. OH ionok LiNbO 3 kristályban (HPC felhasználás) 1/16 Tartalom A LiNbO 3 kristály és
RészletesebbenAlapvető bimolekuláris kémiai reakciók dinamikája
Alapvető bimolekuláris kémiai reakciók dinamikája Czakó Gábor Emory University (008 011) és ELTE (011. december ) Szedres, 01. október 13. A Polanyi szabályok Haladó mozgás (ütközési energia) vs. rezgő
RészletesebbenAbszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
RészletesebbenAz A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából
Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából Vukics András MTA Wigner FK, SzFI, Kvantumoptikai és Kvantuminformatikai Osztály SzFI szeminárium, 2014. február 25. Tartalom Az A 2
RészletesebbenBÍRÁLAT. Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről.
BÍRÁLAT Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről. Kállay Mihály Automatizált módszerek a kvantumkémiában című az MTA doktora cím elnyerésére benyújtott 132
RészletesebbenAbszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)
Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban
RészletesebbenCO 2 aktiválás - a hidrogén tárolásban
CO 2 aktiválás a hidrogén tárolásban PAPP Gábor 1, HORVÁTH Henrietta 1, PURGEL Mihály 1, BARANYI Attila 2, JOÓ Ferenc 1,2 1 MTADE Homogén Katalízis és Reakciómechanizmusok Kutatócsoport, 4032 Debrecen,
RészletesebbenMilyen nehéz az antiproton?
Milyen nehéz az antiproton? avagy: (sok)minden, amit az ASACUSA* kísérletről tudni akartál Barna Dániel Tokyoi Egyetem MTA Wigner FK Sótér Anna Max Planck Institut, Garching Horváth Dezső MTA Wigner FK
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenBiomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium
Biomolekuláris nanotechnológia Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium Az élő szervezetek példája azt mutatja, hogy a fehérjék és nukleinsavak kiválóan alkalmasak önszerveződő molekuláris
RészletesebbenMűszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
RészletesebbenOptikai spektroszkópiai módszerek
Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia
RészletesebbenA lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
RészletesebbenTantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0
Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga
RészletesebbenFluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia
Részletesebben2. ZH IV I.
Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=
RészletesebbenKlórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában
Klórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában Fazekas Péter Témavezető: Dr. Szépvölgyi János Magyar Tudományos Akadémia, Természettudományi Kutatóközpont, Anyag- és Környezetkémiai
Részletesebben8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére
8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére XX. Csonka, G. I., Nguyen, N. A., Kolossváry, I., Simple tests for density functionals, J. Comput. Chem. 18 (1997) 1534. XXII. Csonka, G. I.,
RészletesebbenAMPLIFON Atlétikai Országos Bajnokság 2009. május 23.
60 m Leány - I. kcs. 1 4 Varga Viktória Debrecen 9,06 16 II. if. 2 67 Fábián Dóra Kaposvár 9,19 15 I. if. 3 52 Mihály Réka Szeged 9,26 14 II. if. 4 99 Molnár Patrícia Sopron 9,49 13 I. if. 5 3 Gál Rita
RészletesebbenMEFOB Párbajtőr Egyéni és Csapat Országos Bajnokság Debrecen május 5.
MEFOB Párbajtőr Egyéni és Csapat Országos Bajnokság Debrecen 2017. május 5. Főbíró: HORVÁTH Attila Számítógépes főbíró: REHÁK András Versenyorvos: dr. ZSADÁNYI Judit Versenybírók: BALOGH Szabolcs FEKETE
Részletesebben9. Fotoelektron-spektroszkópia
9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenCD-spektroszkópia. Az ORD spektroskópia alapja
CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben
RészletesebbenVizsgaszervező intézmény: Wigner Jenő Műszaki, Informatikai Középiskola és Kollégium (Eger, Rákóczi út 2) tel./fax: (36) , Fax:
Vizsgaszervező intézmény: Wigner Jenő Műszaki, Informatikai Középiskola és Kollégium (Eger, Rákóczi út 2) tel./fax: (36) 311-211, 515-115 Fax: 515-116 Tisztelt Vizsgázó! Ezúton tájékoztatjuk, hogy a(z)
RészletesebbenModern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
RészletesebbenIdegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
RészletesebbenFluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν
RészletesebbenVizsgaszervező intézmény: Wigner Jenő Műszaki, Informatikai Középiskola és Kollégium (Eger, Rákóczi út 2) tel./fax: (36) , Fax:
Vizsgaszervező intézmény: Wigner Jenő Műszaki, Informatikai Középiskola és Kollégium (Eger, Rákóczi út 2) tel./fax: (36) 311-211, 515-115 Fax: 515-116 Tisztelt Vizsgázó! Ezúton tájékoztatjuk, hogy a(z)
RészletesebbenSiC kerámiák. (Sziliciumkarbid)
SiC kerámiák (Sziliciumkarbid) >2000 o C a=0,3073, c=1,5123 AB A Romboéderes: ABCB ABCB 0,43595 nm ABC ABC SiC 4 tetraéderekből áll, a szomszédok távolsága 0,189 nm Több, mint 100 kristályszerkezete fordul
RészletesebbenHidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai
Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai Csík Attila MTA Atomki Debrecen Vizsgálataink célja Amorf Si és a-si alapú ötvözetek (pl. Si-X, X=Ge, B, Sb, Al) alkalmazása:!
RészletesebbenTORNA DIÁKOLIMPIA ORSZÁGOS DÖNTŐ 2005/2006 tanév Budapest, március 31-április 1. V-VI. korcsoport "B" kategória fiú csapatbajnokság
Budapest, 2006. március 31-április 1. Hely. Cím Csapatnév 1 Makó Erdei Ferenc Ker. és Közg. Szki. 48,250 45,050 46,200 45,950 46,650 46,700 278,800 2 Nagykőrös Toldi Miklós Szki. 46,800 44,400 46,550 45,900
RészletesebbenAz anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
RészletesebbenMTA Atommagkutató Intézet, 4026 Debrecen, Bem tér 18/c.
Negatív hidrogénionok keletkezése 7 kev-es OH + + Ar és OH + + aceton ütközésekben: Egy általános mechanizmus hidrogént tartalmazó molekuláris rendszerekre JUHASZ Zoltán a), BENE Erika a), RANGAMA Jimmy
RészletesebbenWigner Jenő Műszaki, Informatikai Középiskola és Kollégium (Eger, 3300 Rákóczi út 2) tel./fax: tel:36/ , fax:36/
Vizsgaszervező intézmény: Wigner Jenő Műszaki, Informatikai Középiskola és Kollégium (Eger, 3300 Rákóczi út 2) tel./fax: tel:36/515-115, fax:36/515-116 Tisztelt Vizsgázó! Ezúton tájékoztatjuk, hogy a(z)
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különlees a lézernyaláb?). Atomok eymástól füetlenül suároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Inkoherens fény Termikus suárzó. Atomok eymástól füetlenül
RészletesebbenOptikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban
Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optkai spektroszkópia az anyagtudományban
RészletesebbenAdatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
RészletesebbenTitán alapú biokompatibilis vékonyrétegek: előállítása és vizsgálata
ELFT Vákuumfizikai, -technológiai és Alkalmazásai Szakcsoport szemináriuma, Balázsi Katalin (balazsi.katalin@ttk.mta.hu) Titán alapú biokompatibilis vékonyrétegek: előállítása és vizsgálata Vékonyrétegfizika
RészletesebbenLumineszcencia centrumok kialakítása és spektrális jellemzése nanogyémántban
DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI Lumineszcencia centrumok kialakítása és spektrális jellemzése nanogyémántban Írta: Himics László Témavezető: Dr. Koós Margit az MTA doktora MTA Wigner Fizikai Kutatóközpont
RészletesebbenHely. Atléta Sz. év Nevező Sorrend Eredmény Rekord
EREDMÉNYEK Férfi Gerelyhajítás Döntő 15:00 1. nap 1 Rab Attila 1994 Ikarus BSE 1 71.44 2 Magyari Zoltán 1985 MTK Budapest 5 68.18 3 Adame Máté 1994 Reménység 2 65.40 4 Fedor Benjámin 1998 Reménység 4 43.18
RészletesebbenOptikai spektroszkópiai módszerek
Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia
RészletesebbenSzervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
Részletesebben5. Az elektronkorreláció szerepe a metil-amin nagy amplitúdójú mozgásainak leírásában. DFT és poszt Hartree- Fock számítások
5. Az elektronkorreláció szerepe a metil-amin nagy amplitúdójú mozgásainak leírásában. DFT és poszt artree- Fock számítások VI. XIX. Csonka, G. I. and Sztraka L., Density functional and post artree-fock
Részletesebben