Hőtágulás - szilárd és folyékony anyagoknál
|
|
- Valéria Bakosné
- 4 évvel ezelőtt
- Látták:
Átírás
1 Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a Celsiushoz képest: 0 ºC = 273 K, -273 ºC = 0 K Abszolút hőmérsékleti skálának is nevezik, mert a 0 Kelvin fok az abszolút nulla fok. Ezzel egyenlő vagy ennél kisebb hőmérséklet nem létezik, mert ott a részecskék sebessége 0 lenne. A hőtágulásnál, aminek a mértéke a hőmérséklet-változástól függ, mindegy, hogy Kelvin-ben vagy Celsius-ban számoljuk a hőmérséklet-változást (ΔT), mert két hőmérséklet különbsége mindkettőben ugyanaz az érték. Szilárd tárgyak, testek hőtágulása Kísérlet: Két fémrudat melegítve különböző mértékben megnő a hosszuk. Ezt nevezik lineáris (hosszirányú) hőtágulásnak. Ennek nagysága függ az eredeti hosszától, a hőmérséklet-változástól és a tárgy anyagától.
2 Kiszámítása: Δl = I 0 α ΔT Δl : hosszváltozás, I 0 : eredeti hossz, ΔT : hőmérséklet-változás α (alfa) : az anyag lineáris hőtágulási együtthatója, a szilárd anyagra jellemző állandó. Mértékegysége: 1 / ºC pl. alumínium: 2, /ºC, vas: 1, /ºC Az alumínium jobban tágul, mint a vas, nagyobb a hőtágulási együtthatója. A hő hatására megnőtt teljes hossz = az eredeti hossz és a hossznövekedés összegével: l = l 0 + Δl = l 0 (1 + α ΔT) Térfogati hőtágulás: A szilárd tárgy nemcsak hosszirányban, hanem teljes térfogatában (szélesség, magasság is) is kitágul. Ennek nagysága függ az eredeti térfogatától, a hőmérsékletváltozástól és a szilárd test anyagától. Kiszámítása: ΔV = V 0 β ΔT ΔV : térfogatváltozás, V 0 : eredeti térfogat, ΔT : hőmérsékletváltozás, β (béta) : az anyag térfogati hőtágulási együtthatója, a szilárd anyagra jellemző állandó. Mértékegysége: 1 / ºC
3 Ugyanannak az anyagnak a térfogati hőtágulási együtthatója kb. 3-szorosa a lineáris hőtágulási együtthatójának: β = 3 α A hő hatására megnőtt teljes térfogat = az eredeti térfogat és a térfogat-növekedés összegével: V = V 0 + ΔV = V 0 (1 + β ΔT) Kísérlet: Fémgolyó átfér a fémkarikán. Ha felmelegítjük, akkor már nem fér át, mert kitágult, de ha a karikát is felmelegítjük, akkor megint átfér. Gyakorlati példák szilárd tárgyak hőtágulására: Sínek nyári melegben megnyúlnak, ezért hűteni kell. Hidak hőtágulása miatt a pillérek görgőkön állnak. Fűtéscső-vezetékekben kanyar van, a híd végén az útfelületek fésűs fémcsatlakozásban találkoznak Bimetall lemez: két különböző fémből készült lemez meleg hatására meghajlik. Felhasználása: hőkapcsoló, pl. vasalóban
4 Folyadékok hőtágulása A különböző folyadékok térfogata is megnő melegítés hatására különböző mértékben. Hosszirányú tágulásuk nem meghatározható, mert nincs hosszuk, csak térfogati tágulásuk van. Ez ugyanúgy számolható, mint a szilárd testeknél. A különbség annyi, hogy a folyadékok sokkal jobban tágulnak, vagyis a térfogati hőtágulási együtthatójuk (β) többszázszorosa a szilárd tárgyakénak. ΔV = V 0 β ΔT A hőtáguláskor a folyadék térfogata nő, sűrűsége csökken. A hőtágulás utáni sűrűség kiszámítása: 1 ρ = ρ , ahol ρ 0 (ró) : (1 + β ΔT) az eredeti sűrűség A hőtágulás anyagszerkezeti magyarázata: Melegítés hatására a részecskék gyorsabban mozognak, átlagosan jobban eltávolodnak egymástól. A folyadékok hőtágulásán alapuló legismertebb eszköz a folyadékos hőmérő. (Ha az üveg is olyan mértékben tágulna, mint a folyadék, akkor a hőmérő nem mutatna semmit.)
5 A víz sajátos viselkedése A vizet 0 ºC-ról melegítve 4 ºC-ig a térfogata nem nő, hanem csökken, sűrűsége pedig nő. Ezután 4 ºC felett már a szokásos módon hő hatására nő a térfogata és csökken a sűrűsége. Tehát a víz sűrűsége 4 ºC-on a legnagyobb. Ezért ez a hőmérsékletű víz marad a tó fenekén akkor is, amikor a tó felszíne már befagy. Így a tó alja nem fagy meg, ezért az élővilág a tó alsó rétegében áttelelhet. A víz térfogat hőmérséklet grafikonja 0-10 ºC között:
6 A hő terjedése (hőáramlás, hővezetés, hősugárzás) Hőáramlás - folyadékoknál és gázoknál melegítés (hőtágulás) hatására a folyadékok és gázok sűrűsége csökken. A folyadéknak (vagy gáznak) a melegebb, kisebb sűrűségű része felfelé áramlik és összekeveredik a többi részével. A felfelé áramló részecskék a gyorsabb mozgásukkal a lassabb részecskéket is felgyorsítják. Így a hő a folyadékban és a gázban a részecskék áramlásával terjed. Gyakorlati példák: - Főzéskor alulról melegítjük az edényt, és a felfelé áramló folyadék felmelegíti a folyadék (pl. leves) felső részét is. - Padlófűtés melegíti a padló feletti levegőt, és a meleg levegő felfelé áramolva felmelegíti a szoba egész levegőjét. - Bármilyen fűtőtest (nemcsak a padlófűtés) melegíti a levegőt, és az hőáramlással terjed tovább a szobában és felmelegíti a szoba teljes levegőjét. A szobában felül melegebb a levegő.
7 Hővezetés szilárd anyagokban A szilárd anyag melegített részében a részecskék gyorsabban rezegnek, mozognak és ezt a gyorsabb mozgást átadják a szomszédjaiknak. Így terjed tovább a szilárd testben a hő. Ezt nevezik hővezetésnek. Kísérletek: - Melegítünk fém és üvegrudat. A gyertyaviasszal rögzített szögek a fémrúdról egymás után leesnek, az üvegrúdról nem. - Vizet forralunk, benne vasszög és fapálcika és hungarocell van. A vasszög felforrósodik, a fapálcika kevésbé, a hungarocell nem. Következtetés, megállapítás: Vannak jó hővezető szilárd anyagok, amikben gyorsan terjed a hő, és vannak rossz hővezető anyagok. A rossz hővezető anyagokat hőszigetelőknek nevezik. A legjobb hővezetők a fémek. Rossz hővezetők, hőszigetelők: pl. fa, porcelán, hungarocell, gumi, műanyag, üveg Hőszigetelők felhasználása: épületek hőszigetelő bevonata, fakanál, edény füle nem fém, termosz, hűtőkamion fala, ruha, bögre, űrhajó külső bevonata,...
8 Hősugárzás Van olyan hőterjedés, amihez nem szükséges közvetítő anyag, a légüres térben is terjed (elektromágneses) sugárzás formájában. Ilyen pl. a Napsugárzás. A Föld is bocsát ki hősugárzást, amit a felhők visszavernek, ezért van hidegebb éjszaka, ha nincsenek felhők. Nemcsak a Nap, vagy a tűz, hanem minden meleg tárgy (vagy élőlény) bocsát ki magából hősugárzást, amit hőkamerával le is lehet fényképezni. A sötét érdes felületek jobban elnyelik a hősugarakat, mint a sima fényes felületek, amikről jobban visszaverődnek a sugarak. Ezért nem célszerű nyáron sötét ruhában járni, hanem világosban. Példák a hősugárzás gyakorlati felhasználására: - Hőkamerával lehet embereket, állatokat megtalálni sötétben is. - Házak hőfényképén meg lehet állapítani,hogy hol rossz a hőszigetelés. - Emberek hőfényképén meg lehet állapítani, hogy hol van benne gyulladásos betegség. - hőkövető katonai rakéta (követi a repülő meleg motorja által kibocsátott hősugárzást) - Az infra-lámpával történő melegítés gyógyító hatású. - távirányító is hősugárzást bocsát ki, ezt a vevőeszköz érzékeli (TV, hifi)
Hőtágulás - szilárd és folyékony anyagoknál
Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a
A hő terjedése (hőáramlás, hővezetés, hősugárzás)
A hő terjedése (hőáramlás, hővezetés, hősugárzás) Hőáramlás - folyadékoknál és gázoknál melegítés (hőtágulás) hatására a folyadékok és gázok sűrűsége csökken. A folyadéknak (vagy gáznak) a melegebb, kisebb
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja
Hőtan Az anyagok belső szerkezete, szilárd tárgyak és folyadékok hőtágulása, hőterjedés (Ez az összefoglalás tartalmaz utalásokat a tankönyv egyes
Hőtan Az anyagok belső szerkezete, szilárd tárgyak és folyadékok hőtágulása, hőterjedés (Ez az összefoglalás tartalmaz utalásokat a tankönyv egyes részeihez, ezért a tankönyvvel együtt használható.) Tapasztalatok,
Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok
Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:
A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy
A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy hőelvonás), vagy munkavégzéssel (pl. súrlódási munka,
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála:
TestLine - Fizika hőjelenségek Minta feladatsor
1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:
Hőmérséklet HŐTAN Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Fahrenheit skála (angolszász országokban
FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István
FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0
A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó.
HŐTAN I. A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. E jellemzőt az ember elsősorban tapintás útján, a hőérzettel észleli, másodsorban hőmérő segítségével. A hőmérséklet a hőtan
Kaméleonok hőháztartása. Hősugárzás. A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás.
Kaméleonok hőháztartása Hősugárzás A fizikában három különböző hőszállítási módot különböztetünk meg: Hővezetés, hőátadás és a hősugárzás. - Az első típust (hővezetés) érzékeljük leginkább a mindennapi
100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F
III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete
11. Melyik egyenlőség helyes? a) 362 K = 93 o C b) 288 K = 13 o C c) 249 K = - 26 o C d) 329 K = 56 o C
Hőtágulás tesztek 1. Egy tömör korongból kivágunk egy kisebb korongnyi részt. Ha az eredeti korongot melegíteni kezdjük, átmérője nő. Hogyan változik a kivágott lyuk átmérője? a) Csökken b) Nő c) A lyuk
11. Melyik egyenlőség helyes? a) 362 K = 93 o C b) 288 K = 13 o C c) 249 K = - 26 o C d) 329 K = 56 o C
Hőtágulás tesztek 1. Egy tömör korongból kivágunk egy kisebb korongnyi részt. Ha az eredeti korongot melegíteni kezdjük, átmérője nő. Hogyan változik a kivágott lyuk átmérője? a) Csökken b) Nő c) A lyuk
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy
Halmazállapot-változások
Halmazállapot-változások A halmazállapot-változások fajtái Olvadás: szilárd anyagból folyékony a szilárd részecskék közötti nagy vonzás megszűnik, a részecskék kiszakadnak a rácsszerkezetből, és kis vonzással
HARTAI ÉVA, GEOLÓGIA 3
HARTAI ÉVA, GEOLÓgIA 3 ALaPISMERETEK III. ENERgIA és A VÁLTOZÓ FÖLD 1. Külső és belső erők A geológiai folyamatokat eredetük, illetve megjelenésük helye alapján két nagy csoportra oszthatjuk. Az egyik
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
(2006. október) Megoldás:
1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon
Newton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny
Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...
Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy
ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK
ÁLTALÁNOS METEOROLÓGIA 2. METEOROLÓGIAI MÉRSÉSEK MÉRÉSEK ÉS ÉS MEGFIGYELÉSEK 03 02 Termodinamika Az adatgyűjtés, állapothatározók adattovábbítás mérése nemzetközi Hőmérséklet hálózatai Alapfogalmak Hőmérséklet:
Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny
Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)
Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Munka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Kutatói pályára felkészítő akadémiai ismeretek modul
Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC A hőmérséklet mérése
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
Munka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
1.1 Emisszió, reflexió, transzmisszió
1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
Ideális gáz és reális gázok
Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 8. osztály
Bor Pál Fizikaverseny, középdöntő 2012/201. tanév, 8. osztály I. Igaz vagy hamis? (8 pont) Döntsd el a következő állítások mindegyikéről, hogy mindig igaz (I) vagy hamis (H)! Írd a sor utolsó cellájába
2 Termográfia a gyakorlatban
2 Termográfia a gyakorlatban 2.1 A mérés tárgya és a mérési körülmények A mérés tárgya 1. Anyag és emisszió Minden anyag felületének méréséhez specifikus korrekciós értékek tartoznak, ezek alapján számítható
Infravörös melegítők. Az infravörös sugárzás jótékony hatása az egészségre
Infravörös melegítők Infravörös melegítőink ökológiai alternatívát jelentenek a hagyományos fűtőanyag alapú készülékekkel szemben. Készülékeink nagytömegű meleget állítanak elő, anélkül, hogy szennyeznék
AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE
AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Építőanyagok 2. Anyagjellemzők 1.
A természet csodákra képes Építőanyagok 2. Anyagjellemzők 1. Dr. Józsa Zsuzsanna 2007.február 13. Az ember nagyot és maradandót akar építeni ÉRDEMES? 1. A babiloni zikkurat, Bábel tornya kb. 90 m (Kr.e.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16
gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44)
Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát
A légkör víztartalmának 99%- a troposzféra földközeli részében található.
VÍZ A LÉGKÖRBEN A légkör víztartalmának 99%- a troposzféra földközeli részében található. A víz körforgása a napsugárzás hatására indul meg amikor a Nap felmelegíti az óceánok, tengerek vizét; majd a felmelegedő
Elektromos töltés, áram, áramkörök
Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Az alacsony hőmérséklet előállítása
Az alacsony hőmérséklet előállítása A kriorendszerek jelentősége Megbízható, alacsony üzemeltetési költségű, kisméretű és olcsó hűtőrendszer kialakítása a szupravezetős elektrotechnikai alkalmazások kereskedelmi
Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév
Folyadékok és gázok mechanikája Fizika 9. osztály 2013/2014. tanév Szilárd testek nyomása Az egyenlő alaplapon álló hengerek közül a legsúlyosabb nyomódik legmélyebben a homokba. Belenyomódás mértéke a
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Szakmai fizika Gázos feladatok
Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Érettségi témakörök fizikából őszi vizsgaidőszak
Érettségi témakörök fizikából -2016 őszi vizsgaidőszak 1. Egyenes vonalú egyenletes mozgás Mikola-cső segítségével igazolja, hogy a buborék egyenes vonalú egyenletes mozgást végez. Két különböző hajlásszög
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
Hőmérséklet mérése. Sarkadi Tamás
Hőmérséklet mérése Sarkadi Tamás Hőtáguláson alapuló hőmérés Gázhőmérő Gay-Lussac törvények V1 T 1 V T 2 V 2 T 2 2 V T 1 1 P1 T 1 P T 2 P T 2 2 2 P T 1 1 Előnyei: Egyszerű, lineáris Érzékeny: dt=1c dv=0,33%
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
MUNKAANYAG. Danás Miklós. Hőtermelő berendezések működési elve. A követelménymodul megnevezése: Villamos készülékek szerelése, javítása, üzemeltetése
Danás Miklós Hőtermelő berendezések működési elve A követelménymodul megnevezése: Villamos készülékek szerelése, javítása, üzemeltetése A követelménymodul száma: 1398-06 A tartalomelem azonosító száma
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
Hőtan 2. feladatok és megoldások
Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika
3 Melléklet. 3.1 Termográfia szójegyzék
3 Melléklet 3.1 Termográfia szójegyzék A Abszolút nulla fok Az abszolút null fok -273.15 C (0 Kelvin = -459.69 F) hőmérsékleten van. Az abszolút nulla fokon lévő hőmérsékletű testek nem sugároznak infra
Miért érdemes a régi ablakot cserélni?
A hidegebb idők beálltával megszaporodnak a panaszok, hogy párásodnak az ablakok, penészedik a lakás. Ezek a problémák korábban nem jelentkeztek. A 15-20 éve, vagy korábban beépített ablakok légzárása
Gáztörvények tesztek
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Sugárzásos hőtranszport
Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek
Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
TANMENET Fizika 7. évfolyam
TANMENET Fizika 7. évfolyam az Oktatáskutató és Fejlesztő Intézet NT-11715 raktári számú tankönyvéhez a kerettanterv B) változata szerint Heti 2 óra, évi 72 óra A tananyag feldolgozása során kiemelt figyelmet
KÍSÉRLETEK HŐVEL ÉS HŐMÉRSÉKLETTEL KAPCSOLATBAN
KÍSÉRLETEK HŐVEL ÉS HŐMÉRSÉKLETTEL KAPCSOLATBAN Tóth Gergely ELTE Kémiai Intézet Látványos kémiai kísérletek ALKÍMIA MA sorozat részeként 2013. január 31. Hőközlés hatására hőmérsékletváltozás azonos tömegű
ÖVEGES JÓZSEF FIZIKAVERSENY
ÖVEGES JÓZSEF FZKAVERSENY skolai forduló Számításos feladatok Oldd meg az alábbi számításos feladatokat! ibátlan megoldás esetén a szöveg után látható kis táblázat jobb felső sarkában feltüntetett pontszámot
KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:
GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT