KOMPLEXOMETRIÁS TITRÁLÁS SPEKTROFOTOMETRIÁS VÉGPONTJELZÉSSEL
|
|
- Réka Orsós
- 9 évvel ezelőtt
- Látták:
Átírás
1 KTS KOMPLEXOMETRIÁS TITRÁLÁS SPEKTROFOTOMETRIÁS VÉGPONTJELZÉSSEL A GYAKORLAT CÉLJA: Pásztázó rendszerű spektrofotométer alkalmazása komplexometriás titrálás végpontjelzésére. Cu(II) ionok meghatározása EDTA mérőoldat segítségével. A MÉRÉSI MÓDSZER ALAPELVEI Az ultraibolya (UV, 200 nm λ 400 nm) ill. látható (VIS, 400 nm λ 800 nm) fény elnyelésekor (abszorpciójakor) a molekulák elektroneloszlása megváltozik: kötő, lazító vagy nemkötő elektronjaik kisebb energiájú pályákról nagyobb energiájúakra ugranak át, azaz gerjesztődnek. Az ilyen elektronátmenetek tanulmányozásával foglalkozó spektroszkópiai módszert elektrongerjesztési (vagy elektron-) spektroszkópiának is nevezik. Egy molekula azon részleteit, amelyekben az elektronátmenetek létrejönnek (azaz elnyelik a fényt), kromoforoknak nevezzük. Azt az energiatartományt, amelynél egy adott kromofor elnyel, elnyelési sávnak nevezzük, ennek helye a spektrumban (vagyis a hozzá tartozó elektronátmenet energiája) elsősorban a kromofor anyagi minőségétől függ, de azt a kromoforral kölcsönhatásban levő egyéb csoportok is befolyásolják. Amikor egy anyag vizes oldatának fényelnyelését ábrázoljuk a besugárzó fény energiájának (hullámhosszának) függvényében, az ún. abszorpciós spektrumot kapjuk. Az abszorpciós spektrum mind minőségi, mind mennyiségi információkat hordoz, emiatt az analitikai kémia egyik leggyakrabban használt módszere. Ha besugárzunk egy oldatot egy I o intenzitású, adott hullámhosszúságú (monokromatikus) fénysugárral, annak intenzitása a fény abszorpciója miatt lecsökken I-re. A fényelnyelést egy mértékegység nélküli mennyiség, az abszorbancia jellemzi, ami definíció szerint A I = lg I 0
2 Szokás még a fényelnyelést a transzmittanciával (más szóval transzmisszióval, T) is jellemezni, amely a minta fényáteresztő képességére jellemző, és az átengedett valamint a beeső fény intenzitásának hányadosaként szokás kifejezni (egyes esetekben százalékban): T = I I 0 Tekintsünk egy olyan oldatot, amelyben csak egyfajta fényt abszorbeáló anyag van jelen. Az anyag koncentrációja (c) és az adott λ hullámhosszúságú sugárzásra mért abszorbancia (A λ ) közötti összefüggést a Lambert-Beer törvény írja le, amely szerint A = λ λ ε c l ahol l a rétegvastagság (ez a mérések többségében 1 cm), és ε λ az adott kromoforra jellemző, az alkalmazott hullámhossztól függő mennyiség, az ún. moláris abszorbancia, az egységnyi (1 mól/l) koncentrációjú oldat egységnyi (1 cm) rétegvastagságnál mért abszorbanciája. A Lambert-Beer törvény érvényességi határain belül az abszorbancia additív tulajdonság, amely a vizsgált hullámhossznál az egymás mellett előforduló komponensek abszorbanciáinak összegeként adódik. Tehát egy n darab fényelnyelő komponenst tartalmazó oldatra A n λ = l ε λ i = 1 ahol ε λi az i-edik, c i koncentrációjú komponens moláris abszorbanciája az adott hullámhossznál. Abszorbanciamérés alapján, a moláris abszorbancia és a rétegvastagság ismeretében a Lambert-Beer törvény alkalmazásával a kromofor koncentrácója közvetlenül is meghatározható. Fontos megemlíteni, hogy a törvény kizárólag híg oldatokra (c < 10 3 mól/l) érvényes, töményebb oldatokra csak módosításokkal alkalmazható (pl. a törésmutató változását figyelembe kell venni). Eltéréseket okozhatnak még a törvénytől a kromofor különböző kémiai reakciói (pl. önasszociáció, protonálódási vagy komplexképződési egyensúlyok), valamint az oldószercsere is. Az abszorpciós spektrofotometria gyakorlata. Az abszorpciós spektrofotométerek legfontosabb alkotóeleme egy olyan fényforrás, amely a teljes mérési (UV vagy VIS) hullámhossztartományt lefedő folytonos ( fehér fényt ) sugároz ki. Ezt a fényt alkalmas optikai eszközzel (pl. prizma vagy rács segítségével) összetevőire bontjuk, majd egy kiválasztott hullámhosszúságú nyalábját a mintatartóban elhelyezett mintára irányítjuk. A mintaoldatot üvegből, műanyagból vagy kvarcból készült edényben (küvettában) helyezzük el. Az UV tartományba eső spektrumok felvételéhez szükséges a kvarcküvetta alkalmazása, mert a más anyagból készült küvetták maguk is elnyelik az UV-fényt. A küvettán keresztülhaladt fénysugarat egy detektorra (fotocella, fotoelektron-sokszorozó) irányítjuk, amely a fényintenzitással arányos elektromos jelet szolgáltat. ic i
3 Az abszorpciós spektrofotometriás mérés során a beeső fény intenzitását az oldatban való abszorpció mellett a szóródás és visszaverődés is csökkenti. Utóbbiaknak a mért jelhez való hozzájárulását a mérés pontossága érdekében állandó értéken kell tartani vagy elhanyagolhatóvá kell tenni. Ezért pl. a mérés során ügyelni kell arra, hogy a küvetta azon oldalai, amelyen a méréshez használt fénysugár keresztülhalad, a lehető legtisztábbak legyenek. További hibaforrás, ha az optikai felületnek a beeső fénysugárral bezárt szöge mintáról mintára változik (nem áll függőlegesen a küvetta), ami változó mértékű visszaverődést és ezzel a beeső fénysugár intenzitásában ingadozásokat okoz. Általában elkerülendő még az is, hogy a mérendő oldat csapadékos legyen vagy kolloid részecskék legyenek benne, ez ugyanis úgynevezett alapvonaleltolódást (az abszorpciós spektrum konstans értékkel való pozitív irányú eltolódását) eredményezi. Bármely hullámhosszon is hajtjuk végre a mérést, nem várható, hogy ott kizárólag a célmolekula kromoforjának fényelnyelése okozzon csökkenést a beeső fény intenzitásában: az oldószernek és magának a küvettának is van valamennyi saját elnyelése. Az ezek által okozott fényveszteséget mindig korrekcióba kell venni. Ezt egy úgynevezett vakoldat segítségével tesszük meg, amelyben a kromoforon kívül minden, a mérendő mintában is jelenlevő komponens megtalálható. Ha a vakoldat fényelnyelését regisztráljuk, és a mintaoldat fényelnyeléséből azt levonjuk, akkor az így kapott (különbségi) spektrum már tisztán csak a kromoforra lesz jellemző, és a kapott (ún. háttérkorrigált) abszorbancia pedig csak a kromofor koncentrációjától fog függeni. Az abszorpciós spektrofotometriás mérések során a mintába belépő és abból kilépő fény intenzitásának arányát mérjük. Kis abszorbanciáknál a belépő és az áteresztett fény intenzitása között kis különbség miatt (I o I), míg nagy abszorbanciáknál az áteresztett fény intenzitása kicsiny volta miatt (I 0) jelentős lehet a mért abszorbancia értékek pontatlansága. Korábban, a mechanikus felépítésű spektrofotométerek korában ezért elfogadott szabály volt, hogy a spektrofotometria legmegbízhatóbban (kb. 1 relatív % pontossággal) akkor használható, ha a mért abszorbanciák 0,3 és 0,6 érték közé esnek. A modernebb (elektromos/digitális) spektrofotométereknél ugyanez a 0,05 A 2 tartományban is elérhető. Mindezek miatt tanácsos méréseinket a koncentrációtartomány, a méréshez használt hullámhossz vagy a rétegvastagság alkalmas megválasztásával úgy megtervezni, hogy a mért abszorbanciaadatok az optimális tartományba essenek. Mennyiségi elemzés spektrofotometriás módszerrel. UV-látható spektrofotometria alkalmazásával csak olyan anyagok mérhetők, amelyek a 200 nm λ 800 nm tartományban fényt nyelnek el. Amennyiben a meghatározandó anyag nem nyeli el fényt, az valamilyen szelektív reakcióval általában fényelnyelővé tehető. Például a Fe(H 2 O) 6 3+ vagy Cu(H 2 O) 6 2+ aquoionok csak nagyon gyenge fényelnyelést mutatnak a látható hullámhossztartományban, de színessé tehetőek megfelelően megválasztott komplexképzővel. Az ismeretlen oldat koncentrációjának pontos meghatározásához először mindig ki kell választani egy olyan hullámhosszat, amelyen a mintának értékelhető fényelnyelése van. Ezt a hullámhosszat általában úgy választjuk meg hogy az a célmolekula spektrumának valamelyik abszorpciós maximumában legyen.
4 Az UV-látható spektrofotometriát kétféle módon lehet kvantitatív analitikai célokra felhasználni. A közvetlen spektrofotometriás koncentrációmeghatározás során a meghatározandó komponens koncentrációját közvetlenül a mért abszorbanciából, a Lambert- Beer törvény alkalmazásával is kiszámíthatjuk, ehhez azonban szükséges a moláris abszorbancia ismerete. Ennek hiányában ún. kalibráló oldatsorozat segítségével kell a mérendő komponens adott hullámhosszon mérhető abszorbanciájának koncentrációfüggését megállapítani. Ezt követően az analizálandó oldat mérését a fentiekkel teljesen azonos módon elvégezzük, majd a kalibrációs görbéről (egyenesről) egyszerűen leolvashatóvá válik az ismeretlen oldat koncentrációja.. A spektrofotometria alkalmas különböző titrálások végpontjelzésére is (közvetett koncentrációmeghatározás). A módszer alkalmazhatóságának feltétele, hogy a titrálás során (vagy a végpont előtt vagy a végpont után) a meghatározandó rendszer fényelnyelése (színe) eltérő legyen. Számos olyan sav-bázis, redoxi ill. komplexometriás titrálás létezik, amely eleget tesz ennek a feltételnek. Pl. oxálsav KMnO 4 oldattal történő titrálása során a végpont előtt az oldat színtelen, míg a végpont után a feleslegben megjelenő MnO 4 ionok intenzív lila színe vizuálisan is észlelhető az oldatban. Ha a titrálás során a MnO 4 ion abszorpciós maximumának megfelelő hullámhosszon mérjük az oldat abszorbanciáját a hozzáadott KMnO 4 mérőoldat fogyásának függvényében, a végpont előtt zérus (vagy közel zérus) abszorbanciákat kapunk. A végpontot követően az abszorbancia rohamosan növekedni kezd. Az így kapott függvényen megjelenő töréspont egyúttal a titrálás végpontja is. Egy másik példa a Cu 2+ ionok EDTA mérőoldattal való titrálása, ezt a mérést fogja a jelen gyakorlaton is végrehajtani. Egy Cu 2+ ionokat tartalmazó híg vizes oldat közismerten halványkék színű. Ennek eredményeként a Cu(H 2 O) 2+ 6 aquoionok oldatában a látható tartomány végén, 760 nm körüli maximummal rendelkező széles abszorpciós sáv jelenik meg a spektrumon. EDTA mérőoldat hozzáadásakor az alábbi reakció játszódik le: Cu EDTA 4 CuEDTA 2 A képződő komplex nagy stabilitása miatt (log K CuEDTA = 18,7) a reakció viszonylag széles ph-tartományban a fenti 1:1 sztöchiometria szerint, kvantitatíven lejátszódik. A CuEDTA 2 komplex mélykék színű és a látható tartományban 710 nm körül mutat abszorpciós maximumot. A CuEDTA 2 komplex tehát a Cu(H 2 O) 6 2+ aquoionokhoz képest alacsonyabb hullámhosszakon abszorbeál. Az ilyen spektrális eltolódást (vagyis színváltozást) auxokróm eltolódásnak nevezzük (Megjegyzendő, hogy a magasabb hullámhosszak felé való spektrális eltolódást batokróm eltolódásnak nevezzük). A komplexképződéssel kapcsolatos színváltozás analitikai célokra könnyen felhasználható. Ha ábrázoljuk egy Cu 2+ tartalmú oldat EDTA mérőoldattal történő titrálása során a CuEDTA 2 komplex elnyelési maximumán mért, hígulással korrigált abszorbanciákat a mérőoldat fogyásának függvényében, az 1. ábrán bemutatott titrálási görbét kapjuk.
5 A hígulással korrigált abszorbanciákat a következő képlet alapján számíthatjuk ki: A = A V + V ) mért ( 0 i ahol V 0 a kezdeti, V i pedig az i-edik titrálási pontig összesen hozzáadott térfogatot jelöli. A 0,6 0,4 0, V (ml) 1. ábra. A hígulással korrigált abszorbancia a mérőoldat fogyásának függvényében egy Cu 2+ tartalmú vizes oldat EDTA mérőoldattal történő titrálása során. A Cu(H 2 O) 6 2+ aquoionoknál intenzívebb elnyelésű CuEDTA 2 részecske a titrálás során képződik, így a mért abszorbancia a hozzáadott mérőoldat térfogatával lineárisan növekszik. Ez a növekedés egészen addig folytatódik, amíg az összes szabad Cu 2+ el nem reagál az EDTA-val. Mivel az adott hullámhosszon a szabad (nem komplexált) EDTA nem mutat fényelnyelést, a végpont után (tehát EDTA felesleg hozzáadás hatására) az oldat fényelnyelése már nem változik, az abszorbancia közel állandó értéket vesz fel. A kapott titrálási görbe töréspontjához tartozó EDTA fogyás értelemszerűen a titrálás ekvivalenciapontja. SZÜKSÉGES ANYAGOK, ESZKÖZÖK ÉS MŰSZEREK 0,02 M EDTA mérőoldat (a pontos hatóértéket jegyezze fel!) desztillált víz 1 db 25 cm 3 es manuális büretta 2 db 100 cm 3 -es főzőpohár (a titráláshoz) 1 db 20 cm 3 -es hasas pipetta (az ismeretlen oldat beméréshez)
6 1 db 50 cm 3 -es osztott pipetta (desztillált víz beméréséhez) 1 db Pasteur pipetta gumilabdaccsal (a küvetta feltöltéséhez és kiürítéséhez) 2 db 1 cm-es műanyag küvetta 1 db pipettázó labda papírtörlő Jenway 6405 típusú, pásztázó spektrumfelvételre alkalmas UV-Vis spektrofotométer Radelkis OP951/1 típusú mágneses keverő keverőrúddal AZ ELVÉGZENDŐ FELADATOK ÉS A FELHASZNÁLANDÓ MŰSZEREK LEÍRÁSA Előkészítés. Kapcsoljuk be a spektrofotométert (Jenway 6405) a műszer hátoldalán található főkapcsolóval. Ezek után a spektrométer kijelzőjén nyomon követhető, amint a műszer önellenőrző rutinjai rendre lefutnak. Néhány perc múlva a műszer üzemkész állapotba kerül, amit a főmenü ( Main menu ) képernyőn való megjelenése jelez. A menüben öt üzemmód közül lehet választani a tasztatúra kurzornyilai és nyomógombja segítségével: normál spektrofotometria ( Photometrics ), spektrumfelvétel ( Spectrum ), több hullámhosszon történő spektrofotometria ( Multi wavelength ), idő függvényében történő spektrofotometriás mérések ( Kinetics ) és mennyiségi meghatározás ( Quantitation ). Érdemes még megfigyelnie a képernyő jobb oldalán mindig látható ikonokat: a két izzólámpa-szerű ikon a volfrám (Vis) és a deutérium (UV) lámpa működését jelzi, míg egy keretben megjelenő szám (pl. 5 ) azt mutatja, hogy a motorosan mozgatható küvettatartó éppen melyik pozíciójában található (a küvettartó szabad mozgását semmilyen körülmények között ne akadályozza, és a meghajtó fogasszíjat is óvja a vegyszerektől, különben a meghajtó szerkezet károsodik!). Jelen gyakorlat során nem kell mozgatnia a küvettartót, ezért figyelje meg a fenti kijelzést, és az annak megfelelő számozott pozícióba helyezze majd mindig a küvettáját. Ha a küvettatartó mozgatása valamiért mégis szükséges lenne, akkor a pozíció a gyakorlatvezető segítségével akár a billentyűzet számgombjai, vagy a Setup menü Accessory setup almenüjében a Multi-position cell changer opció alatt adható meg. A tasztatúra további hasznos gombjai: a Goto feliratú gomb segítségével normál spektrofotometriás üzemmódban közvetlenül beállíthatjuk a kívánt mérési hullámhosszat, a Cal gombbal kalibrációt hajthatunk végre az aktuális beállításokkal, míg a nyomtatót ábrázoló gombbal kinyomtathatjuk a képernyőtartalmat (amennyiben egy alkalmas nyomtató csatlakoztatva van). A küvettatartó készülék jobb oldalán található fedélét természetesen a mérések ideje alatt mindig csukva (lehajtva) kell tartania. A lehetséges üzemmódok közül most a spektrumfelvételt fogja alkalmazni, ezért válassza a főmenüben a Spectrum opciót. A választott üzemmód képernyőképe mindig olyan, hogy annak alsó sorában egy helyi menü található, amelyben a jobb és bal kurzornyilakkal navigálhat. Most a Setup almenüt válassza ki és ellenőrizze, hogy a következő beállítások vannak-e érvényben (ha szükséges, korrigálja azokat a kurzornyilak és
7 a nyomógomb, esetleg a számgombok segítségével): Measure: Absorbance (abszorpciós spektrum felvétele), Start wavelength: 500 nm (spektrumpásztászási tartomány eleje), End wavelength: 1100 nm (spektrumpásztászási tartomány vége), Scan interval: 5 nm (spektrumfelvétel hullámhossz-felbontása), Storing warning messages: ON (figyelmeztető üzenetek tárolása bekapcsolva). Az almenüből nyíló további almenük közül csak a Record range és a Repeat scan time menük tartalmát kell ellenőriznie. Az előbbi almenüben fontos beállítások: Noise filter: OFF (a műszer ne szűrje ki a spektrum kis intenzitású csúcsait) és Auto re-scale: OFF (a felvett spektrumot ne automatikus méretezéssel rajzolja ki a képernyőre). A másik ( Repeat scan time ) menüben azt kell ellenőriznie, hogy az Auto repeat scan: OFF beállítás (nem akarjuk a spektrumot automatikusan újra és újra felvetetni) és az Y-axis min: 0 valamint Y-axis max: 0.5 értékek vannak-e érvényben. A titrálás végrehajtása. A 100 cm 3 -es mérőlombikban kapott ismeretlen oldatból mérjen be egy pontosan 20,00 cm 3 -es oldatrészletet egy 100 cm 3 -es főzőpohárba a hasas pipettával, majd adjon hozzá 30 cm 3 desztillált vizet az osztott pipettával. Az oldatot kevertesse mágneses keverővel. A két tiszta műanyagküvetta egyikét a Pasteur pipetta segítségével töltse fel a titrálandó oldattal, a másikat töltse fel desztillált vízzel (a küvettákat mindig a műszerből kivéve, és ne színültig, hanem csak kb. 2/3 magasságukig töltse fel!). Emelje fel a spektrofotométer mintatartójának a fedelét és helyezze be a desztillált vizes ( vakoldat ) küvettát a küvettatartó megfelelő pozíciójába, majd hajtsa le a fedelet. A spektrum felvételét a Spectrum mérési üzemmódban lévő spektrofotométeren azzal kell kezdenie, hogy felveszi az alapvonalat; ehhez válassza ki a képernyő alsó menüsorából a Baseline parancsot (ezt csak egyszer, a legelső spektrumfelvétel előtt kell elvégezni). Ha ez befejeződött, az almenü ismét feltűnik. Cserélje ki ekkor a küvettát a mérendő oldatot tartalmazóra és a Scan parancs kiválasztásával vegye fel annak spektrumát. Szükség esetén a spektrum felvétele megszakítható az Abort paranccsal. A felvett spektrum megjelenik a képernyőn. A spektrumban egyetlen elnyelési sávot (csúcsot) kell látnia. A spektrumcsúcs hullámhosszát és magasságát (abszorbancia maximumát) fel kell jegyeznie. Ehhez elő kell hívnia a képernyőre egy kurzort ( Cursor parancs az alsó sorbeli menüben), amelyet jobbra és balra mozgathat; a kurzor helyén mért adatokat a jobb felső sarokban fogja mindig látni. A kurzort a gomb megnyomásával tüntetheti el. Vegye ki ezek után a mérendő mintát tartalmazó küvettát a küvettatartóból és tartalmát a Pasteur pipetta segítségével maradék nélkül vigye át a titrálandó oldatba. Figyelem, nagyon ügyeljen arra, hogy az egyes spektrumfelvételek közötti manipulációk során a lehető legminimálisabb anyagveszteség lépjen fel! Ezután az EDTA mérőoldattal feltöltött bürettából adjon kb. 1-1,5 cm 3 -es mérőoldatrészletet a titrálandó oldathoz. Az egyes spektrumok felvétele előtt a mérendő oldattal többször öblítse át a küvettát azért, hogy a titrált oldat (a főzőpohárban) és a spektrofotométerben levő oldat (a küvettában) azonos összetételű legyen. A küvettába töltött oldatokat mindig töltse vissza a titrálandó oldatba. 2-3 átöblítést követően töltse fel a küvettát és vegye fel az oldat spektrumát. Folytassa a titrálást mintegy
8 16-18 cm 3 -es mérőoldatfogyásig, miközben minden mérőoldatrészlethez tartozó spektrum csúcsának hullámhosszát és csúcsabszorbanciáját jegyezze fel táblázatos formában. A titrálást kétszer végezze el, a második titrálás során az ekvivalencia pont környékén alkalmazzon finomabb adagolást kb. 0,50 ml. Ismeretlen réz(ii) koncentráció meghatározása. Ábrázolja az összetartozó fogyás és a hígulással korrigált abszorbancia értékeket grafikusan. Egyenesillesztéssel (grafikusan vagy numerikusan) határozza meg a titrálási görbe töréspontját. A töréspont alapján számítsa ki az ismeretlen törzsoldat Cu 2+ tartalmát és a koncentráció szórását. BENYÚJTANDÓ ADATOK, EREDMÉNYEK Két titrálási görbe (a mért oldatok spektrumcsúcsának abszorbanciája az EDTA mérőoldat fogyásának függvényében) táblázatosan és grafikusan megadva Az ismeretlen Cu 2+ törzsoldat koncentrációja mg/dm 3 és mol/dm 3 egységekben és ezen adatok szórását. KÉRDÉSEK ÉS FELADATOK ÖNÁLLÓ FELKÉSZÜLÉSHEZ 1. Mi az abszorbancia és a transzmittancia definíciója és mi a kettő közötti összefüggés? 2. Ismertesse a Lambert-Beer törvényt és nevezze meg a benne szereplő mennyiségeket és dimenziójukat! 3. Melyek a Lambert-Beer törvény érvényességének határai, soroljon fel eseteket, amikor a törvénytől eltérések lehetnek! 4. Ismertesse a direkt spektrofotometriás koncentrációmeghatározás elvét, kivitelezését és alkalmazásának feltételeit! 5. Milyen esetekben használható a spektrofotometriás végpontjelzés a térfogatos analízisben? 6. Vázolja fel és elemezze az oxalát ionok savas közegben KMnO 4 -tal történő titrálása során kapott spektrofotometriás titrálási görbét! 7. Vázolja fel és elemezze a Cu 2+ ionok EDTA-val történő komplexometriás titrálása során kapott spektrofotometriás titrálási görbét! 8. Ismertesse a Cu 2+ ionok EDTA-val történő komplexometriás titrálásának spektrofotometriás végpontjelzéssel történő végrehajtásának legfontosabb elvi és technikai lépéseit! 9. Egy 250 cm 3 térfogatú és 0,24 mg rezet tartalmazó, Cu-komplex (1:1) oldat 1,0034 cm-es küvettában mért abszorbanciája 0,282. Számítsa ki a moláris abszorpciós koefficiens és a transzmittancia értékét! (a Cu móltömege: 63,54 gramm/mol; a helyes megoldás: dm 3 mól -1 cm -1 és 0,522)
9 10. Fe(III) ionok oldatát titráljuk azonos koncentrációjú Sn(III) oldattal. A titrálást spektrofotometriásan (olyan hullámhosszon, amelyen csak a Fe(III) ionok abszorbeálnak) és potenciometrikus úton is követjük. Számítsuk ki a végpontban az abszorbanciát, valamint a Pt elektród és egy kalomel elektród közötti feszültséget! (E o Fe(II)/Fe(III)= 0,772 V; E o Sn(II)/Sn(IV)= 0,154 V; E tel. kalomel = 0,242 V; a helyes megoldás: 0 és 0,118 V)
UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA
SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes
FLUORESZCENCIA SPEKTROSZKÓPIA
FLS FLUORESZCENCIA SPEKTROSZKÓPIA A GYAKORLAT CÉLJA: A fluoreszcencia spektroszkópia módszerének megismerése és alkalmazása kininszulfát meghatározására vizes közegű oldatmintákban. A MÉRÉSI MÓDSZER ELVE
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]
B feladat : Ebben a kísérleti részben vizsgáljuk, Összpontszám: 20 B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását B1 A tej pufferkapacitása
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között
Dr. Nyári Tibor Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között tökéletes színeket visszaadni. A digitális
SPEKTROFOTOMETRIAI MÉRÉSEK
SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen
LÁNGATOMABSZORPCIÓS MÉRÉSEK
AAS LÁNGATOMABSZORPCIÓS MÉRÉSEK A GYAKORLAT CÉLJA: A lángatomabszorpciós spektrometria (FAAS) módszerének tanulmányozása és alkalmazása fémek vizes közegű mintában való meghatározására. A MÉRÉSI MÓDSZER
KONDUKTOMETRIÁS MÉRÉSEK
A környezetvédelem analitikája KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin
Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
Felhasználói kézikönyv ACR-3580. Rádiós ébresztőóra (Olvassa el használat előtt) Letölthető PDF formátum: http://hu.akai-atd.com/hasznalati-utasitas
ACR-3580 Rádiós ébresztőóra (Olvassa el használat előtt) Letölthető PDF formátum: http://hu.akai-atd.com/hasznalati-utasitas 1 1. ON/OFF: Készülék ki/bekapcsolása vagy AM/FM mód váltás. 2. TIME: Idő PRESET:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
Abszorbciós spektroszkópia
Abszorbciós spektroszkópia (Nyitrai Miklós; 2011 január 31.) A fény Elektromágneses hullám kölcsönhatása anyaggal Az abszorbció definíciója Az abszorpció mérése Speciális problémák, esetek Alkalmazások
A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.
A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
Környezettechnológiai laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V. Enzimtechnológia. című gyakorlathoz
Környezettechnológiai laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V az Enzimtechnológia című gyakorlathoz nevek: beugró zárthelyi gyakorlati munka jegyzőkönyv Mérés helye: Mérés ideje: Gyakorlatvezető:
A táblázatkezelő felépítése
A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az
Semmelweis Egyetem Orvosi Biokémia Intézet Orvosi Biokémia és Molekuláris Biológia gyakorlati jegyzet: Transzaminázok TRANSZAMINÁZOK
TRANSZAMINÁZOK Az aminosavak α-aminocsoportjainak α-ketosavakra történő transzferét az aminotranszferázok (transzaminázok) katalizálják. A transzamináz enzimek prosztetikus csoportja a piridoxál- foszfát.
[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.
Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív
Abszorpciós fotometria
A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)
Az első lépések. A Start menüből válasszuk ki a Minden program parancsot. A megjelenő listában kattintsunk rá az indítandó program nevére.
A számítógép elindítása A számítógépet felépítő eszközöket (hardver elemeket) a számítógépház foglalja magába. A ház különböző méretű, kialakítású lehet. A hátoldalán a beépített elemek csatlakozói, előlapján
Párhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
AWP 4.4.4 TELEPÍTÉSE- WINDOWS7 64 OPERÁCIÓS RENDSZEREN
Hatályos: 2014. február 13. napjától AWP 4.4.4 TELEPÍTÉSE- WINDOWS7 64 OPERÁCIÓS RENDSZEREN Telepítési segédlet 1054 Budapest, Vadász utca 31. Telefon: (1) 428-5600, (1) 269-2270 Fax: (1) 269-5458 www.giro.hu
Szakképzés - Meghatalmazás használata
Szakképzés - Meghatalmazás használata A kérelem beadásához szükséges lehet meghatalmazás készítése. A meghatalmazás az MVH elektronikus kérelem-benyújtási felületén tölthető és nyomtatható ki. A meghatalmazás
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Segítünk online ügyféllé válni Kisokos
Segítünk online ügyféllé válni Kisokos Kedves Ügyfelünk! Szeretnénk, ha Ön is megismerkedne Online ügyfélszolgálatunkkal, melyen keresztül kényelmesen, könnyedén, sorban állás nélkül intézheti energiaszolgáltatással
SJ5000+ MENÜBEÁLLÍTÁSOK. E l e c t r o p o i n t K f t., 1 0 4 4 B u d a p e s t, M e g y e r i ú t 1 1 6. F s z. 1. Oldal 1
SJ5000+ MENÜBEÁLLÍTÁSOK E l e c t r o p o i n t K f t., 1 0 4 4 B u d a p e s t, M e g y e r i ú t 1 1 6. F s z. 1. Oldal 1 FIGYELMEZTETÉS! A vízálló tok gombjai nagyon erős rugóval vannak ellátva, ezért
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Egyszerű áramkörök vizsgálata
A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)
HENYIR felhasználói dokumentáció
HENYIR felhasználói dokumentáció A HENYIR alkalmazás segítségével az egészségügyi dolgozók foglalkoztatásával kapcsolatos adatokat tartalmazó űrlap beküldését lehet elvégezni. Az alkalmazás a www.antsz.hu
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel
Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül
Vodafone ReadyPay. Használati útmutató
Vodafone ReadyPay Használati útmutató 1 - Párosítás Bluetooth-on keresztül, első beállítások 2 - Fizetés 3 - Menüpontok Párosítás Bluetooth-on keresztül, első beállítások Az első lépés Megjegyzés: A ReadyPay
54 481 01 1000 00 00 CAD-CAM
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Korszerű geodéziai adatfeldolgozás Kulcsár Attila
Korszerű geodéziai adatfeldolgozás Kulcsár Attila Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar Térinformatika Tanszék 8000 Székesfehérvár, Pirosalma -3 Tel/fax: (22) 348 27 E-mail: a.kulcsar@geo.info.hu.
Spektroszkópiai mérési gyakorlat fizikusoknak
Spektroszkópiai mérési gyakorlat fizikusoknak 1. A mérés célja A mérés célja az ismerkedés az ultraibolya/látható és a fluoreszcencia spektroszkópiai módszerekkel. A mérés során szörpök és üdítő italok
Magyar. Biztonsági információk. Magyar
Az útmutató tartalma: Biztonsági információk, 29. oldal. Az üzembe helyezéssel kapcsolatos hibaelhárítás, 30. oldal. További információk keresése, 34. oldal. Biztonsági információk A készülékhez csak a
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti
31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
FENTICONAZOLI NITRAS. Fentikonazol-nitrát
07/2014:1211 FENTICONAZOLI NITRAS Fentikonazol-nitrát C24H21Cl2N3O4S Mr 518,4 [73151-29-8] DEFINÍCIÓ [1-[(2RS)-2-(2,4-Diklórfenil)-2-[[4-(fenilszulfanil)benzil]oxi]etil]-1H-imidazolium]-nitrát. Tartalom:
Tanúsítvány és hozzá tartozó kulcsok feltöltése Oberthur kártyára és Oberthur SIM termékre
Tanúsítvány és hozzá tartozó kulcsok feltöltése Oberthur kártyára és Oberthur SIM termékre Windows XP, Vista és Windows 7 operációs rendszeren, PFX fájlban található tanúsítvány és kulcsok esetében 1(7)
Útmutató a vízumkérő lap kitöltéséhez
Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél
HWDEV-02A GSM TERMOSZTÁT
HWDEV-02A GSM TERMOSZTÁT 2010 HASZNÁLATI ÚTMUTATÓ A termosztát egy beépített mobiltelefonnal rendelkezik. Ez fogadja az Ön hívását ha felhívja a termosztát telefonszámát. Érdemes ezt a telefonszámot felírni
Klasszikus analitikai módszerek:
Klasszikus analitikai módszerek: Azok a módszerek, melyek kémiai reakciókon alapszanak, de az elemzéshez csupán a tömeg és térfogat pontos mérésére van szükség. A legfontosabb klasszikus analitikai módszerek
Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS. v2.9.28 ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ
v2.9.28 Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ AW STUDIO Nyíregyháza, Luther utca 5. 1/5, info@awstudio.hu Árverés létrehozása Az árverésre
Reológia 2. Bányai István DE Kolloid- és Környezetkémiai Tanszék
Reológia 2 Bányai István DE Kolloid- és Környezetkémiai Tanszék Mérése nyomásesés áramlásra p 1 p 2 v=0 folyás csőben z r p 1 p 2 v max I V 1 p p t 8 l 1 2 r 2 x Höppler-típusú viszkoziméter v 2g 9 2 testgömb
Shared IMAP beállítása magyar nyelvű webmailes felületen
Shared IMAP beállítása magyar nyelvű webmailes felületen A következő ismertető segítséget nyújt a szervezeti cím küldőként való beállításában a caesar Webmailes felületén. Ahhoz, hogy a Shared Imaphoz
Homlokzati tűzterjedés vizsgálati módszere
Homlokzati tűzterjedés vizsgálati módszere Siófok 2008. április 17. Dr. Bánky Tamás Nyílásos homlokzatok esetén a tűzterjedési gát kritériumait nem kielégítő homlokzati megoldásoknál továbbá nyílásos homlokzatokon
Disk Station DS209, DS209+II
Disk Station DS209, DS209+II Gyors telepítési útmutató Dokument-azonosító: Synology_QIG_2BayCL_20090901 BIZTONSÁGI UTASÍTÁSOK Kérjük, hogy használat előtt gondosan olvassa el ezeket a biztonsági utasításokat,
Boldva és Vidéke Taka r ékszövetkezet
A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.06.15-től lekötésre kerülő ekre
Boldva és Vidéke Taka r ékszövetkezet
A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.08.13-tól lekötésre kerülő ekre
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
ÚTMUTATÓ A KONTROLL ADATSZOLGÁLTATÁS ELKÉSZÍTÉSÉHEZ (2012-TŐL)
ÚTMUTATÓ A KONTROLL ADATSZOLGÁLTATÁS ELKÉSZÍTÉSÉHEZ (2012-TŐL) A 2006-2010. évre vonatkozó, régebbi adatszolgáltatások esetében az adatszolgáltatás menete a mostanitól eltérő, a benyújtáshoz különböző
Alpha Metal Free. Az első takarítókocsi, mely alkalmas mágneses rezonancia területen való használatra. Univerzális takarítókocsi, fém alkatrész nélkül
Alpha Metal Free Univerzális takarítókocsi, fém alkatrész nélkül Az első takarítókocsi, mely alkalmas mágneses rezonancia területen való használatra Tulajdonságok Fejlessze a takarító szolgáltatását a
Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek
A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához
Az infravörös spektroszkópia analitikai alkalmazása
Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai
Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)
Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...
Jelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE
GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta
OKTATÁSI SEGÉDLET Környezeti analízis II. c.
OKTATÁSI SEGÉDLET a Környezeti analízis II. c. tantárgyhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali és levelező tagozatos környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár
Ablakok használata. 1. ábra Programablak
Ha elindítunk egy programot, az egy Ablakban jelenik meg. A program az üzeneteit szintén egy újabb ablakban írja ki számunkra. Mindig ablakokban dolgozunk. Az ismertetett operációs rendszer is az Ablakok
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Üresként jelölt CRF visszaállítása
Üresként jelölt CRF visszaállítása Ha egy CRF vagy bizonyos mező(k) ki vannak szürkítve (üresként jelölve), akkor a megjelölés üresként eszközre kell kattintania, majd törölni a kiválasztott jelölőnégyzet
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).
Conjoint-analízis példa (egyszerűsített)
Conjoint-analízis példa (egyszerűsített) Az eljárás meghatározza, hogy a fogyasztók a vásárlás szempontjából lényeges terméktulajdonságoknak mekkora relatív fontosságot tulajdonítanak és megadja a tulajdonságok
A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.
E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés
A Hozzárendelési feladat megoldása Magyar-módszerrel
A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
Belépési útmutató a MIAG weboldalra www.miag.com
Belépési útmutató a MIAG weboldalra www.miag.com Classification level: Public MEMBER OF METRO GROUP 1 Tartalom 1. Fontos tudnivaló p. 3 2. Bejelentkezés a www.miag.com weboldalra p. 4-5 3. E-mail cím regisztrálása
SÜTIK TÖRLÉSE. Készült: 2015. 08. 08. Módosítva: 2016. 04. 18.
SÜTIK TÖRLÉSE Ez a segédlet azért készült, hogy segítséget nyújtson az ÉTDR-ben esetlegesen bekövetkező, böngésző által eltárolt adatok miatti hibák elhárításához Készült: 2015. 08. 08. Módosítva: 2016.
Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából
Gyógyszerhatóanyagok azonosítása és kioldódási vizsgálata tablettából ELTE TTK Szerves Kémiai Tanszék 2015 1 I. Elméleti bevezető 1.1. Gyógyszerkönyv A Magyar gyógyszerkönyv (Pharmacopoea Hungarica) első
1. Atomspektroszkópia
1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az
TART TECH KFT. 9611 Csénye, Sport u. 26. Tel.: 95/310-221 Fax: 95/310-222 Mobil: 30/9973-852 E-mail: tarttech@mail.globonet.hu www.tart-tech.
TART TECH KFT. 9611 Csénye, Sport u. 26. Tel.: 95/310-221 Fax: 95/310-222 Mobil: 30/9973-852 E-mail: tarttech@mail.globonet.hu www.tart-tech.hu HASZNÁLATI UTASÍTÁS S3000/L típusú silómérleg vezérlőegységhez
Élelmiszer -minőségbiztosítási Intézeti Tanszék
NYUGAT-MAGYARORSZÁGI EGYETEM MEZŐGAZDASÁG ÉS ÉLELMISZERTUDOMÁNYI KAR É L E L M I S Z E R T U D O M Á N Y I I N T É Z E T Élelmiszer -minőségbiztosítási Intézeti Tanszék H-9200 Mosonmagyaróvár, Lucsony
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő
ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák
ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés.
MŰSZAKI HŐTAN II.. ZÁRTHELYI Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: K - Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl
ν i A i = 0, (1) i=1 d[a i ]
IX. Bevezetés a reakciókinetikába. A jódóra reakció sebessége. Elméleti bevezető Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg: k ν i A i = 0, (1) i=1
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Történeti áttekintés Ernest Rutherford (1911) Rutherford alfa részecskéket tanulmányozott 1898-tól (ő fedezte fel őket). 1909-ben egy kísérlet során
SAP JAM. Felhasználói segédlet
SAP JAM Felhasználói segédlet Belépés A JAM modul az SAP SuccessFactors rendszer része. Tökéletesen biztonságos online rendszer. Felhasználónév és jelszó segítségével lehet bejelentkezni. Böngészőbe beírva
Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy
Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés
1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi
1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján
Kérjük, hogy mielőtt elkezdené használni a Csavarhat webáruházat, gondosan olvassa végig ezt a segédletet.
Csavarhat webáruház Részletes útmutató a webáruház használatához Kérjük, hogy mielőtt elkezdené használni a Csavarhat webáruházat, gondosan olvassa végig ezt a segédletet. Cégeknek, kis- és nagykereskedőknek,
Játékok (domináns stratégia, alkalmazása. 2016.03.30.
Játékok (domináns stratégia, Nash-egyensúly). A Nashegyensúly koncepciójának alkalmazása. 2016.03.30. Játékelmélet és közgazdaságtan 1914: Zermelo (sakk) 1944. Neumann-Morgenstern: Game Theory and Economic
Egységes jelátalakítók
6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük
A robbanékony és a gyorserő fejlesztésének elmélete és módszerei
A robbanékony és a gyorserő fejlesztésének elmélete és módszerei Tihanyi József Semmelweis Egyetem, Testnevelési és Sporttudományi Kar (TF) Biomechanika, Kineziológia és informatika tanszék Budapest, 2014.
Bevezetés a lágy számítás módszereibe
BLSZM-07 p. 1/10 Bevezetés a lágy számítás módszereibe Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésijósló tervezési példa
HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT
HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT - 2016.04.01 után kötött szerződésekre Díjcsomag neve Go Go+ Go EU Go EU+ Kínált letöltési sebesség - 3G 42 Mbit/s 42 Mbit/s 42 Mbit/s
Active watch MT849. Használati útmutató
Active watch MT849 Használati útmutató Bevezetés Köszönjük, hogy termékünket választotta! Az eszköz kompatibilis Android 4.1 vagy magasabb verzió számú okostelefonokkal. Annak érdekében, hogy a teljes
Dinamikus geometriai programok
2011 október 22. Eszköz és médium (fotó: http://sliderulemuseum.com) Enter MTM1007L információ: zeus.nyf.hu/ kovacsz feladatok: moodle.nyf.hu Reform mozgalmak A formális matematikát az életkori sajátosságoknak
Országos Középiskolai Tanulmányi Verseny 2011/2012. tanév. Kémia II. kategória 2. forduló. Megoldások
ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 011/01. tanév Kémia II. kategória. forduló Megoldások I. feladatsor 1. D 5. A 9. B 1. D. B 6. C 10. B 14. A. C 7. A 11. E 4. A 8. A 1. D 14 pont
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
Vodafone GPRS Kapcsolat létrehozása Win2000 alatt a Connect Me használata nélkül
Vodafone GPRS Kapcsolat létrehozása Win2000 alatt a Connect Me használata nélkül - A képek az angol verziót mutatják - 29/03/2004 1 Start menü Magyar: Start menü Beállítások Telefonos kapcsolatok Ha itt
Számítógépes vírusok
A vírus fogalma A számítógépes vírus olyan szoftver, mely képes önmaga megsokszorozására és terjesztésére. A vírus célja általában a számítógép rendeltetésszerű működésének megzavarása, esetleg a gép tönkretétele,