ATOMSPEKTROSZKÓPIA. Analitikai kémia (BSc) tavasz
|
|
- Tivadar Gulyás
- 8 évvel ezelőtt
- Látták:
Átírás
1 ATOMSPEKTROSZKÓPIA Analitikai kémia (BSc) tavasz
2 Alapfogalmak A fény részecske (korpuszkuláris) természete: foton = fénykvantum A fény hullámtermészete: elektromágneses sugárzás Összefüggések a fény jellemzői között (frekvencia, hullámhossz, terjedési sebesség, energia) 2
3 Kölcsönhatások Emisszió, abszorpció Interferencia Szóródás (rugalmas és rugalmatlan) Fényelhajlás = diffrakció Fénytörés közegek határán, törésmutató Forgatás (királis szerkezet esetén) 3
4 A fény felbontása Eszköz, működési elv, alkalmazás Szűrő - elnyelés, interferencia meghatározott (szűk) hullámhossztartomány kiválasztása Prizma - a törésmutató hullámhosszfüggése (diszperziója) felbontás széles tartományban Az IR a látható fénynél kevésbé, az UV jobban eltérül Optikai rács - fényelhajlás (diffrakció) felbontás széles tartományban 4
5 Az elektromágneses sugárzás tartományai A növekvő hullámhossz csökkenő frekvencia ill. energia sorrendjében Kozmikus sugárzás Gammasugárzás Röntgensugárzás Ultraibolya sugárzás (UV): nm (vákuum UV: nm) Látható fény (VIS): nm Infravörös sugárzás (IR): 780 nm 30 μm Mikrohullámok Rádióhullámok 5
6 Az elektromágneses sugárzás tartományai Spektroszkópiai módszerek I. hullámhossz átmenet Spektr. módszer Gamma 0,5 10 pm mag Gamma-fluoreszcencia Mössbauer-sp. Röntgen 0,01 10 nm belső elektronok Rtg-emisszió Rtg-abszorpció Rtg-fluoreszcencia (XRF) Röntgendiffrakció (XRD): nem tartozik a spektroszkópiai módszerek közé rugalmas szóródáson és interferencián alapul Kristályszerkezet, molekulaszerkezet fázisanalízis 6
7 Az elektromágneses sugárzás tartományai Spektroszkópiai módszerek II. hullámhossz átmenet Spektr. módszer Távoli UV Közeli UV Látható (VIS) nm nm nm vegyértékelektron Közeli IR nm vegyértékelektron + rezgés Középső IR 2 25 μm rezgés + forgás Atomok: emisszió (AES), abszorpció (AAS), fluoreszcencia (AF) Molekulák: abszorpció, emisszió, lumineszcencia (fluoreszcencia) Molekulák: abszorpció (NIR) Molekulák: abszorpció (IR, FTIR) Távoli IR μm forgás Molekulák: abszorpció (FIR) A molekulák rezgéseit vizsgálja a Raman-szórás is. 7
8 Az elektromágneses sugárzás tartományai Spektroszkópiai módszerek III. hullámhossz átmenet Spektr. módszer Mikrohullám 0,3 mm 1 m Forgás + elektronspin Mikrohullámú spektroszkópia Elektronspin-rezonancia (ESR) Rádióhullám m magspin Magmágneses rezonancia (NMR) Az NMR spektroszkópia a szerves molekulák szerkezetvizsgálatának vezető módszere. Az NMR és az orvosi diagnosztikában használt (képalkotó) MR, MRI működési elve azonos. 8
9 Optikai színképek Sematikus emissziós spektrumok: (abszorpciós színkép esetén a függőleges tengelyen T vagy A) Az optikai atomspektroszkópia szabad atomok fénykibocsátását és elnyelését vizsgálja Szabad atomok: gáz halmazállapotban Szabad atomok előállítása: általában termikusan 9
10 Az atomszínképek eredete I. Na atom energiaszintjei termvázlat gerjesztési energia, ev 6 2 S 2 1/2 P 1/2,3/2 2 D 3/2,5/2 Alapállapot és gerjesztett állapotok s 4s 616,1 615,4 E i = 5,14 ev 1140,4 1138,2 5p 285,3 285,2 4p 330,2 330,3 3p 568,3 568,8 819,3 818,8 5d 4d 3d A fényemisszió és abszorpció a vegyértékelektronok átmeneteivel függ össze Megengedett és tiltott átmenetek 1 3s 589,6 (D1) 589,0 (D2) UV és VIS (+ NIR) tartomány 10
11 Az atomszínképek eredete II. termvázlat gerjesztési energia, ev s 4s 3s 2 S 616,1 615,4 2 1/2 P 1/2,3/2 E i = 5,14 ev 1140,4 1138,2 5p 285,3 285,2 4p 330,2 330,3 589,6 (D1) 589,0 (D2) 3p 2 D 3/2,5/2 568,3 568,8 819,3 818,8 5d 4d 3d regisztrált spektrum Intenzitás Na 330,2 330,3 285,2 283,3 568,3 568,8 589,0 (D2) 589,6 (D1) 615,4 616,1 818,8 819,3 1138,2 1140, fényképezett spektrum (negatív) spektrumvonal kiválasztása monokromátorban kilépőrés 589,0 nm hullámhossz, nm hullámhossz, nm kilépőrés spektrális sávszélesség hullámhossz, nm 11
12 Emissziós módszerek Termikus gerjesztés. Sugárforrások (fényforrások): Láng (Egyenáramú ív) Nagyfeszültségű szikra Induktív csatolású plazma Folyamatok termikus gerjesztés esetén: elpárologtatás, hőbomlás, atomizáció, gerjesztés, emisszió, ionizáció Gerjesztés fénysugárral Megvilágítás lézerrel, a primer foton elnyelése Szekunder foton kibocsátása Atomfluoreszcencia (nem része a félévi anyagnak) A mennyiségi elemzés alapja: I e = k e l c 12
13 Gerjesztés lángban Lángemissziós spektrometria = (emissziós) lángfotometria, FES (Flame Emission Spectrometry) Oldatok vizsgálhatók (porlasztás után aeroszólként a lángba vezetve) Előkevert lángok: Propán - levegő, 2200 K könnyen gerjeszthető elemekhez (alkálifémek) Acetilén - levegő, 2600 K alkáli- és alkáliföldfémekhez Acetilén - dinitrogén-oxid, 3200 K a fémes elemek többségéhez 13
14 FES színkép: alkáli-és alkáliföldfémek intenzitás 1.0 Na 0.8 K OH Ca Ba CaOH Sr Na C Li SrOH CH 2 K Rb hullámhossz, nm Ca, Sr, Ba: az MOH molekulasáv is felhasználható 14
15 Lángfotométer Monokromátor: szűrő is lehet Detektor: fotocella, fényelem I = k c, egyenes arányosság az intenzitás és a koncentráció között (nagy koncentrációnál csökken az érzékenység) Mennyiségi mérés 1-2 % megbízhatósággal A lángfotometria (FES) gyakorlati alkalmazása: elsősorban az alkáli- és a földalkálifémek mérése; ezekre nézve a láng AAS módszernél jobb (< 1 ng/ml) kimutatási határ (Li: 0,001 ng/ml) 15
16 Egyenáramú ív A grafitelektródok között 220 V = Ívplazma: K Minta: szilárd (vagy beszárított oldat) intenzitás Cd Pb Fe Ir W Szelektív párolgás: az illékonyabb komponensek előbb jelennek meg - mennyiségi mérés teljes elpárologtatással Elsősorban fémek méréséhez idõ, s Ma már ritkán használják 16
17 Elektromos szikra Nagyfeszültségű (5-20 kv) kondenzátor kisütésével Rövid ideig tartó, intenzív kisülések, a plazma hőmérséklete nagy (a kisülés elején 30000, a végén 5000 K), de a mintának csak kis része párolog el Szilárd minta, lokális analízis is lehetséges Az atomvonalak mellett ionok vonalai is megjelennek A fémeken kívül sok nemfémes elem is mérhető Gyakorlati alkalmazás: ércek és ötvözetek analízise 17
18 Induktív csatolású plazma (ICP) Ar plazma Energia becsatolás: nagyfeszültségű rádiófrekvenciás tér (10-20 kv; 27,12 vagy 40,68 MHz) A plazma begyújtása szikrával (ionok és elektronok képződnek) Oldatminták vizsgálhatók Plazmaégő (nincs égés!) Az ICP az atomspektroszkópiában sugárforrásként, az ICP-MS méréstechnikában ionforrásként használatos. 18
19 ICP sugárforrás egységei és képe 19
20 ICP spektrométerek Pásztázó mérés a hullámhossz változtatásával Polikromátorral: szimultán (egyidejű) sokelemes mérés 20
21 Echelle polikromátor 21
22 Alumínium ICP-OES spektruma 22
23 Vas ICP-OES spektruma 23
24 Volfrám ICP-OES spektruma 24
25 ICP optikai emissziós spektrometria (ICP-OES) Ma a vezető atomemissziós módszer A fémek és sok nemfémes elem is mérhető I = k c, igen széles linearitási tartomány (6 nagyságrend is lehet) Néhány elem kimutatási határa (ng/ml) Li 0,7 Mg 0,08 Fe 0,7 Al 2 P 7 Pt 7 W 8 25
26 Atomabszorpciós spektrometria, AAS Az atomforrásban előállított szabad atomok elemspecifikus fényelnyelése Megvilágítás: (általában) vájtkatódú lámpa - a mérendő elem sugárzását használjuk Atomforrások: Láng Elektrotermikus Kémiai elpárologtatásos Folyamatok: párolgás, bomlás, atomizáció, ionizáció, fényelnyelés A mennyiségi mérés alapja: A = a l c Szélesebb tartományban az A c összefüggés gyakran nem lineáris 26
27 Atomabszorpciós spektrometria, AAS fényforrás: vájtkatódú lámpa 1 Fe 1 1 D I (Ar-gázzal töltött) levegő I 0 C 2 H I T aeroszol porlasztó mintaoldat A spektrométer vázlata a minta és a fénysugár útjával 27
28 Láng-atomabszorpciós spektrométer oldalnézet elölnézet Q g láng levegő acetilén fényút I tr porlasztó PE kapilláris ütközőgömb I 0 égőfej hasadófólia megfigyelési magasság q n minta, c s keverő porlasztókamra folyadékzár 28
29 Vájtkatódú (üreges katódú) lámpa 29
30 Vájtkatódú lámpák Jobboldalon: a működő lámpa katódüregének fénye 30
31 Miért célszerű a vájtkatódú lámpa? Nagy intenzitású megvilágítás az adott elem hullámhosszán; nincs elemtévesztés!! Sávszélességek Monokromátor: 0,1 2 nm Szabad atomok elnyelése: 0,005 nm Vájtkatódú lámpa vonalai: 0,0001 nm A mért abszorbancia széles tartományban változik, javul az érzékenység! 31
32 AAS: a jel hasznos részének elválasztása ac erősítő detektorjel a) b1) detektorjel a VKL sugárzása, dc a VKL sugárzása, ac jel be C2 R3 jel ki + R2 C1 R1 jel ki b2) a láng sugárzása sötétáram idő a láng sugárzása sötétáram idő a VKL sugárzása, ac idő a) moduláció nélkül; b1) modulációval; b2) a váltóáramú komponens 32
33 A Lambert-Beer törvény levezetése párhuzamos, monokromatikus sugárzásra Az intenzitás, I csökkenése arányos a foton atom/molekula ütközések egységnyi időre jutó számával. Egységnyi keresztmetszetű, dx vastagságú rétegben di = k I c dx, szeparálva: di I = k c dx Integrálva a baloldalon I 0 -tól I T -ig, a jobboldalon 0-tól l -ig: ln I 0 I T = k l c, átalakítva lg I 0 I T = A = ε l c (M) ; ε moláris abszorpciós tényező A = a l c (pl. mg/l); a abszorpciós tényező 33
34 Láng-AAS A fémek mérhetők Lángok: propán - levegő, acetilén - levegő, acetilén dinitrogén-oxid (redukáló is lehet) Mérés: stacionárius állapotban (mikor a jel beállt) Kimutatási határ: < 1 ng/ml: Be, Cd, Mg, > 1000 ng/ml: B, La, Zr, Mérési tartomány: kb. 3 nagyságrend A viszonylag gyenge kimutatási képesség oka: a minta nagyarányú hígulása a lángban 34
35 Elektrotermikus atomforrás Grafitkemencés AAS: a minta hígulása sokkal kisebb, mint láng atomforrásban Grafit: hőálló, eléggé inert, jó elektromos vezető (a) (b) grafitcső 2 bemérőnyílás 3 grafit segédelektródok T cső T cső Ar védőgáz Hőmérséklet-eloszlás a kemencében 35
36 Grafitkemencés AAS Minta: szilárd vagy oldat Szakaszos mérés az abszorbancia integráljából számolnak Oldószer elpárologtatása (szárítás) C Hőkezelés ( hamvasztás ) C Atomizáció (abszorpció mérése) C Tisztítás C Optimalizálás: hőmérséklet-program; mátrixmódosítók - kevés veszteség a mérendő elemből, kis háttérabszorbancia. Kimutatási határ: a lánghoz képest kb. 3 nagyságrenddel jobb (a hígulás a kemencében sokkal kisebb) Mg: 4 pg/ml Fe: 20 pg/ml Li: 100 pg/ml 36
37 Kémiai elpárologtatás (higany hidrid módszer) Hg (hideg gőz AAS): a Hg redukciója vegyületeiből (Sn 2+, LiBH 4 ) vagy a Hg-vegyületek termikus bontása Hg (atomos Hg-gőz) Bomlékony hidrideket képző elemek: Ge, Sn, Pb, As, Sb, Bi, Se, Te A vegyületekből hidridek előállítása redukcióval A hidridek termikus bontása kis hőmérsékleten szabad atomok Elektromos fűtésű kvarcüveg küvetta Argon-hidrogén + levegő láng Pl.:As-vegyületek redukció (LiBH 4 ) AsH 3 hőbontás ( C) szabad As atomok A grafitkemencés módszerhez hasonló kimutatási határok 37
38 Atomspektroszkópia: a folyamatok áttekintése 38
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
ATOMEMISSZIÓS SPEKTROSZKÓPIA
ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Spektroszkópia. Atomspektroszkópia. Atomabszorpciós spektroszkópia(aas) abszorpció emisszió szóródás Beer Lambert törvény.
Könyezet minősítése gyakrolat segédanyag 1 Könyezet minősítése gyakrolat segédanyag 2 Spektroszkópia Alapfogalmak Atomabszorpciós spektroszkópia(aas) abszorpció emisszió szóródás Beer Lambert törvény Atomspektroszkópia
Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek
Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek 1. Atomspekroszkópiai módszerek 1.1. Atomabszorpciós módszerek, AAS 1.1.1. Láng-atomabszorpciós módszer, L-AAS 1.1.2. Grafitkemence atomabszorpciós
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Emissziós atomi spektroszkópia módszerek
Emissziós atomi spektroszkópia módszerek Környezeti analitika Dolgosné Dr. Kovács Anita Környezetmérnöki Tanszék Ív vagy szikragerjesztéses AES ICP Indukciós plazma gerjesztés Lángfotometria XRF Röntgen
Molekulaspektroszkópiai módszerek UV-VIS; IR
Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Spektrokémiai módszerek
Spektrokémiai módszerek Az anyag és az elektromágneses sugárzás közötti kölcsönhatáson alapuló analitikai kémia módszerek összessége Fényelnyelés abszorpció Fénykibocsátás - emisszió Elektromágneses sugárzás
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
KÖNYEZETI ANALITIKA BEUGRÓK I.
KÖNYEZETI ANALITIKA BEUGRÓK I. 1.Mit nevezünk egy mérőműszert illetően jelnek és zajnak? jel az, amit a műszer mutat, amikor a meghatározandó komponenst mérjük vele zaj az, amit a műszer akkor mutat, amikor
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
Spektrokémiai módszerek
Spektrokémiai módszerek Az anyag és az elektromágneses sugárzás közötti kölcsönhatáson alapuló analitikai kémia módszerek összessége Fényelnyelés abszorpció Fénykibocsátás - emisszió Elektromágneses sugárzás
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Folyékony mikrominták analízise kapacitívan csatolt mikroplazma felhasználásával
Folyékony mikrominták analízise kapacitívan csatolt mikroplazma felhasználásával DARVASI Jenő 1, FRENTIU Tiberiu 1, CADAR Sergiu 2, PONTA Michaela 1 1 Babeş-Bolyai Tudományegyetem, Kémia és Vegyészmérnöki
2.2.23. Atomabszorpciós spektrometria Ph.Hg.VIII. - Ph.Eur.6.0-1
2.2.23. Atomabszorpciós spektrometria Ph.Hg.VIII. - Ph.Eur.6.0-1 2.2.23. ATOMABSZORPCIÓS SPEKTROMETRIA 01/2008:20223 ALAPELV Atomabszorpció akkor jön létre, amikor egy alapállapotú atom adott hullámhossszú
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Fény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában
Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában AAS ICP-MS ICP-AES ICP-AES-sel mérhető elemek ICP-MS-sel mérhető elemek A zavarások felléphetnek: Mintabevitel közben Lángban/Plazmában
Li Be B C N O F Ne. Na Mg Al Si P S Cl Ar. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr. Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
12. Elemanalízis, atomspektroszkópia Az analitikai vizsgálatok egy fontos feladatköre a mintákban található elemek mennyiségi meghatározása. A különböző készülékek kb. 75 elem meghatározását teszik lehetővé
Környezetanalitika, mintacsoportok, meghatározandó elemek I.
Környezetanalitika, mintacsoportok, meghatározandó elemek I. Mintacsoport Vizek Szennyvizek Talajok Rendszeresen vizsgált elemek, ionok, vegyületek Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cr(VI), Cu, Fe, Hg,
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Kémiai anyagszerkezettan
Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/
Abszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
1. Atomspektroszkópia
1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az
A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás
A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)
Mágneses módszerek a mőszeres analitikában
Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:
Talián Csaba Gábor Biofizikai Intézet 2012. április 17.
SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás
Lakatos J.: Analitikai Kémiai Gyakorlatok Anyagmérnök BSc. Hallgatók Számára (2007)
10 gyak. Atomemissziós és atomabszorpciós spektrometria Vizek Na és K tartalmának lángemissziós meghatározása Fémötvözet nyomelemeinek meghatározása atomabszorpciós módszerrel A gyakorlat célja: Megismerkedni
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Röntgen-gamma spektrometria
Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet
Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
BSC ANYAGMÉRNÖK SZAK VEGYIPARI TECHNOLÓGIAI SZÁMÁRA KÖTELEZŐ TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2016 1 Tartalomjegyzék 1. Tantárgyleírás,
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Infravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
Színképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
ATOMABSZORPCIÓ FELSŐFOKON
ATOMABSZORPCIÓ FELSŐFOKON ÚJ ALTERNATÍVA A VIZEK KORSZERŰ ELEMANALITIKAI VIZSGÁLATÁRA NAGYFELBONTÁSÚ, FOLYTONOS FÉNYFORRÁSÚ AAS dr. Bozsai Gábor BPS Kft. Labortechnika üzletág Prof. Dr. Posta József Debreceni
1. gyakorlati feladat Nehézfémek (Pb, Cu) meghatározása lángatomizációs atomabszorpciós spektrometriás módszerrel
1. gyakorlati feladat Nehézfémek (Pb, Cu) meghatározása lángatomizációs atomabszorpciós spektrometriás módszerrel A mérés elve Az atomabszorpciós spektrometria a nehézfémek analitikájában, az utóbbi évtizedben
4. Szervetlen anyagok atomemissziós színképének meghatározása
Környezet diagnosztika fizikai módszerei, Környezettudományi MSc, környezetfizika szakirány 4. Szervetlen anyagok atomemissziós színképének meghatározása 1.1. Emissziós lángspektrometria, 1.2. Induktív
Elektroanalitikai módszerek
Elektroanalitikai módszerek. 1. A potenciometria definíciója, fajtái A potenciometria az elektródpotenciálok mérésén alapuló elektroanalitikai eljárás, amelynél a mérendő komponens meghatározására a vizsgálandó
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), első kérdésünk valószínűleg az lesz, hogy mi ez az anyag, milyen
Mágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD
Optikai spektroszkópiai módszerek
Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia
Korszerű talajkémiai vizsgálati módszerek komposztok hatásainak értékelésében. Filep Tibor
Korszerű talajkémiai vizsgálati módszerek komposztok hatásainak értékelésében Filep Tibor Mennyiségi analízis a komposzt makro-, mikro- és toxikus elemtartalmának mérése a komposzttal kezelt talajok makro-,
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2019.03.11. mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele különböző ph-jú
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása. Előkészítő előadás Módosított változat
19. Sav-bázis indikátorok disszociáció állandójának spektrofotometriás meghatározása Előkészítő előadás 2018.03.19. Módosított változat mérési feladat Egy sav-bázis indikátor abszorpciós spektrumának felvétele
2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN
Ph.Hg.VIII. - Ph.Eur.8.2.-1 07/2014:20427 2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN Figyelmeztetés: a zárt, nagynyomású roncsolóedények és a mikrohullámú laboratóriumi
Röntgendiffrakció, tömegspektrometria, infravörös spektrometria.
A biomolekuláris szerkezet és dinamika vizsgálómódszerei: Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. Smeller László A molekuláris szerkezet és dinamika vizsgáló módszereinek áttekintése
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
OPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0
Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga
Ólom vizsgálat korszerű módszerei
The world leader in serving science Ólom vizsgálat korszerű módszerei Pintér Zsolt Unicam Magyarország Kft. 2014. 05. 27. Ivóvíz ólom határértékének változása Az Európai Unió 98/83/EK irányelvének megfelelően
Abszorpciós fotometria
A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16
Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek
A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához
Környezetvédelem / Laboratórium / Vizsgálati módszerek
Környezetvédelem / Laboratórium / Vizsgálati módszerek Az akkreditálás műszaki területéhez tartozó vizsgálati módszerek A vizsgált termék/anyag Szennyvíz (csatorna, előtisztító, szabadkiömlő, szippantó
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Mikrohullámú abszorbensek vizsgálata
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
Klórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában
Klórbenzol lebontásának vizsgálata termikus rádiófrekvenciás plazmában Fazekas Péter Témavezető: Dr. Szépvölgyi János Magyar Tudományos Akadémia, Természettudományi Kutatóközpont, Anyag- és Környezetkémiai
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szervetlen és Analitikai Kémia Tanszék
Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szervetlen és Analitikai Kémia Tanszék Szerkesztette: POKOL GYÖRGY Írta: POKOL GYÖRGY, GYURCSÁNYI E. RÓBERT, SIMON ANDRÁS,
A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában
A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában Készítette: Ringer Marianna Témavezető: Szalai Zoltán 2015.06.16. Bevezetés Kutatási
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA
LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA TOLNERLászló -CZINKOTAImre -SIMÁNDIPéter RÁCZ Istvánné - SOMOGYI Ferenc Mit vizsgáltunk? TSZH - Települési szilárd hulladék,