MATEMATIKA. 4.osztály

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA. 4.osztály"

Átírás

1 MATEMATIKA 4.osztály

2 Ismétlés Mit tanultunk eddig a számokról? 3 8 SZ T e 5 Hányjegyű? háromjegyű Mennyi a számjegyek összege? 16 Páros vagy páratlan? páratlan Melyik szám a megelőzője (kisebb számszomszédja)? 384 Melyik szám a rákövetkezője (nagyobb számszomszédja)? 386 Hányadik százashoz tartozik? 4.

3 Melyik számról szólnak az állítások? Ez a szám háromjegyű. A számjegyeinek összege 11. A százasainak száma páros. A 9. százashoz tartozik.

4 Melyik számról szólnak az állítások? A felsoroltak közül nem a legkisebb szám. Páratlan. Számjegyeinek összege nagyobb, mint 17.

5 Mit tudunk a legnagyobb háromjegyű számról? SZ T e Hányjegyű? háromjegyű Mennyi a számjegyek összege? 27 Páros vagy páratlan? páratlan Melyik szám a megelőzője (kisebb számszomszédja)? 998 Melyik szám a rákövetkezője (nagyobb számszomszédja)? 1000

6 SZÁMOK TÍZEZERIG (számok olvasása, írása és összehasonlítása)

7 = = ezer kétezer háromezer négyezer ötezer hatezer hétezer nyolcezer kilencezer tízezer

8 legkisebb négyjegyű szám

9

10

11 A számokat szavakkal kétezerig egybeírjuk. A kerek ezreseket egybeírjuk. Kétezertől nagyobb számok esetében az ezresek lejegyzése után kötőjelet teszünk majd továbbírjuk a számot. 2. Írjuk le számjegyekkel! ezerháromszáztizenegy kétezer négyszáz ötezer hétszázhúsz kilencezer hatszáztizenkettő négyezer hetvenegy

12 3. Írjuk le szavakkal! ezerkilencszázhetvennégy kétezer kétezer - egy ezer kétezer háromezer négyezer ötezer hatezer hétezer nyolcezer kilencezer tízezer ötezer - hatszáznegyvenhárom nyolcezer - négyszáznyolc

13 4. Keresd a párját! a) négyezer hat b) négyezer hatszáz c) négyezer hatvan d) négyezerhatvan a) hétezer hetvennégy b) négyezer hétszáznégy c) hétezer négy d) hétezer - hétszáznégy

14 5. Hasonlítsuk össze a számokat!

15

16 a) Legnagyobb háromjegyű szám: 863 b) Legnagyobb négyjegyű szám: 8630 c) Legkisebb háromjegyű szám: 306 c) Legkisebb négyjegyű szám: 3068

17 = = ezer kétezer háromezer négyezer ötezer hatezer hétezer nyolcezer kilencezer tízezer A legkisebb négyjegyű szám: 1000 A legkisebb ötjegyű szám: 10000

18 KÖSZÖNÖM A FIGYELMET!

19

20 MATEMATIKA 4.osztály

21 SZÁMOK TÍZEZERIG (számok olvasása, írása és összehasonlítása) GYAKORLÁS

22 = = ezer kétezer háromezer négyezer ötezer hatezer hétezer nyolcezer kilencezer tízezer A legkisebb négyjegyű szám: 1000 A legkisebb ötjegyű szám: 10000

23 Đevavica 2656 m Sár hegység 2500 m 1300 km

24 a) 507 b) 5000 c) 5302 d) 5400 e) 5550 f) 5599

25 a) nyolcezer - százhúsz b) nyolcezer - kétszáz c) nyolcezer kettő d) nyolcezer - nyolcvanhárom e) ötezer ötszázötven f) nyolcezer kilencvenkilenc

26 Egy szám megelőzője = kisebb számszomszédja Egy szám rákövetkezője = nagyobb számszomszédja

27 megelőző kisebb számszomszéd rákövetkező nagyobb számszomszéd

28 kisebb tízes számszomszéd nagyobb tízes számszomszéd kisebb százas számszomszéd nagyobb százas számszomszéd

29 Igaz vagy hamis? A 4320 nagyobb százas számszomszédja a A 7281 kisebb százas számszomszédja a Az 5555 kisebb tízes számszomszédja az Az 5000 megelőző száma a A 3783 kisebb tízes számszomszédja az A 4499 rákövetkező száma a 4498.

30 Szandra anyukájával iskolatáskát vásárol dinárt szánnak táskára költeni. a) A felkínált táskák közül melyiket tudják megvenni? b) Melyik táska a legdrágább? 3229 din din din din din. legdrágább

31 Szerbia néhány hegyének legmagasabb csúcsa van bemutatva az alábbi táblázatban. Tegyük csökkenő sorrendbe az alábbi hegyet! Zlatar Kopaonik Đeravica Zlatibor Golija m 2017 m 2656 m 1496 m 1833 m Đeravica 2656 m, Kopaonik 2017 m, Golija 1833 m, Zlatar 1625 m, Zlatibor 1496 m.

32 Melyik számról van szó? a) Négyjegyű, minden számjegye egyforma. b) A megelőző száma Ez a szám: a 5555 a) A kisebb tízes számszomszédja a b) A legnagyobb páros négyjegyű szám. Ez a szám: a 9998 a) A számegyenes kijelölt helyén helyezkedik el. b) A számjegyei emelkedő számsorrendben követik egymást. Ez a szám: a 4567

33 Melyik a három legnagyobb négyjegyű szám, amelyeknek a számjegyei összege 8?

34 A legkisebb négyjegyű szám: 1000 A legkisebb ötjegyű szám: 10000

35 KÖSZÖNÖM A FIGYELMET!

36

37

38 Ismétlés Mit tanultunk eddig a számokról? 7 2 Hányjegyű? T e kétjegyű Mennyi a számjegyek összege? Páros vagy páratlan? páros Melyik szám a megelőzője (kisebb számszomszédja)? 71 Melyik szám a rákövetkezője (nagyobb számszomszédja)? 73 Hányadik tízeshez tartozik? 8. 9

39 a) Legkisebb háromjegyű szám: 256 b) Legnagyobb háromjegyű szám: 765 c) Legkisebb négyjegyű szám: 2567 b) Legnagyobb négyjegyű szám: 7652

40 Figyeld meg az alábbi számokat! Mely számok számjegyeinek összege 7? hatezer - huszonhárom = 11 négyezer - háromszázegy = 8 négyezer - kétszáztíz = 7 hatezer - tizenhét = 13 háromezer - százharminc = 7 ezerötszáznegyvenegy = 11

41

42 A SZÁMOK ÍRÁSA

43

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg

91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek

Részletesebben

Köszöntünk titeket a negyedik osztályban!

Köszöntünk titeket a negyedik osztályban! Köszöntünk titeket a negyedik osztályban! Ez a számolófüzet a tankönyv és feladatgyûjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematikaórán tanultakat. A következô

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

Köszöntünk titeket a harmadik osztályban!

Köszöntünk titeket a harmadik osztályban! Köszöntünk titeket a harmadik osztályban! Ez a számolófüzet a tankönyv és feladatgyűjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematika órán tanultakat. A következő

Részletesebben

Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ. Metodicko pedagogické centrum.

Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ. Metodicko pedagogické centrum. Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

2, a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész öt tized e) Egymillió - hét.

2, a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész öt tized e) Egymillió - hét. X 000 X00 X0 X X / /0 /00 / 000 Tízezres Ezres Százas Tízes Egyes Tize. vessző Tized Század Ezred Tízezred,, 0 7 a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész

Részletesebben

A fejlesztés várt eredményei a 1. évfolyam végén

A fejlesztés várt eredményei a 1. évfolyam végén A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;

Részletesebben

Barangolás a nagyotmondók földjén Logika 3. feladatcsomag

Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Logika 2.3 Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Életkor: Fogalmak, eljárások: 12 16 logikai következtetés igaz, hamis állítások állítások tagadása alapműveletek alkalmazása helyi érték,

Részletesebben

JAVÍTÓKULCSOK Számfogalom

JAVÍTÓKULCSOK Számfogalom JAVÍTÓKULCSOK Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h) hétszázhúsz

Részletesebben

Matematika. 1. osztály. 2. osztály

Matematika. 1. osztály. 2. osztály Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket.

A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Kedves Kollégák! A HARMADIK MATEMATIKAKÖNYVEM tankönyvekhez készítettük el a matematika felmérőfüzetünket. Az új tanítói kézikönyvek már tartalmazzák a 11 felmérés javítókulcsait és az értékelési javaslatokat

Részletesebben

A TERMÉSZETES SZÁMOK

A TERMÉSZETES SZÁMOK Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

Óravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével.

Óravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével. Óravázlat Tantárgy: Matematika Osztály: BONI Széchenyi István Általános Iskola 1. e Tanít: Dr. Szudi Lászlóné Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel Kiemelt kompetenciák: Matematika

Részletesebben

Természetes számok. d) A kétjegyû páros és páratlan számok száma megegyezik. e) A tízes számrendszerben minden szám leírható tíz számjeggyel.

Természetes számok. d) A kétjegyû páros és páratlan számok száma megegyezik. e) A tízes számrendszerben minden szám leírható tíz számjeggyel. Természetes számok Természetes számok: 0; 1; 2; 3; A természetes számok halmazának jele: Tízes számrendszerben bármely természetes szám felírható tíz számjegy (0; 1; 2; 3, 4; 5; 6; 7; 8; 9) segítségével.

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a

Részletesebben

JAVÍTÓKULCSOK I. Számfogalom

JAVÍTÓKULCSOK I. Számfogalom JAVÍTÓKULCSOK I. Számfogalom Számok írása 1. a) 17 f) 260 b) 39 g) 422 c) 99 h) 668 d) 101 i) 707 e) 206 j) 999 2. a) tizennégy f) háromszázötven b) negyvennyolc g) ötszázkilencvenegy c) nyolcvanhét h)

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:

7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával: Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem

Részletesebben

Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat

Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat 4765 Csenger, Ady Endre u. 13-17.Tel.: 44/341-135, Tel./Fax.:341-806 www.csengeriskola.sulinet.hu E-mail:petofi-sandor@csengeriskola.sulinet.hu

Részletesebben

1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?

1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? 1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére

Részletesebben

Írásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb!

Írásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! Írásbeli összeadás Háromjegyű számok összeadása 1. Végezd el az összeadásokat! 254 + 200 = 162 + 310 = 235 + 240 = 351 + 124 = 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! 213 Ft 164 Ft 222 Ft

Részletesebben

Kedves harmadik osztályosok!

Kedves harmadik osztályosok! Kedves harmadik osztályosok! Köszöntünk titeket a matematika birodalmában! 3. osztályban is folytatjuk a barangolást. Ismét új kalandok, új felfedezések és rejtvényes feladatok várnak rátok. tankönyv mellett

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

MATEMATIKÁBÓL TESZT UTASÍTÁS A TESZT MEGÍRÁSÁHOZ

MATEMATIKÁBÓL TESZT UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA

Részletesebben

Írásbeli szorzás. a) b) c)

Írásbeli szorzás. a) b) c) Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2

Részletesebben

Bevezető. Kedves Negyedik Osztályos Tanuló!

Bevezető. Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! Örülünk, hogy ismét találkozunk, és együtt folytathatjuk megkezdett utunkat a matematika varázslatos birodalmában. Jó hír, hogy a munkafüzeted idén is segít a

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

Csehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft.

Csehné Hossó Aranka. Matematika. pontozófüzet 1 8. osztályig. az eltérő tantervű tanulók számára összeállított. Felmérő feladatokhoz. Novitas Kft. Csehné Hossó Aranka Matematika pontozófüzet 1 8. osztályig az eltérő tantervű tanulók számára összeállított Felmérő feladatokhoz Novitas Kft. Debrecen, 2005 Összeállította: Csehné Hossó Aranka EAN 599

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT. Színes matematika sorozat. 4. osztályos elemeihez COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA TANMENETJAVASLAT a Színes matematika sorozat 4. osztályos elemeihez Tanító: Tóth Mária, Buruncz Nóra 2013/2014 tanév 00478/I Színes matematika.

Részletesebben

Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát.

Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát. A számok kerekítése (Keress példákat pontos és közelítő értékek megadására!) Pontosan adtuk meg a mérkőzésen a gólok számát és a negyeddöntőt tévén közvetítő országok számát Közelítően, becsléssel adtuk

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám? A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 1. osztályos tankönyvhöz és munkafüzethez Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9 A kiadó a kiadói jogot fenntartja. Felelõs

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége

Részletesebben

Észpörgető matematika verseny / Eredmények/ Feladatok

Észpörgető matematika verseny / Eredmények/ Feladatok Észpörgető matematika verseny / Eredmények/ Feladatok név iskola összes pontszám helyezés 1. Izsák Imre ÁMK 60 5 Horváth Gáspár 2. Izsák Imre ÁMK 39 11. Ruzsicska Soma 3. Gál Rebeka Izsák Imre ÁMK 33 13.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Számlálási feladatok

Számlálási feladatok Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

III. 1. feladat. forduló

III. 1. feladat. forduló 1. feladat Teki egy négyjegyű számot írt fel egy számkártyára. Erről a számról a következőket árulta el: Négy szomszédos számjegy szerepel benne összekeverve. Van benne 9-es számjegy. Az egyesek helyén

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Matematika munkafüzet 3. osztályosoknak

Matematika munkafüzet 3. osztályosoknak Matematika munkafüzet 3. osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted I. kötetét tartod a kezedben,

Részletesebben

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Feladatok a MATEMATIKA standardleírás 3. szintjéhez 2016. Oktatáskutató és Fejlesztő

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 4. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A tájékozódó felmérő feladatsorok értékelése A tájékozódó felmérések segítségével a tanulók

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:

Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax: 200 Vác, Németh László u. 4-. : 27-17 - 077 /fax: 27-1 - 09. OSZTÁLY 1.) Hány olyan négyjegyű természetes szám van, melynek jegyei között az 1 és 2 számjegyek közül legalább az egyik szerepel? Négyjegyű

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Bevezető Kedves Negyedik Osztályos Tanuló!

Bevezető Kedves Negyedik Osztályos Tanuló! Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 3. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 3. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 3. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tananyagbeosztást 3.

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be

Részletesebben

MATEMATIKA VERSENY ABASÁR, 2018

MATEMATIKA VERSENY ABASÁR, 2018 MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,

Részletesebben

Számokkal kapcsolatos feladatok.

Számokkal kapcsolatos feladatok. Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17

Részletesebben

Kombinatorika A A B C A C A C B

Kombinatorika A A B C A C A C B . Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy

Részletesebben

XI. PANGEA Matematika Verseny I. forduló 3. évfolyam

XI. PANGEA Matematika Verseny I. forduló 3. évfolyam 1. Mindkét zsebemben azonos nagyságú és ugyanannyi darab golyó van. A bal zsebemből átteszek a jobb zsebembe hat darabot. Hány golyóval lesz több a jobb zsebemben, mint a balban? A) 0 B) 6 C) 8 D) 10 E)

Részletesebben

Összegek összege, Bűvös négyzet, Bűvös háromszög és egyebek

Összegek összege, Bűvös négyzet, Bűvös háromszög és egyebek Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2017/2018.

Részletesebben

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük: 1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

5. osztály. tört nem irreducibilis! ezért x y

5. osztály. tört nem irreducibilis! ezért x y 1. feladat: 5. osztály Anna és Tamás egy 7x10 kisnégyzetből álló tábla csokoládén osztozik. Felváltva törnek vagy egy sort vagy egy oszlopot a táblából, amíg elfogy. Ha Anna vesz először, milyen stratégiája

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

T á r g y s o r o z a t

T á r g y s o r o z a t Nyírparasznya Község Önkormányzat Képviselő-testületének 2010. december 14-én (Kedden) 18 óra 50 perc kezdettel megtartott zárt ülésének a, jegyzőkönyve b, tárgysorozata c, határozatai: 122-123/2010. (XII.

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

Vizsgakövetelmények matematikából a 2. évfolyam végén

Vizsgakövetelmények matematikából a 2. évfolyam végén Vizsgakövetelmények matematikából az 1. évfolyam végén - - Ismert halmaz elemeinek adott szempont szerinti összehasonlítására, szétválogatására. Az elemek közös tulajdonságainak felismerésére, megnevezésére.

Részletesebben

Javítóvizsga követelmények 2. évfolyam. Magyar nyelv

Javítóvizsga követelmények 2. évfolyam. Magyar nyelv Javítóvizsga követelmények 2. évfolyam Magyar nyelv 1. A magyar ábécé ismerete 2. Magánhangzók és mássalhangzók csoportosítása (rövid- hosszú magánhangzók és mássalhangzók) 3. Betűrendbe sorolás 4. J hang

Részletesebben

FOLYTATÁS A TÚLOLDALON!

FOLYTATÁS A TÚLOLDALON! ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;

Részletesebben

KockaKobak Országos Matematikaverseny 9. osztály

KockaKobak Országos Matematikaverseny 9. osztály KockaKobak Országos Matematikaverseny 9. osztály 204. november 27. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA www.kockakobak.hu A válaszlapról

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Kecskeméti Corvin Mátyás Általános Iskola Kertvárosi Általános Iskolája MATEMATIKA 1. osztály

Kecskeméti Corvin Mátyás Általános Iskola Kertvárosi Általános Iskolája MATEMATIKA 1. osztály Kecskeméti Corvin Mátyás Általános Iskola Kertvárosi Általános Iskolája MATEMATIKA 1. osztály Készült: A NAT 2012 valamint a helyi tanterv alapján Matematika 2016/2017 144 óra /Heti 4 óra/ Taneszközök:

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Piroska, a nagymamája, a farkas és a vadász egymás mellett ülnek egy padon. Se a nagymama, se Piroska

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:

Részletesebben

TANMENETJAVASLAT. Matematika. 1. osztály

TANMENETJAVASLAT. Matematika. 1. osztály TANMENETJAVASLAT Matematika 1. osztály 2 1. Tájékozódás a tanulók készségeirôl, képességeirôl Játék szabadon adott eszközökkel Tk. 5. oldal korongok, pálcikák építôkockák GONDOLKODÁSI MÛVELETEK ALAPOZÁSA

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 37. évfolyam, 2015/2016-os tanév KATEGÓRIA P3 KATEGÓRIA P3. Tudjuk, hogy az L betű az 5-ös számot rejti, az E betű a 2-es számot, az S betű pedig a 20-as számot. Írjátok le azt a betűt, amely az L+E+S által elrejtett számot jelöli: A: 25 B: 32 C:

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

MATEMATIKA 2.évfolyam: évi 144, heti 4 óra (enyhe)

MATEMATIKA 2.évfolyam: évi 144, heti 4 óra (enyhe) MATEMATIKA 2.évfolyam: évi 144, heti 4 óra (enyhe) 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika 15óra Kulcs ismerete A vizuális, auditív és taktilis percepció fejlesztése. Összehasonlítás,

Részletesebben

L. P. KOCSINA, N. P. LISZTOPAD MATEMATIKA. 4. o s z t á l y. Tankönyv az általános oktatási rendszerü iskolák számára

L. P. KOCSINA, N. P. LISZTOPAD MATEMATIKA. 4. o s z t á l y. Tankönyv az általános oktatási rendszerü iskolák számára L. P. KOCSINA, N. P. LISZTOPAD MATEMATIKA 4. o s z t á l y Tankönyv az általános oktatási rendszerü iskolák számára Ajánlotta Ukrajna Oktatási és Tudományos Minisztériuma A JlbBIB CBIT 2004 5BK 22.1*721

Részletesebben

DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY

DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY 5. OSZTÁLY 1.) A páratlan számjegyek száma 5, közülük 1 db, illetve 3 db lehet a háromjegyű számunkban. Ha mindhárom számjegy páratlan, akkor az 5 lehetőségből választhatunk mindhárom helyiértékre. Így

Részletesebben

Előszó. A tankönyvben a következő jelölésekkel fogtok még találkozni: Most még nem tanulhatunk meg mindent, a jövőben szóba kerülő ismeretekre utal.

Előszó. A tankönyvben a következő jelölésekkel fogtok még találkozni: Most még nem tanulhatunk meg mindent, a jövőben szóba kerülő ismeretekre utal. Előszó Ne vágd el azt, amit kibogozhatsz! (Joubert, 19. századi filozófus) Kedves Gyerekek! Ezt a könyvet és a hozzá tartozó feladatgyűjteményt Nektek írtuk. Szeretnénk, ha gondolkodva használnátok, és

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez Illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 Új generációs taneszközök, alsó tagozat, 4. modul MATEMATIKA 1-2. ÉVFOLYAM

Részletesebben

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Javítókulcs. Összesen: 100 p. Név: Iskola:

Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Javítókulcs. Összesen: 100 p. Név: Iskola: Borbély Sándor Országos Tanulmányi Verseny Vác 2016 Matematika 5. osztály Javítókulcs Összesen: 100 p Név: Iskola: 1. Gábor új mobiltelefont kapott. A számát rejtvényben árulta el barátainak. Keresd meg

Részletesebben

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"

Részletesebben