Minimum-Time Reachability in Timed Games
|
|
- Gyula Orbán
- 5 évvel ezelőtt
- Látták:
Átírás
1 ÒØÖ Ö Ò Î Ö Ø ÓÒ Ì Ò Ð Ê ÔÓÖØ ÒÙÑ Ö ¾¼¼ º Å Ò ÑÙÑ¹Ì Ñ Ê Ð ØÝ Ò Ì Ñ Ñ Ì ÓÑ Ö Ý Ì ÓÑ À ÒÞ Ò Ö Î Ò Ý ÈÖ Ù Â Ò¹ Ö ÒÓ Ê Ò Ì ÛÓÖ Û Ô ÖØ ÐÐÝ ÙÔÔÓÖØ Ý Ê Ö ÒØ ¾º ¼º¼¾ ØØÔ»»ÛÛÛºÙÐ º º»»» Ú
2 Minimum-Time Reachability in Timed Games Thomas Brihaye 1, Thomas A. Henzinger 2, Vinayak S. Prabhu 3, and Jean-François Raskin 4 1 LSV-CNRS & ENS de Cachan; thomas.brihaye@lsv.ens-cachan.fr 2 Department of Computer and Communication Sciences, EPFL; tah@epfl.ch 3 Department of Electrical Engineering & Computer Sciences, UC Berkeley; vinayak@eecs.berkeley.edu 4 Département d Informatique, Université Libre de Bruxelles; jraskin@ulb.ac.be Abstract. We consider the minimum-time reachability problem in concurrent two-player timed automaton game structures. We show how to compute the minimum time needed by a player to reach a location against all possible choices of the opponent We do not put any syntactic restriction on the game structure, nor do we require any player to guarantee time divergence. We only require players to use physically realizable strategies. The minimal time is computed in part using a fixpoint expression which we show can be used on equivalence classes of a non-trivial extension of the region equivalence relation. 1 Introduction Timed automata [3], finite state automata enriched with clocks and clock constraints, are a well-established formalism for the modeling and analysis of timed systems. A large number of important and interesting theoretical results have been obtained on problems in the timed automata framework. In parallel with these theoretical results, efficient verification tools have been implemented and successfully applied to industrial relevant case studies. Timed automata are models for closed systems, where every transition is controlled. If we want to distinguish between actions of several agents (for instance a controller and an environment) we have to consider games on timed automata, also known as timed games. In the sequel, we will focus on two-player games. In this context, the reachability problem asks whether player-1 has a strategy to force the timed game to reach a target set no matter how player-2 resolves his choices. These games were first introduced and studied in [22,19]. In this framework, it is also natural to consider a minimum-time reachability problem which asks what is the minimal time required by player-1 to reach a target set, no matter how player-2 resolves his choices. The work of [5] has shown this problem to be decidable for a partial class of timed automata games. Any formalism involving timed systems has to face the problem of zeno runs runs of the model where time converges. Zeno runs are of course not physically This research was supported in part by the NSF grants CCR , CCR , and CCR , and by the Swiss National Science Foundation.
3 meaningful. Avoidance of such runs has often been achieved by putting syntactic constraints on the cycles of timed automaton games [5,15,6, 20] or semantic conditions discretizing time. Other works on the existence of controllers [14, 7, 19, 9] have in general required that time divergence be ensured by the controller an unfair view in settings where the player modelling the environment can also block time. Recently, a more equitable treatment of zeno sequences has been proposed in [12]. This setting formulates a symmetric setup of the model, where all players are given equally powerful options for updating the state of the game, advancing time, or blocking time. Both players may block time, however, for a player to win for an objective, he must not be responsible for preventing time from diverging. It has been shown in [17] that this is equivalent to requiring that players use only receptive strategies [21,4] in plays, so that zeno runs are avoided. Our contribution: In this paper, we consider the minimum time reachability problem (for timed games), in the framework of [12,17]. We present an EXP- TIME algorithm to compute minimum time needed by player-1 to force the game into a given set of locations, with both players restricted to using only receptive strategies (note that reachability in timed games is know to be EXP- TIME-complete [16]). The proof technique builds on the techniques that have been introduced in [12,17] and we show that the minimum time can be obtained by solving a µ-calculus fixed point equation. Proof of termination of the fixpoint algorithm requires an important new ingredient: an extension of the well-known region equivalence for timed automata. We show our extended region equivalence classes to be stable w.r.t. the monotone functions used in the fixed point equation. Using previous results of [17], we manage to restrict to finitely many regions and thus guarantee termination. We note that standard regions do not suffice the minimum-time reachability game has two components, the reachability part can be handled by discrete arguments based on the region graph, the minimum part requires minimization within regions in some sense (as in [11]). Unfortunately, both arguments are intertwined and cannot be argued about in isolation. Our extended regions manage to decouple these two threads in the proofs. We also note that region sequences which correspond to optimal runs may in general be required to contain region cycles in which time does not progress by an integer amount, thus an approach like that of [1] to reduce to a loop free region game also runs into problems. Related work: Only special cases of the optimal reachability problem have been solved before, the work in [5] restricts its attention to the case where every cycle of the timed automaton ensures syntactically that a positive amount of time passes (a.k.a. strong non-zenoness assumption), [2] considers games restricted to a bounded number of moves, [17] presents an approximate computation of the minimum time (computation of the exact minimal time being left open). The general case for weighted timed automaton games is known to be undecidable [8]. The recent work of [18] presents a strategy improvement algorithm which computes the optimal time in all timed automaton games, but it does not require
4 strategies to be receptive. Average reward games in the framework of [12] are considered in [1], but with the durations of time moves restricted to either 0 or 1. The non-game version of the minimum-time problem is presented in [11]. The rest of the paper is organised as follows. In Section 2, we recall the notations and definitions of timed games framework of [12]. The minimum-time reachability problem is formally defined in Section 3. Section 4 is the main section of the paper and is devoted to our algorithm which solves for minimum-time reachability and proof of its termination. 2 Timed Games 2.1 Timed Game Structures We use the formalism of [12]. A timed game structure is a tuple G = S, Σ, σ,a 1,A 2, Γ 1, Γ 2, δ with the following components: S is a set of states. Σ is a finite set of propositions. σ : S 2 Σ is the observation map, which assigns to every state the set of propositions that are true in that state. A 1 and A 2 are two disjoint sets of actions for players 1 and 2, respectively. We assume that i A i, and write A i for A i { i }. We also assume A 1 and A 2 to be disjoint. The set of moves for player i is M i = IR 0 A i. Intuitively, a move, a i by player i indicates a waiting period of time units followed by a discrete transition labeled with action a i. Γ i : S 2 Mi \ are two move assignments. At every state s, the set Γ i (s) contains the moves that are available to player i. We require that 0, i Γ i (s) for all states s S and i {1, 2}. Intuitively, 0, i is a time-blocking stutter move. δ : S (M 1 M 2 ) S is the transition function. We require that for all time delays, IR 0 with, and all actions a i A i, we have (1), a i Γ i (s) iff both, i Γ i (s) and, a i Γ i (δ(s,, i )); and (2) if δ(s,, i ) = s and δ(s,, a i ) = s, then δ(s,, a i ) = s. The game proceeds as follows. If the current state of the game is s, then both players simultaneously propose moves 1, a 1 Γ 1 (s) and 2, a 2 Γ 2 (s). The move with the shorter duration wins in determining the next state of the game. If both moves have the same duration, then one of the two moves is chosen non-deterministically. Formally, we define the joint destination function δ jd : S M 1 M 2 2 S by {δ(s, 1, a 1 )} if 1 < 2 ; δ jd (s, 1, a 1, 2, a 2 ) = {δ(s, 2, a 2 )} if 2 < 1 ; {δ(s, 1, a 1 ), δ(s, 2, a 2 )} if 1 = 2. The time elapsed when the moves m 1 = 1, a 1 and m 2 = 2, a 2 are proposed is given by delay(m 1, m 2 ) = min( 1, 2 ). The boolean predicate
5 blame i (s, m 1, m 2, s ) indicates whether player i is responsible for the state change from s to s when the moves m 1 and m 2 are proposed. Denoting the opponent of player i {1, 2} by i = 3 i, we define blame i (s, 1, a 1, 2, a 2, s ) = ( i i δ(s, i, a i ) = s ). A run of the timed game structure G is an infinite sequence r = s 0, m 0 1, m 0 2, s 1, m 1 1, m 1 2,... such that s k S and m k i Γ i (s k ) and s k+1 δ jd (s k, m k 1, mk 2 ) for all k 0 and i 1, 2. For k 0, let time(r, k) denote the time at position k of the run, namely, time(r, k) = k 1 j=0 delay(mj 1, mj 2 ) (we let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state s k of r. The run prefix r[0..k] is the finite prefix of the run r that ends in the state s k ; we write last(r[0..k]) for the ending state s k of the run prefix. Let Runs be the set of all runs of G, and let FinRuns be the set of run prefixes. A strategy π i for player i {1, 2} is a function π i : FinRuns M i that assigns to every run prefix r[0..k] a move to be proposed by player i at the state last(r[0..k]) if the history of the game is r[0..k]. We require that π i (r[0..k]) Γ i (last(r[0..k])) for every run prefix r[0..k], so that strategies propose only available moves. The results of this paper are equally valid if strategies do not depend on past moves chosen by the players, but only on the past sequence of states and time delays [12]. For i {1, 2}, let Π i be the set of player-i strategies. Given two strategies π 1 Π 1 and π 2 Π 2, the set of possible outcomes of the game starting from a state s S is denoted Outcomes(s, π 1, π 2 ): it contains all runs r = s 0, m 0 1, m0 2, s 1, m 1 1, m1 2,... such that s 0 = s and for all k 0 and i {1, 2}, we have π i (r[0..k]) = m k i. We distinguish between physical time and game time. We allow moves with zero time delay, thus a physical time t IR 0 may correspond to several linearly ordered states, to which we assign the game times t, 0, t, 1, t, 2,... For a run r Runs, we define the set of game times as GameTimes(r) = { t, k IR 0 IN 0 k < {j 0 time(r, j) = t} } { t, 0 time(r, j) t for some j 0}. The state of the run r at a game time t, k GameTimes(r) is defined as r[j + k] if time(r, j) = t and for all j < j, time(r, j ) < t; δ(r[j], t time(r, j), i ) if time(r, j) < t < time(r, j + 1) and state(r, t, k ) = r[0..j + 1] = r[0..j], m j 1, mj 2, r[j + 1] and blame i (r[j], m j 1, mj 2, r[j + 1]) Note that if r is a run of the timed game structure G, and time(r, j) < t < time(r, j + 1), then δ(r[j], t time(r, j), i ) is a state in S, namely, the state that results from r[j] by letting time t time(r, j) pass. We say that the run r visits a set X S at time t if there is a τ = t, k GameTimes(r) such that state(r, τ) X. A run r visits a proposition p Σ if it visits the set S p defined as {s p σ(s)}.
6 2.2 Timed Automaton Games Timed automata [3] suggest a finite syntax for specifying infinite-state timed game structures. A timed automaton game is a tuple T = L, Σ, σ, C,A 1,A 2, E, γ with the following components: L is a finite set of locations. Σ is a finite set of propositions. σ : L 2 Σ assigns to every location a set of propositions. C is a finite set of clocks. We assume that z C for the unresettable clock z, which is used to measure the time elapsed since the start of the game. A 1 and A 2 are two disjoint sets of actions for players 1 and 2, respectively. E L (A 1 A 2 ) Constr(C) L 2 C\{z} is the edge relation, where the set Constr(C) of clock constraints is generated by the grammar θ ::= x d d x θ θ 1 θ 2 for clock variables x C and nonnegative integer constants d. For an edge e = l, a i, θ, l, λ, the clock constraint θ acts as a guard on the clock values which specifies when the edge e can be taken, and by taking the edge e, the clocks in the set λ C\{z} are reset to 0. We require that for all edges l, a i, θ, l, λ, l, a i, θ, l, λ E with l l, the conjunction θ θ is unsatisfiable. This requirement ensures that a state and a move together uniquely determine a successor state. γ : L Constr(C) is a function that assigns to every location an invariant for both players. All clocks increase uniformly at the same rate. When at location l, each player i must propose a move out of l before the invariant γ(l) expires. Thus, the game can stay at a location only as long as the invariant is satisfied by the clock values. A clock valuation is a function κ : C IR 0 that maps every clock to a nonnegative real. The set of all clock valuations for C is denoted by K(C). Given a clock valuation κ K(C) and a time delay IR 0, we write κ + for the clock valuation in K(C) defined by (κ + )(x) = κ(x) + for all clocks x C. For a subset λ C of the clocks, we write κ[λ := 0] for the clock valuation in K(C) defined by (κ[λ := 0])(x) = 0 if x λ, and (κ[λ := 0])(x) = κ(x) if x λ. A clock valuation κ K(C) satisfies the clock constraint θ Constr(C), written κ = θ, if the condition θ holds when all clocks in C take on the values specified by κ. A state s = l, κ of the timed automaton game T is a location l L together with a clock valuation κ K(C) such that the invariant at the location is satisfied, that is, κ = γ(l). Let S be the set of all states of T. In a state, each player i proposes a time delay allowed by the invariant map γ, together either with the action, or with an action a i A i such that an edge labeled a i is enabled after the proposed time delay. We require that for i {1, 2} and for all states s = l, κ, if κ = γ(l), either κ + = γ(l) for all IR 0, or there exist a time delay IR 0 and an edge l, a i, θ, l, λ E such that (1) a i A i
7 and (2) κ + = θ and for all 0, we have κ + = γ(l), and (3) (κ + )[λ := 0] = γ(l ). The timed automaton game T defines the following timed game structure [T] = S, Σ, σ,a 1,A 2, Γ 1, Γ 2, δ : S is defined above. σ ( l, κ ) = σ(l). For i {1, 2}, the set Γ i ( l, κ ) contains the following elements: 1., i if for all 0, we have κ + = γ(l). 2., a i if for all 0, we have κ + = γ(l), and a i A i, and there exists an edge l, a i, θ, l, λ E such that κ + = θ. δ( l, κ,, i ) = l, κ +, and δ( l, κ,, a i ) = l, (κ + )[λ := 0] for the unique edge l, a i, θ, l, λ E with κ + = θ. 2.3 Clock Regions Timed automaton games can be solved using a region construction from the theory of timed automata [3]. For a real t 0, let frac(t) = t t denote the fractional part of t. Given a timed automaton game T, for each clock x C, let c x denote the largest integer constant that appears in any clock constraint involving x in T Two clock valuations κ 1, κ 2 K(C) are clock-region equivalent, denoted κ 1 = κ2, if the following three conditions hold: 1. For all x C, either κ 1 (x) = κ 2 (x), or both κ 1 (x) > c x, κ 2 (x) > c x. 2. For all x, y C with κ 1 (x) c x and κ 1 (y) c y, we have frac(κ 1 (x)) frac(κ 1 (y)) iff frac(κ 2 (x)) frac(κ 2 (y)). 3. For all x C with κ 1 (x) c x, we have frac(κ 1 (x)) = 0 iff frac(κ 2 (x)) = 0. Two states l 1, κ 1, l 2, κ 2 S are clock-region equivalent, denoted l 1, κ 1 = l 2, κ 2, iff l 1 = l 2 and κ 1 = κ2. It is not difficult to see that = is an equivalence relation on S. A clock region is an equivalence class with respect to =. There are finitely many clock regions; more precisely, the number of clock regions is bounded by L x C (c x + 1) C! 2 C. For a state s S, we write [s] S for the clock region containing s. These clock regions induce a time-abstract bisimulation. 3 The Minimum-Time Reachability Problem Given a state s and a target proposition p Σ in a timed game structure G, the reachability problem is to determine whether starting from s, player-1 has a strategy for visiting the proposition p. We must make sure that player-2 does not prevent player-1 from reaching a target state by blocking time. We also require player-1 to not block time as it can lead to physically unmeaningful plays. These requirements can be achieved by requiring strategies to be receptive [21, 4]. Formally, we first define the following two sets of runs:
8 Timediv Runs is the set of all time-divergent runs. A run r is time-divergent if lim k time(r, k) =. Blameless i Runs is the set of runs in which player i is responsible only for finitely many transitions. A run s 0, m 0 1, m 0 2, s 1, m 1 1, m 1 2,... belongs to the set Blameless i, for i = {1, 2}, if there exists a k 0 such that for all j k, we have blame i (s j, m j 1, mj 2, s j+1). A strategy π i for player i {1, 2} is receptive if for all opposing strategies π i, and all states s S, Outcomes(s, π 1, π 2 ) Timediv Blameless i. Thus, no what matter what the opponent does, a receptive player-i strategy should not be responsible for blocking time. Strategies that are not receptive are not physically meaningful (note that receptiveness is not sufficient for a strategy to be physically meaningful [10]). For i {1, 2}, let Πi R be the set of player-i receptive strategies. A timed game structure is well-formed if both players have receptive strategies. We restrict our attention to well-formed timed game structures. Well-formedness of timed automaton games can be checked for (see [17]). We say player-1 wins for the reachability objective p at state s, denoted s 1 p, if he has a receptive strategy π 1 such that for all player-2 receptive strategies π 2, we have that all runs r Outcomes(s, π 1, π 2 ) visit the proposition p. Equivalently [17], we can define player-1 to be winning for the reachability objective p at state s if he has a strategy π 1 such that for all player-2 strategies π 2, for all runs r Outcomes(s, π 1, π 2 ): if r Timediv, then r visits the proposition p; if r Timediv, then r Blameless 1. The minimum-time reachability problem is to determine the minimal time in which a player can force the game into a set of target states, using only receptive strategies. Formally, given a timed game structure G, a target proposition p Σ, and a run r of G, let T visit (G, r, p) = { if r does not visit p; inf {t IR 0 p σ(state(r, t, k )) for some k} otherwise. The minimal time for player-1 to force the game from a start state s S to a visit to p is then T min (G, s, p) = inf π 1 Π R 1 sup π 2 Π R 2 We omit G when clear from the context. sup T visit (G, r, p) r Outcomes(s,π 1,π 2) 4 Solving for Minimum-Time Reachability We restrict our attention to well-formed timed automaton games. The definition of T min quantifies strategies over the set of receptive strategies. Our algorithm will instead work over the set of all strategies. Theorem 1 presents
9 this reduction. We will then present a game structure for the timed automaton game T in which Timediv and Blameless 1 can be represented using Büchi and co-büchi constraints. This builds on the framework of [12] in which a run satisfies the reachability objective p for player-1 iff it belongs in (Timediv Reach(p)) ( Timediv Blameless 1 ), where Reach(p) denotes the set of runs which visit p. In addition, our game structure will also have a backwards running clock, which will be used in the computation of the minimum time, using a µ-calculus algorithm on extended regions. 4.1 Allowing Players to Use All Strategies To allow quantification over all strategies, we first modify the payoff function T visit, so that players are maximally penalised on zeno runs: if r Timediv and r Blameless i ; Tvisit UR if r Timediv and r does not visit p; (r, p) = 0 if r Timediv and r Blameless i ; inf {t IR 0 p σ(state(r, t, k )) for some k} otherwise. It turns out that penalizing on zeno-runs is equivalent to penalising on nonreceptive strategies: Theorem 1. For all well-formed timed game structures G, for all states s and propositions p of G, we have T min (s, p) = inf π 1 Π 1 sup π 2 Π 2 sup r Outcomes(s,π 1,π 2) Tvisit UR (r, p) 4.2 Reduction to Reachability with Büchi and co-büchi Constraints We now decouple reachability from optimizing for minimal time, and show how reachability with time divergence can be solved for, using an appropriately chosen µ-calculus fixpoint. Lemma 1 ([17]). Given a state s, and a proposition p of a well-formed timed automaton game T, 1)we can determine if T min (s, p) <, and 2) If T min (s, p) <, then T min (s, p) < M = 8 L x C (c x + 1) C + 1! 2 C. This upper bound is the same for all s = s. Let M be the upper bound on T min (s, p) as in Lemma 1 if T min (s, p) <, and M = 1 otherwise. For a number N, let IR [0,N] and IR [0,N) denote IR [0, N] and IR [0, N) respectively. We first look at the enlarged game structure [T] with the state space Ŝ = S IR [0,1) (IR [0,M] { }) {true,false} 2, and an augmented transition relation δ : Ŝ (M 1 M 2 ) Ŝ. In an augmented state s, z, β,tick,bl 1 Ŝ, the component s S is a state of the original game structure [T], z is value of a fictitious clock which gets reset every time it hits 1, β is the value of a fictitious clock which is running backwards, tick is true iff
10 one time unit has passed since the last time it was true (so tick is true iff the last transition resulted in z = 0), and bl 1 is true if player-1 is to blame for the last transition. Formally, s, z, β,tick,bl 1 = δ( s, z, β,tick,bl 1,, a i ) iff 1. s = δ(s,, a i ) 2. z = (z + ) mod 1; 3. β = β, where we define β as β if β and β 0, and otherwise ( is an absorbing value for β). 4. tick = true if z + 1, and false otherwise 5. bl 1 = true if a i A 1 and false otherwise. Each run r of [T], and values z IR 0, β M can be mapped to a corresponding unique run r z,β in [T], with r z,β [0] = r[0], z, β,false,false. Similarly, each run r of [T] can be projected to a unique run r T of [T]. It can be seen that the run r is in Timediv iff tick is true infinitely often in r z,β, and that the set Blameless 1 corresponds to runs along which bl 1 is true only finitely often. Proposition 1. Given a timed game structure [T], let X p = S p IR [0,1) {0} {true,false} For a run r of the timed game structure [T], let T visit (r, p) <. Then, T visit (r, p) = inf{β β IR [0,M] and r 0,β visits the set X p }. 2. Let T min (s, p) <. Then, T min (s, p) = inf {β β IR [0,M] and s, 0, β,false,false 1 X } p 3. If T min (s, p) =, then for all β, we have s, 0, β,false,false 1 X p. The rechability objective can be reduced to a parity game: each state in Ŝ is assigned an index Ω : Ŝ {0, 1}, with Ω(ŝ) = 1 iff ŝ X p ; and tick = true or bl 1 = true. We also modify the game structure so that the states in X p are absorbing. Lemma 2. For the timed game [T] with the reachability objective X p, the state ŝ = s, 0, β,false,false 1 X p iff player-1 has a strategy π 1 such that for all strategies π 2 of player-2, and all runs r 0,β Outcomes(ŝ, π 1, π 2 ), the index 1 does not occur infinitely often in r 0,β. The fixpoint formula for solving the parity game in Lemma 2 is given by [13] Y = µy νz [ (Ω 1 (1) CPre 1 (Y )) (Ω 1 (0) CPre 1 (Z)) ] The fixpoint expression uses the variables Y, Z Ŝ and the controllable predecessor operator, CPre 1 : 2 bs 2 bs in its fixpoint computation, defined formally by CPre 1 (X) {ŝ m 1 Γ 1 (ŝ) m 2 Γ 2 (ŝ)( δ jd (ŝ, m 1, m 2 ) X)}. Intuitively, ŝ CPre 1 (X) iff player 1 can force the augmented game from ŝ into X in one move.
11 4.3 Termination of the µ-calculus Fixpoint Iteration We prove termination of the µ-calculus algorithm by demonstrating that we can work on a finite partition of the state space. Let an equivalence relation = e on the states in Ŝ be defined as: l1, κ 1, z 1, β 1,tick 1,bl 1 1 = e l 2, κ 2, z 2, β 2,tick 2,bl 2 1 iff 1. l 1 = l 2,tick 1 = tick 2, and bl 1 = bl κ 1 = κ 2 where κ i : C {z} IR 0 is a clock valuation such that κ i (c) = κ i (c) for c C, κ i (z) = z i,and c z = 1 (c z is the maximum value of the clock z in the definition of =) for i {1, 2}. 3. β 1 = iff β 2 =. 4. If β 1, β 2 then β 1 = β 2 frac(β 1 ) = 0 iff frac(β 2 ) = 0. For each clock x C {z} with κ 1 (x) c x and κ 2 (x) c x, we have frac(κ 1 (x)) + frac(β 1 ) 1 iff frac(κ 2 (x)) + frac(β 2 ) 1 with {<, =, >}. The number of equivalence classes induced by = e is again finite (O ( ( L x C (c x + 1) C + 1! 2 C ) 2 C ) ). We call each equivalence class an extended region. An extended region Y of [T] can be specified by the tuple l,tick,bl 1, h, P, β i, β f, C <, C =, C > where for a state ŝ = l, κ, z, β,tick,bl 1 in Y, l,tick,bl 1 correspond to l,tick,bl 1 in ŝ. h is a function which specifies the integer values of clocks: h(x) = κ(x) if κ(x) < C x + 1, and h(x) = C x + 1 otherwise. P 2 C {z} is a partition of the clocks {C 0,..., C n C i = C {z}, C i for i > 0}, such that 1)for any pair of clocks x, y, we have frac(κ(x)) < frac(κ(y)) iff x C j, y C k for j < k; and 2)x C 0 iff frac(κ(x)) = 0. β i IN {0,...,M} { } indicates the integral value of β. β f {true,false} indicates whether the fractional value of β is greater than 0, β f = true iff β and frac(β) > 0. For a clock x C {z} and β, we have frac(κ(x)) + frac(β) 1 iff x C for {<, =, >}. Pictorially, the relationship between κ and β can be visualised as in Fig. 1. The figure depicts an extended region for C 0 =, β i IN {0,...,M}, β f = true, C < = C {z}, C = =, C > =. The vertical axis is used for the fractional value of β. The horizontal axis is used for the fractional values of the clocks in C i. Thus, given a disjoint partition {C 0,...,C n } of the clocks, we pick n+1 points on a line parallel to the horizontal axis, { C f 0, frac(β),..., Cf n, frac(β) }, with C f i being the fractional value of the clocks in the set C i at κ. The following lemma states that the equivalence relation = e induces a time-abstract bisimulation. Lemma 3. Let Y, Y be extended regions in a timed game structure [T]. Suppose player-i has a move from s 1 Y to s 1 Y, for i {1, 2}. Then, for any s 2 Y, player-i has a move from s 2 to some s 2 Y.
12 1 frac(β) 0 1 C f 1 C f C f 2 3 Fig.1. An extended region with C < = C {z}, C = =, C > = Lemma 4. Let Y, Y 1, Y 2 be extended regions in a timed game structure [T]. Suppose player-i has a move from s 1 Y to s 1 Y, for i {1, 2}. Then, one of the following cases must hold: 1. From all states ŝ Y, player-1 has some move m bs 1 with δ(ŝ, m bs 1) Y 1 2 of player-2 with δ(ŝ, m bs 2 ) Y 2, have blame 1 (ŝ, m bs 1, mbs 2, δ(ŝ, m bs 1 )) = true and blame 2(ŝ, m bs 1, mbs 2, δ(ŝ, m bs 2 )) = false. 2. From all states ŝ Y, for all moves m bs 1 of player-1 with δ(ŝ, m bs 1) Y 1, player-2 has some move m bs 2 with δ(ŝ, m bs 2) Y 2 such that blame 2 (ŝ, m bs 1, m bs 2, δ(ŝ, m bs 2)) = true. Intuitively, Lemma 4 says that either player-1 can force the game in one step from every state in Y so that the next state lies in Y, or player-2 can always foil player-1 from going to the extended region Y. Thus moves to some extended regions always beat moves to other extended regions. Corollary 1. Let X Ŝ consist of a union of extended regions in a timed game structure [T]. Then CPre 1 (X) is again a union of extended regions. Corollary 1 demonstrates that the sets in the fixpoint computation of the µ-calculus algorithm which computes winning states for player-1 for the reachability objective X p consist of unions of extended regions. Since the number of extended regions is finite, the algorithm terminates. Theorem 2. Let s S be a state and p Σ a proposition in a timed automaton game T. 1. The minimum time for player-1 to visit p starting from s (denoted T min (s, p)) is computable in time O ( ( L x C (c x + 1) C + 1! 2 C ) 2 C ). 2. For every region R of [T], either there is constant d R IN { } such that for every state s R we have T min (s, p) = d R, or there is an integer constant d R and a clock x C such that for every state s R we have T min (s, p) = d R frac(κ(x)), where κ(x) is the value of clock x in s.
13 References 1. B. Adler, L. de Alfaro, and M. Faella. Average reward timed games. In FORMATS 05, LNCS 3829, pages Springer, R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed games. In ICALP 04, LNCS 3142, pages Springer, R. Alur and D.L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2): , R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CON- CUR 97, LNCS 1243, pages Springer, E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In HSCC 99, LNCS 1569, pages Springer, P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced timed game automata. In FSTTCS 04, LNCS 3328, pages Springer, P. Bouyer, D. D Souza, P. Madhusudan, and A. Petit. Timed control with partial observability. In CAV 03, LNCS 2725, pages Springer, T. Brihaye, V. Bruyère, and J.F. Raskin. On optimal timed strategies. In FOR- MATS 05, LNCS 3829, pages Springer, F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR 05, LNCS 3653, pages Springer, F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems for timed and hybrid systems. In HSCC 02, LNCS 2289, pages Springer, C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time systems. Formal Methods in System Design, 1(4): , L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise in timed games. In CONCUR 03, LNCS 2761, pages Springer, L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to control: Dynamic programs for omega-regular objectives. In LICS 01, pages IEEE Computer Society Press, D. D Souza and P. Madhusudan. Timed control synthesis for external specifications. In STACS 02, LNCS 2285, pages Springer, M. Faella, S. La Torre, and A. Murano. Dense real-time games. In LICS 02, pages IEEE Computer Society, T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid automata. Theoretical Computer Science, 221: , T.A. Henzinger and V.S. Prabhu. Timed alternating-time temporal logic. In FORMATS 06, LNCS 4202, pages Springer, M. Jurdziński and A. Trivedi. Reachability-time games on timed automata. In ICALP 07, LNCS. Springer, O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems (an extended abstract). In STACS 95, pages , A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller synthesis for timed automata. In Proc. System Structure and Control. Elsevier, R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A. Lynch. Liveness in timed and untimed systems. Inf. Comput., 141(2): , H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems. In Proc. of 30th Conf. Decision and Control, pages , 1991.
14 A Appendix Proof of Theorem 1 We restrict our attention to strategies for plays starting from state s. The proof of the theorem relies on Lemmas 5,6 and 7. Lemma 5. Consider a timed game structure G and a state s S. Let π 1 Π1 R and π2 R Π2 R be player-1 and player-2 receptive strategies, and let π 2 Π 2 be any player-2 strategy. Consider a player-2 strategy π2 be defined as, π 2 (r[0..k]) = π 2 (r[0..k]) for all run prefixes r[0..k] of Outcomes(s, π 1, π 2 ), and π2 (r[0..k]) = π2 R (r[k..k]) otherwise, where k is the first position such that r[0..k ] is not a run prefix of Outcomes(s, π 1, π 2 ). Then, π2 is a receptive strategy. Proof. Intuitively, the strategy π2 acts like π 2 on runs of Outcomes(s, π 1, π 2 ), and like π2 R otherwise. Consider any player-1 strategy π 1 Π 1. If π 1 = π 1, then Outcomes(s, π 1, π 2 ) = Outcomes(s, π 1, π 2 ) Timediv. Suppose π 1 π 1. Let k 0 be the first step in the game (with player-2 strategy π 2 ) which witnesses the fact that π 1 π 1, that is, 1)for all runs r Outcomes(s, π 1, π 2), we have r[0..k 1] is a run prefix of some run in Outcomes(s, π 1, π 2 ) and 2)for some run r Outcomes(s, π 1, π 2 ), we have r [0..k ] to be not a run prefix of any run in Outcomes(s, π 1, π 2 ). We thus have r[0..k 1] to be a run prefix of some run in Outcomes(s, π 1, π 2 ) for every r Outcomes(s, π 1, π2). Consider state s k = r [k ] for r Outcomes(s, π 1, π 2 ). We have r [0..k 1] = r[0..k 1] for some run r Outcomes(s, π 1, π 2 ). After this point (ie., from r [0..k ] onwards), the strategy π2 behaves like πr 2 when started from s k. Since π2 R is a receptive player-2 strategy, we have Outcomes(s k, π 1, π 2 ) Timediv Blameless 2. Thus, Outcomes(s, π 1, π2) Timediv Blameless 2 (finite prefixes of runs do not change membership in these sets). Hence π2 is a receptive player-2 strategy. Lemma 6. Consider a timed game structure G and a state s S. We have, inf π 1 Π 1 sup π 2 Π 2 sup {Tvisit(r, UR p)} = r Outcomes(s,π 1,π 2) inf π 1 Π R 1 sup π 2 Π 2 sup {Tvisit(r, UR p)} r Outcomes(s,π 1,π 2) Proof. Consider any π 1 Π 1 \ Π1 R. There exists π 2 Π 2 such that Outcomes(s, π 1, π 2 ) Timediv Blameless 1. Thus, inf sup π1 Π 1\Π1 R π 2 Π 2 sup r Outcomes(s,π1,π 2) {Tvisit UR (r, p)} =. Lemma 7. Consider a timed game structure G and a state s S. For every player-1 receptive strategy π 1 Π1 R, we have sup π2 Π 2 sup r Outcomes(s,π1,π 2) {Tvisit UR (r, p)} = sup π2 Π2 R sup r Outcomes(s,π 1,π 2) {Tvisit UR (r, p)}. Proof. Let π 2 Π 2. Consider r Outcomes(s, π 1, π 2 ). Since π 1 is receptive, we cannot have r Timediv and r Blameless 1.
15 Suppose r Timediv. Then r Blameless 1. In this case, 0 = Tvisit UR (r, p) Tvisit UR (r, p) for any r Outcomes(s, π 1, π2 R) and πr 2 any player-2 receptive strategy (as we have a well-formed time game structure, there exists some receptive strategy π2 R). Suppose r Timediv and r does not visit p. Consider the strategy π2 which acts like π 2 on Outcomes(s, π 1, π 2, and like π2 R otherwise, as formally defined in Lemma 5. We have π2 to be receptive. Clearly r Outcomes(s, π 1, π2 ) does not visit p, and hence sup r Outcomes(s,π1,π 2){Tvisit UR (r, p)} = sup r Outcomes(s,π 1,π2 ) {Tvisit UR (r, p)} =. Finally, let r visit p and be in Timediv for all r Outcomes(s, π 1, π 2 ). Let π2 be a player-2 receptive strategy as in Lemma 5. We again have Outcomes(s, π 1, π 2 ) = Outcomes(s, π 1, π2), and hence sup r Outcomes(s,π1,π 2){Tvisit UR (r, p)} = sup r Outcomes(s,π 1,π2 ) {T UR (r, p)}. Thus, sup π2 Π2 R sup r Outcomes(s,π 1,π 2) {Tvisit UR Lemmas 6 and 7 together imply inf π 1 Π 1 sup π 2 Π 2 r Outcomes(s,π 1,π 2) sup π2 Π 2 sup r Outcomes(s,π1,π 2) {Tvisit UR (r, p)}. sup {T UR visit(r, p)} = inf π 1 Π R 1 sup π 2 Π R 2 visit (r, p)} = sup {Tvisit(r, UR p)} r Outcomes(s,π 1,π 2) Theorem 1 follows from the fact that for π 1 Π1 R, π 2 Π2 R Outcomes(s, π 1, π 2 ), we have Tvisit UR (r, p) = T visit(r, p). and r Proof of Proposition 1 The first claim is a corollary of the following proposition: Proposition 2. Consider the set S p for a proposition p in a timed game structure [T]. 1. If a run r of [T] visits S p at time t M, then, the run r 0,β visits S p IR [0,1) {0} {true,false} 2, for β = t. 2. If for some β IR, a run r of [T] with r[0] = s, 0, β,false,false visits S p IR [0,1) {0} {true,false} 2, then the corresponding run r = r T of [T] visits S p at time t = β. Proposition 2 is a straightforward result of the fact that β is kept decrementing at rate 1 till it hits 0. The second claim of Proposition 1 essentially follows from the fact that the additional components in the states do not help the players in creating more powerful strategies. T min (s, p) = inf π1 Π1 R sup π sup 2 Π2 R r Outcomes(s,π {T 1,π 2) visit([t], r, p)} { } if r does not visit p; = inf π1 Π1 R sup π 2 Π2 R sup r Outcomes(s,π 1,π 2) inf{β β IR [0,M] and r 0,β visits the set X p } o.w. = inf π1 Π1 R sup π sup 2 Π2 R r Outcomes(s,π inf 1,π 2) β IR [0,M]
16 { g(r, β) g(r, β) = if r 0,β does not visit X } p ; β otherwise = inf β IR[0,M] inf π1 Π1 R sup π 2 Π2 R sup r Outcomes(s,π { 1,π 2) g(r, β) g(r, β) = if r 0,β does not visit X } p ; β otherwise Now, considering plays in [T] which start from state ŝ = s, z, β,tick,bl 1, every strategy π i Π i is equivalent to a strategy π i Π i in which player-i guesses the values of z, β,tick,bl 1. Once these initial values have been guessed, each player can keep on deterministically updating the values at each step. Hence observation of the additional components in states of [T] do not help the players in their strategies. Therefore, T min (s, p) = inf β IR[0,M] inf cπ1 Π c R sup 1 cπ2 Π c R sup br0,β 2 Outcomes(s,cπ { 1,cπ 2) g(r, β) g(r, β) = if r 0,β does not visit X } p ; β otherwise Proof of Lemma 2 We first note that the states in X p can be absorbing as [G] is a well-formed time game structure, and hence player-1 has a receptive strategy which does not block time when the game starts at state ŝ for every state ŝ X p. Consider a run r such that r visits X p. We can assume without loss of generality that either time diverges in r, or time converges but player-1 is not to blame (player-1 can play a receptive strategy upon reaching X p ). Thus this run satisfies the winning condition for player-1. And since X p is absorbing in our parity game, we see 1 only finitely often. Consider a run r such that r does not visit X p. Let time diverge in this run. This run violates the winning condition for player-1, and correspondingly we also see the index 1 infinitely often (due to tick being true infinitely often). Now let time converge in this run (so tick is true only finitely often). If player-1 is to blame for blocking time, then the index 1 will again be true infinitely often. If player-1 is not to blame, then bl 1 will only be true finitely often in this run, and hence we will see the index 1 only finitely often. Proof of Lemma 3 The result can be proved using the following lemma: Lemma 8. Let Y, Y be extended regions in a timed game structure [T]. Consider a state ŝ Y and t IR >0 Suppose (0, t] = T Y T Y, such that for all τ T Y we have ŝ + τ Y, and for all τ T Y we have ŝ + τ Y (Y Y is the first extended region change due to the passage of time). Then, for all states ŝ 2 Y, there exists t 2 IR >0 such that for some T Y 2, T Y 2 with (0, t 2 ] = T Y 2 T Y 2, for all τ 2 T Y 2 we have ŝ 2 + τ 2 Y, and for all τ 2 T Y 2 we have ŝ 2 + τ 2 Y. Proof. We outline a sketch of the proof. For simplicity, consider the values of each clock x to be less than C x +1. We look at the time successors of states ŝ in Y. The following cases for Y = l,tick,bl 1, h, P, β i, β f, C <, C =, C > can arise:
17 1 1 frac(β) 0 1 C f 1 C f C f 2 3 frac(β) 0 1 C f 1 C f 2 C f 3 Fig.2. An extended region with C < = C {z}, C = = and its time successor. 1 1 frac(β) frac(β ) 0 1 C f 1 C f C f 2 C f 3 4 Cf 5 0 C f 1 C f 2 C f 3 C f 4 C f 5 = C f 0 = 0 Fig.3. An extended region with C <, C =, C > and its time successor. Case 1 C 0 =, β i IN {0,..., M}, β f = true, C < = C {z}, C = =, C > =. For any state in Y, the next extended region Y can only be l,tick,bl 1, h, P, β i, β f = false, C <, C =, C >, which is hit after a time of frac(β f ) (note that Cn f + frac(β) < 1 implies P is going to be unchanged in the time successor extended region). Case 2 C 0 =, β i IN {0,...,M}, β f = true, C <, C =, C >. Pictorially, this can be depicted as in Fig. 3. Consider any state in Y. The extended region changes after a time of 1 Cn. f The new state then lies in an extended region such that C i = C i for 0 < i < n, and C 0 = C n. Also, C f i = C f i + (1 Cn f ) for 0 < i < n, and frac β = frac(β) (1 Cn f). We also have that if Cf i + frac(β) 1, then C f i +frac β = C f i + frac(β) 1 for {<, =, >}, 0 < i < n. Thus the new state lies in the region l,tick,bl 1, h, P = {C 0,...C n 1 C i = C i for 0 < i < n, C 0 = C n }, β i, β f, C < = C < C n, C =, with tick = true iff z C n, and h is h with the integer values for clocks in C n \ {z} incremented by
18 1. This analysis holds for all the states in Y. Thus the extended region Y following Y is unique. Case 3 C 0, β i IN {0,...,M}, β f = true All the states in Y then move to l,tick,bl 1, h, P = {C 0,..., C n+1 C 0 = and C i+1 = C i, 0 i n}, β i, β f, C <, C =, C >. Case 4 C 0, β i IN {1,...,M}, β f = false The time successor in this case is l,tick,bl 1, P = {C 0,..., C n+1 C 0 = and C i+1 = C i, 0 i n}, β i = β i 1, β f = true, C <, C =, C >. We show C <, C =, C > to be unique as follows: the new state ŝ + t has the constraints = C f i + t for i n. Thus, frac(β ) + C f i+1 = 1)frac(β ) = 1 t and 2)C f i+1 (1 t) + C f i + t = 1 + Cf i. Hence, C < = and C = = C 1 = C 0. Case 5 β i = 0, β f = false We get β = in the next state (and hence C < = C = =, β i =, β f = false). The rest of the components of the extended region have a unique value as in the time successors of standard regions. Case 6 β i = The value of P gets updated as in the time successors of standard regions. The analysis of the remaining cases proceeds in a similar vein to the above cases. Proof of Theorem 2 We prove the second part of the claim. Proof. Let M be the upper bound on T min (s, p) as in Lemma 1 if T min (s, p) <, and M = 1 otherwise. From the comments after Corollary 1, the states in Ŝ from which player-1 has a winning strategy for reaching X p are computable, and consist of a union of extended regions n k=1 Y k. Suppose this union is non-empty. Using Proposition 1, the minimum time for player-1 to reach p from s is then min k { inf { β β IR[0,M] and s, 0, β,false,false Y k }}. Note that s = l, κ is fixed here, only β can be varied. We also have that inf{β β IR [0,M] and l, κ, 0, β,false,false Y k } is equal to (letting Y k = l,false,false, h, P, β i, β f, C <, C =, C > ): 1. An integer when C > = C = = or when β f = false. The infimum value for β is reached when β f = false (for then the set of β s is a singleton). Thus, player-1 has an optimal strategy when β f = false. 2. d k frac(κ(x)) when C = = C j, and where x C j. The infimum value is actually attained by player-1 with some strategy π 1 in this case. 3. d k frac(κ(x)) when C = =, C >, where x C j for C > = {C j,..., C n }. The infimum value is not attained by player-1 in this case he can only get arbitrarily close to the optimum. Note that z C 0 in every Y k (for, κ(z) = 0). Finally, min k {e k e k = d k or d k x k } is again an expression of the form d r or d r x over a region.
On The Number Of Slim Semimodular Lattices
On The Number Of Slim Semimodular Lattices Gábor Czédli, Tamás Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai Institute, University of Szeged Conference on Universal Algebra and Lattice Theory
Construction of a cube given with its centre and a sideline
Transformation of a plane of projection Construction of a cube given with its centre and a sideline Exercise. Given the center O and a sideline e of a cube, where e is a vertical line. Construct the projections
Performance Modeling of Intelligent Car Parking Systems
Performance Modeling of Intelligent Car Parking Systems Károly Farkas Gábor Horváth András Mészáros Miklós Telek Technical University of Budapest, Hungary EPEW 2014, Florence, Italy Outline Intelligent
Genome 373: Hidden Markov Models I. Doug Fowler
Genome 373: Hidden Markov Models I Doug Fowler Review From Gene Prediction I transcriptional start site G open reading frame transcriptional termination site promoter 5 untranslated region 3 untranslated
Correlation & Linear Regression in SPSS
Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation
STUDENT LOGBOOK. 1 week general practice course for the 6 th year medical students SEMMELWEIS EGYETEM. Name of the student:
STUDENT LOGBOOK 1 week general practice course for the 6 th year medical students Name of the student: Dates of the practice course: Name of the tutor: Address of the family practice: Tel: Please read
Cluster Analysis. Potyó László
Cluster Analysis Potyó László What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis
Széchenyi István Egyetem www.sze.hu/~herno
Oldal: 1/6 A feladat során megismerkedünk a C# és a LabVIEW összekapcsolásának egy lehetőségével, pontosabban nagyon egyszerű C#- ban írt kódból fordítunk DLL-t, amit meghívunk LabVIEW-ból. Az eljárás
Local fluctuations of critical Mandelbrot cascades. Konrad Kolesko
Local fluctuations of critical Mandelbrot cascades Konrad Kolesko joint with D. Buraczewski and P. Dyszewski Warwick, 18-22 May, 2015 Random measures µ µ 1 µ 2 For given random variables X 1, X 2 s.t.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.
Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population
EN United in diversity EN A8-0206/419. Amendment
22.3.2019 A8-0206/419 419 Article 2 paragraph 4 point a point i (i) the identity of the road transport operator; (i) the identity of the road transport operator by means of its intra-community tax identification
Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz
Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz Kvantumkapuk, áramkörök 2016. március 3. A kvantummechanika posztulátumai (1-2) 1. Állapotleírás Zárt fizikai rendszer aktuális állapota
Verification of Timed Automata
Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Department of Measurement and Information Systems Verification of Timed Automata by CEGAR-Based Algorithms
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Dependency preservation
Adatbázis-kezelés. (4 előadás: Relácó felbontásai (dekomponálás)) 1 Getting lossless decomposition is necessary. But of course, we also want to keep dependencies, since losing a dependency means, that
On the ω-language Expressive Power of Extended Petri Nets
ÒØÖ Ö Ò Î Ö Ø ÓÒ Ì Ò Ð Ê ÔÓÖØ ÒÙÑ Ö ¾¼¼ º ¾ ÇÒ Ø ÓÑ ¹Ð Ò Ù ÜÔÖ Ú ÔÓÛ Ö Ó ÜØ Ò È ØÖ Ò Ø Ð Ò Ò Ð ÆË Òµ ÐÐ Ö ÖØ ÍÄ µ  ҹ Ö ÒÓ Ê Ò ÍÄ µ Ä ÙÖ ÒØ Î Ò Ò ÍÄ µ Ì ÛÓÖ Û Ô ÖØ ÐÐÝ ÙÔÔÓÖØ Ý Ê Ö ÒØ ¾º ¼º¼¾ ØØÔ»»ÛÛÛºÙÐ
Computer Architecture
Computer Architecture Locality-aware programming 2016. április 27. Budapest Gábor Horváth associate professor BUTE Department of Telecommunications ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Centre Fédéré en Vérication
Centre Fédéré en Vérication Technical Report number 2009.110 An Antichain Algorithm for LTL Realizability Emmanuel Filiot, Naiyong Jin, Jean-François Raskin This work was partially supported by a FRFC
Qualitative Logics and Equivalences for Probabilistic Systems
ÒØÖ Ö Ò Î Ö Ø ÓÒ Ì Ò Ð Ê ÔÓÖØ ÒÙÑ Ö ¾¼¼ º ¾ ÉÙ Ð Ø Ø Ú ÄÓ Ò ÕÙ Ú Ð Ò ÓÖ ÈÖÓ Ð Ø ËÝ Ø Ñ ÄÙ Ð ÖÓ ÃÖ Ò Ò Ù ØØ Ö Å ÖÓ ÐÐ Ü Ð Ä Ý Ì ÛÓÖ Û Ô ÖØ ÐÐÝ ÙÔÔÓÖØ Ý Ê Ö ÒØ ¾º ¼º¼¾ ØØÔ»»ÛÛÛºÙÐ º º»»» Ú Qualitative Logics
Characterizations and Properties of Graphs of Baire Functions
Characterizations and Properties of Graphs of Baire Functions BSc Szakdolgozat Szerz : Témavezet : Maga Balázs Buczolich Zoltán Matematika BSc Matematikus Egyetemi tanár Analízis Tanszék Eötvös Loránd
MATEMATIKA ANGOL NYELVEN MATHEMATICS
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA ANGOL NYELVEN MATHEMATICS EMELT SZINTŰ ÍRÁSBELI VIZSGA HIGHER LEVEL WRITTEN EXAMINATION Az írásbeli vizsga időtartama: 240 perc Time allowed for the examination:
SQL/PSM kurzorok rész
SQL/PSM kurzorok --- 2.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 9.3. Az SQL és a befogadó nyelv közötti felület (sormutatók) 9.4. SQL/PSM Sémában
T Á J É K O Z T A T Ó. A 1108INT számú nyomtatvány a http://www.nav.gov.hu webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el.
T Á J É K O Z T A T Ó A 1108INT számú nyomtatvány a http://www.nav.gov.hu webcímen a Letöltések Nyomtatványkitöltő programok fülön érhető el. A Nyomtatványkitöltő programok fület választva a megjelenő
Mapping Sequencing Reads to a Reference Genome
Mapping Sequencing Reads to a Reference Genome High Throughput Sequencing RN Example applications: Sequencing a genome (DN) Sequencing a transcriptome and gene expression studies (RN) ChIP (chromatin immunoprecipitation)
ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY
ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY A feladatsor három részbol áll 1. A vizsgáztató társalgást kezdeményez a vizsgázóval. 2. A vizsgázó egy szituációs feladatban vesz részt a
Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm
It is like any other experiment! What is a bioinformatics experiment? You need to know your data/input sources You need to understand your methods and their assumptions You need a plan to get from point
A logaritmikus legkisebb négyzetek módszerének karakterizációi
A logaritmikus legkisebb négyzetek módszerének karakterizációi Csató László laszlo.csato@uni-corvinus.hu MTA Számítástechnikai és Automatizálási Kutatóintézet (MTA SZTAKI) Operációkutatás és Döntési Rendszerek
Véges szavak általánosított részszó-bonyolultsága
Véges szavak általánosított részszó-bonyolultsága KÁSA Zoltán Sapientia Erdélyi Magyar Tudományegyetem Kolozsvár Marosvásárhely Csíkszereda Matematika-Informatika Tanszék, Marosvásárhely Budapest, 2010.
A Generalization of Cobham s Theorem to Automata over Real Numbers
ÒØÖ Ö Ò Î Ö Ø ÓÒ Ì Ò Ð Ê ÔÓÖØ ÒÙÑ Ö ¾¼¼ º Ò Ö Ð Þ Ø ÓÒ Ó Ó Ñ³ Ì ÓÖ Ñ ØÓ ÙØÓÑ Ø ÓÚ Ö Ê Ð ÆÙÑ Ö ÖÒ Ö Ó ÐÓØ ÂÙÐ Ò ÖÙ Ø Ò Ì ÛÓÖ Û Ô ÖØ ÐÐÝ ÙÔÔÓÖØ Ý Ê Ö ÒØ ¾º ¼º¼¾ ØØÔ»»ÛÛÛºÙÐ º º»»» Ú A Generalization of Cobham
PIACI HIRDETMÉNY / MARKET NOTICE
PIACI HIRDETMÉNY / MARKET NOTICE HUPX DAM Másnapi Aukció / HUPX DAM Day-Ahead Auction Iktatási szám / Notice #: Dátum / Of: 18/11/2014 HUPX-MN-DAM-2014-0023 Tárgy / Subject: Változások a HUPX másnapi piac
ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY
ANGOL NYELV KÖZÉPSZINT SZÓBELI VIZSGA I. VIZSGÁZTATÓI PÉLDÁNY A feladatsor három részből áll 1. A vizsgáztató társalgást kezdeményez a vizsgázóval. 2. A vizsgázó egy szituációs feladatban vesz részt a
GEOGRAPHICAL ECONOMICS B
GEOGRAPHICAL ECONOMICS B ELTE Faculty of Social Sciences, Department of Economics Geographical Economics "B" KRUGMAN (1991) MODEL: EXTENSIONS Authors: Gábor Békés, Sarolta Rózsás Supervised by Gábor
Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter
Néhány folyóiratkereső rendszer felsorolása és példa segítségével vázlatos bemutatása Sasvári Péter DOI: http://doi.org/10.13140/rg.2.2.28994.22721 A tudományos közlemények írása minden szakma művelésének
(NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV
Kommunikációs rendszerek programozása (NGB_TA024_1) MÉRÉSI JEGYZŐKÖNYV (5. mérés) SIP telefonközpont készítése Trixbox-szal 1 Mérés helye: Széchenyi István Egyetem, L-1/7 laboratórium, 9026 Győr, Egyetem
Alternating Permutations
Alternating Permutations Richard P. Stanley M.I.T. Definitions A sequence a 1, a 2,..., a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 a 3
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika angol
Statistical Dependence
Statistical Dependence Petra Petrovics Statistical Dependence Deinition: Statistical dependence exists when the value o some variable is dependent upon or aected by the value o some other variable. Independent
Using the CW-Net in a user defined IP network
Using the CW-Net in a user defined IP network Data transmission and device control through IP platform CW-Net Basically, CableWorld's CW-Net operates in the 10.123.13.xxx IP address range. User Defined
Cashback 2015 Deposit Promotion teljes szabályzat
Cashback 2015 Deposit Promotion teljes szabályzat 1. Definitions 1. Definíciók: a) Account Client s trading account or any other accounts and/or registers maintained for Számla Az ügyfél kereskedési számlája
KIEGÉSZÍTŽ FELADATOK. Készlet Bud. Kap. Pápa Sopr. Veszp. Kecsk. 310 4 6 8 10 5 Pécs 260 6 4 5 6 3 Szomb. 280 9 5 4 3 5 Igény 220 200 80 180 160
KIEGÉSZÍTŽ FELADATOK (Szállítási probléma) Árut kell elszállítani három telephelyr l (Kecskemét, Pécs, Szombathely) öt területi raktárba, melyek Budapesten, Kaposváron, Pápán, Sopronban és Veszprémben
Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel
Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel Timea Farkas Click here if your download doesn"t start
Nemzetközi Kenguru Matematikatábor
Nemzetközi Kenguru Matematikatábor 2011. augusztus 19-27., Werbellinsee, Németország BESZÁMOLÓ Bevezető Idén hetedik alkalommal került megrendezére a Nemzetközi Kenguru Matematikatábor (7. Internationale
Contact us Toll free (800) fax (800)
Table of Contents Thank you for purchasing our product, your business is greatly appreciated. If you have any questions, comments, or concerns with the product you received please contact the factory.
Supporting Information
Supporting Information Cell-free GFP simulations Cell-free simulations of degfp production were consistent with experimental measurements (Fig. S1). Dual emmission GFP was produced under a P70a promoter
Tudományos Ismeretterjesztő Társulat
Sample letter number 3. Russell Ltd. 57b Great Hawthorne Industrial Estate Hull East Yorkshire HU 19 5BV 14 Bebek u. Budapest H-1105 10 December, 2009 Ref.: complaint Dear Sir/Madam, After seeing your
Nonrelativistic, non-newtonian gravity
Nonrelativistic, non-newtonian gravity Dieter Van den Bleeken Bog azic i University based on arxiv:1512.03799 and work in progress with C ag ın Yunus IPM Tehran 27th May 2016 Nonrelativistic, non-newtonian
Ensemble Kalman Filters Part 1: The basics
Ensemble Kalman Filters Part 1: The basics Peter Jan van Leeuwen Data Assimilation Research Centre DARC University of Reading p.j.vanleeuwen@reading.ac.uk Model: 10 9 unknowns P[u(x1),u(x2),T(x3),.. Observations:
THS710A, THS720A, THS730A & THS720P TekScope Reference
THS710A, THS720A, THS730A & THS720P TekScope Reference 070-9741-01 Getting Started 1 Connect probes or leads. 2 Choose SCOPE 3 or METER mode. Press AUTORANGE. Copyright Tektronix, Inc. Printed in U.S.A.
Hierarchical Abstraction for the Verification of State-based Systems
Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Department of Measurement and Information Systems Hierarchical Abstraction for the Verification of State-based
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.
Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium).
A szakirodalmi idézések és hivatkozások rendszere és megadásuk szabályai A bibliográfia legfontosabb szabályai Fogalma: Bibliográfiai hivatkozáson azoknak a pontos és kellően részletezett adatoknak az
Correlation & Linear Regression in SPSS
Correlation & Linear Regression in SPSS Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise 1 - Correlation File / Open
Szoftver-technológia II. Tervezési minták. Irodalom. Szoftver-technológia II.
Tervezési minták Irodalom Steven R. Schach: Object Oriented & Classical Software Engineering, McGRAW-HILL, 6th edition, 2005, chapter 8. E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design patterns: Elements
Efficient symmetric key private authentication
Efficient symmetric key private authentication Cryptographic Protocols (EIT ICT MSc) Dr. Levente Buttyán Associate Professor BME Hálózati Rendszerek és Szolgáltatások Tanszék Lab of Cryptography and System
16F628A megszakítás kezelése
16F628A megszakítás kezelése A 'megszakítás' azt jelenti, hogy a program normális, szekvenciális futása valamilyen külső hatás miatt átmenetileg felfüggesztődik, és a vezérlést egy külön rutin, a megszakításkezelő
Centre Fédéré en Vérication
Centre Fédéré en Vérication Technical Report number 2008.120 Computing Convex Hulls by Automata Iteration François Cantin, Axel Legay, Pierre Wolper This work was partially supported by a FRFC grant: 2.4530.02
Választási modellek 3
Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
KELER KSZF Zrt. bankgarancia-befogadási kondíciói. Hatályos: 2014. július 8.
KELER KSZF Zrt. bankgarancia-befogadási kondíciói Hatályos: 2014. július 8. A KELER KSZF a nem-pénzügyi klíringtagjaitól, és az energiapiaci alklíringtagjaitól a KELER KSZF Általános Üzletszabályzata szerinti
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium 2009.09.21 25.
First experiences with Gd fuel assemblies in the Paks NPP Tams Parkó, Botond Beliczai AER Symposium 2009.09.21 25. Introduction From 2006 we increased the heat power of our units by 8% For reaching this
ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI
Dense Matrix Algorithms (Chapter 8) Alexandre David B2-206
Dense Matrix Algorithms (Chapter 8) Alexandre David B2-206 Dense Matrix Algorithm Dense or full matrices: few known zeros. Other algorithms for sparse matrix. Square matrices for pedagogical purposes only
Emelt szint SZÓBELI VIZSGA VIZSGÁZTATÓI PÉLDÁNY VIZSGÁZTATÓI. (A részfeladat tanulmányozására a vizsgázónak fél perc áll a rendelkezésére.
Emelt szint SZÓBELI VIZSGA VIZSGÁZTATÓI PÉLDÁNY VIZSGÁZTATÓI PÉLDÁNY A feladatsor három részből áll 1. A vizsgáztató társalgást kezdeményez a vizsgázóval. 2. A vizsgázó egy vita feladatban vesz részt a
Erdős-Ko-Rado theorems on the weak Bruhat lattice
Erdős-Ko-Rado theorems on the weak Bruhat lattice arxiv:1904.01436v1 [math.co] 2 Apr 2019 Susanna Fishel, Glenn Hurlbert, Vikram Kamat, Karen Meagher April 3, 2019 Abstract Let L = (X, ) be a lattice.
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2016. október 18. MATEMATIKA ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Discussion of The Blessings of Multiple Causes by Wang and Blei
Discussion of The Blessings of Multiple Causes by Wang and Blei Kosuke Imai Zhichao Jiang Harvard University JASA Theory and Methods Invited Papers Session Joint Statistical Meetings July 29, 2019 Imai
Create & validate a signature
IOTA TUTORIAL 7 Create & validate a signature v.0.0 KNBJDBIRYCUGVWMSKPVA9KOOGKKIRCBYHLMUTLGGAV9LIIPZSBGIENVBQ9NBQWXOXQSJRIRBHYJ9LCTJLISGGBRFRTTWD ABBYUVKPYFDJWTFLICYQQWQVDPCAKNVMSQERSYDPSSXPCZLVKWYKYZMREAEYZOSPWEJLHHFPYGSNSUYRZXANDNQTTLLZA
Pletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban
Schwarz lemma, the Carath eodory and Kobayashi metrics and applications in complex analysis
Schwarz lemma, the Carath eodory and Kobayashi metrics and applications in complex analysis Workshop: The perturbation of the generalized inverses, geometric structures, xed point theory and applications
Kvantum-informatika és kommunikáció 2015/2016 ősz. A kvantuminformatika jelölésrendszere szeptember 11.
Kvantum-informatika és kommunikáció 2015/2016 ősz A kvantuminformatika jelölésrendszere 2015. szeptember 11. Mi lehet kvantumbit? Kvantum eszközök (1) 15=5 3 Bacsárdi Képek forrása: IBM's László, Almaden
Hatékony sztochasztikus mechanizmusok tervezése. Diplomamunka
Eötvös Loránd Tudományegyetem Természettudományi Kar Csóka Endre matematikus szak Hatékony sztochasztikus mechanizmusok tervezése Diplomamunka témavezető: Pintér Miklós Péter, egyetemi adjunktus Budapesti
Utolsó frissítés / Last update: február Szerkesztő / Editor: Csatlós Árpádné
Utolsó frissítés / Last update: 2016. február Szerkesztő / Editor: Csatlós Árpádné TARTALOM / Contents BEVEZETŐ / Introduction... 2 FELNŐTT TAGBÉLYEGEK / Adult membership stamps... 3 IFJÚSÁGI TAGBÉLYEGEK
ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 200. május 4. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 200. május 4. 8:00 Az írásbeli vizsga időtartama: 80 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI
EN United in diversity EN A8-0206/445. Amendment
21.3.2019 A8-0206/445 445 Title Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL amending Directive 2006/22/EC as regards enforcement requirements and laying down specific rules with
Lexington Public Schools 146 Maple Street Lexington, Massachusetts 02420
146 Maple Street Lexington, Massachusetts 02420 Surplus Printing Equipment For Sale Key Dates/Times: Item Date Time Location Release of Bid 10/23/2014 11:00 a.m. http://lps.lexingtonma.org (under Quick
Modeling the ecological collapse of Easter Island
szakdolgozat Modeling the ecological collapse of Easter Island Takács Bálint Máté Alkalmazott Matematikus MSc hallgató Témavezet k: Faragó István egyetemi tanár ELTE Alkalmazott Analízis és Számításmatematikai
A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon
A rosszindulatú daganatos halálozás változása és között Eredeti közlemény Gaudi István 1,2, Kásler Miklós 2 1 MTA Számítástechnikai és Automatizálási Kutató Intézete, Budapest 2 Országos Onkológiai Intézet,
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek
Számítógéppel irányított rendszerek elmélete Gyakorlat - Mintavételezés, DT-LTI rendszermodellek Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos.katalin@virt.uni-pannon.hu
Utasítások. Üzembe helyezés
HASZNÁLATI ÚTMUTATÓ Üzembe helyezés Utasítások Windows XP / Vista / Windows 7 / Windows 8 rendszerben történő telepítéshez 1 Töltse le az AORUS makróalkalmazás telepítőjét az AORUS hivatalos webhelyéről.
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
BKI13ATEX0030/1 EK-Típus Vizsgálati Tanúsítvány/ EC-Type Examination Certificate 1. kiegészítés / Amendment 1 MSZ EN 60079-31:2014
(1) EK-TípusVizsgálati Tanúsítvány (2) A potenciálisan robbanásveszélyes környezetben történő alkalmazásra szánt berendezések, védelmi rendszerek 94/9/EK Direktíva / Equipment or Protective Systems Intended
2 level 3 innovation tiles. 3 level 2 innovation tiles. 3 level 1 innovation tiles. 2 tribe pawns of each color. 3 height 3 tribe pawns.
2 darab 3-as szintű találmány jelző Origin kártyaszövegek fordítása Vágd ki a az egyes kártyákhoz tartozó lapokat a vonalak és a színes terület mentén, majd csúsztasd be a kártyavédő fóliába úgy, hogy
MATEMATIKA ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2018. május 8. MATEMATIKA ANGOL NYELVEN EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 8. 8:00 Időtartam: 300 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika
Adatbázisok 1. Rekurzió a Datalogban és SQL-99
Adatbázisok 1 Rekurzió a Datalogban és SQL-99 Expressive Power of Datalog Without recursion, Datalog can express all and only the queries of core relational algebra. The same as SQL select-from-where,
KELET-ÁZSIAI DUPLANÁDAS HANGSZEREK ÉS A HICHIRIKI HASZNÁLATA A 20. SZÁZADI ÉS A KORTÁRS ZENÉBEN
Liszt Ferenc Zeneművészeti Egyetem 28. számú művészet- és művelődéstörténeti tudományok besorolású doktori iskola KELET-ÁZSIAI DUPLANÁDAS HANGSZEREK ÉS A HICHIRIKI HASZNÁLATA A 20. SZÁZADI ÉS A KORTÁRS
TestLine - Angol teszt Minta feladatsor
Minta felaatsor venég Téma: Általános szintfelmérő Aláírás:... Dátum: 2016.05.29 08:18:49 Kérések száma: 25 kérés Kitöltési iő: 1:17:27 Nehézség: Összetett Pont egység: +6-2 Értékelés: Alaértelmezett értékelés
± ± ± ƒ ± ± ± ± ± ± ± ƒ. ± ± ƒ ± ± ± ± ƒ. ± ± ± ± ƒ
± ± ± ± ƒ ± ± ± ƒ ± ± ƒ ± ç å ± ƒ ± ± ± ± ± ± ± ± ± ± ± ƒ ± ± ± ä ± ± ± ± ƒ ± ± ± ± ƒ ± ± ± ± ƒ ± ± ± ± ƒ ± ± ± ± ± ± ± ± ± ± ± ± ± ± ƒ ± ± ± ± ± ƒ ± ± ± ± ƒ ± ± ± ƒ ± ± ƒ ± ± ± ± ± ± ± ± ± ± ± ± ± ±
Ültetési és öntözési javaslatok. Planting and watering instructions
Ültetési és öntözési javaslatok Planting and watering instructions 1 Önöntöző-rendszer Sub-irrigation 2 Kedves növénykedvelő A LECHUZA önöntöző rendszerrel növényeink természetüknél fogva gyönyörű virágokat
Proxer 7 Manager szoftver felhasználói leírás
Proxer 7 Manager szoftver felhasználói leírás A program az induláskor elkezdi keresni az eszközöket. Ha van olyan eszköz, amely virtuális billentyűzetként van beállítva, akkor azokat is kijelzi. Azokkal
Unit 10: In Context 55. In Context. What's the Exam Task? Mediation Task B 2: Translation of an informal letter from Hungarian to English.
Unit 10: In Context 55 UNIT 10 Mediation Task B 2 Hungarian into English In Context OVERVIEW 1. Hungarian and English in Context 2. Step By Step Exam Techniques Real World Link Students who have studied
SAJTÓKÖZLEMÉNY Budapest 2011. július 13.
SAJTÓKÖZLEMÉNY Budapest 2011. július 13. A MinDig TV a legdinamikusabban bıvülı televíziós szolgáltatás Magyarországon 2011 elsı öt hónapjában - A MinDig TV Extra a vezeték nélküli digitális televíziós
(c) 2004 F. Estrada & A. Jepson & D. Fleet Canny Edges Tutorial: Oct. 4, '03 Canny Edges Tutorial References: ffl imagetutorial.m ffl cannytutorial.m
Canny Edges Tutorial: Oct. 4, '03 Canny Edges Tutorial References: ffl imagetutorial.m ffl cannytutorial.m ffl ~jepson/pub/matlab/isetoolbox/tutorials ffl ~jepson/pub/matlab/utvistoolbox/tutorials ffl
ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI
Expansion of Red Deer and afforestation in Hungary
Expansion of Red Deer and afforestation in Hungary László Szemethy, Róbert Lehoczki, Krisztián Katona, Norbert Bleier, Sándor Csányi www.vmi.szie.hu Background and importance large herbivores are overpopulated
Utolsó frissítés / Last update: Szeptember / September Szerkesztő / Editor: Csatlós Árpádné
Utolsó frissítés / Last update: 2018. Szeptember / September Szerkesztő / Editor: Csatlós Árpádné TARTALOM / Contents BEVEZETŐ / Introduction... 2 FELNŐTT TAGBÉLYEGEK / Adult membership stamps... 3 IFJÚSÁGI