Szignáltranszdukció: jelátvitel általános jellemzői, másodlagos hírvivők: szabad gyökök és intracelluláris szabad Ca2+
|
|
- Jakab Vörös
- 6 évvel ezelőtt
- Látták:
Átírás
1 Szignáltranszdukció: jelátvitel általános jellemzői, másodlagos hírvivők: szabad gyökök és intracelluláris szabad Ca2+
2 Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező metabolit aktiválja őket (mindkettő) Információ átvitel másodlagos hírvivőkkel vagy fehérje-fehérje kölcsönhatásokkal. A sejtet elérő szignálmolekulákra adekvát választ adó mechanizmusokat aktiválják. Cell Signalling Biology: Michael J. Berridge (2012) Module 2: Cell Signalling Pathways
3 Másodlagos hírvivők Sejten belüli jelátviteli folyamatokban vesznek részt Sejtmembrán vagy citoplazmatikus receptorok jelét továbbítják a sejtmagba, vagy a különböző ioncsatornákhoz, enzimekhez.
4 Hidrofil anyagok: Membránon nem jutnak át csak csatornákon vagy transzporterek segítségével. camp, cgmp, Ca2+ Lipofil anyagok: Kisebb lipofil anyagok membránon átjutnak, sejten belül a különböző kompartmentek között szabadon vándorolnak. Arachidonsav Gázok: Membránokon szabadon átjutnak, gyorsan diffundálnak. Nem feltétlenül maradnak benn a sejtben, retrográd hírvivőként is működhetnek. NO, CO
5 Szerepük: Amplifikálás Reakció sorozat egyes elemei a soron következő reakcióban részt vevő molekulák nagy tömegét képesek aktiválni.
6 Jelerősítés = szignál amplifikáció Adrenalin x x 40x 10x 100x 1,000x 10,000x
7 Komplexálás: redundancia pleiotrópia Jelek integrációjatöbb típusú receptortól is eljuthatunk ugyanahhoz az ioncsatornához: S: stimulus BE: biológiai válaszol TC: célsejt redundancia pleiotrópia kombinációi
8 Redundancia: G protein-kapcsolt receptoroknál több receptor ugyanahhoz a G proteinhez és azon keresztül ugyanahhoz az ioncsatornához kapcsolódik (GABAB -serotonin ugyanazt a K+ csatornát nyitja). Pleiotrópia: Noradrenalin: α1 receptorok: erek falában, Gq kapcsolt: Ca2+ beáramlás és foszfolipáz C-inozitoltrifoszfát (IP3) DAG útvonal aktiválás vazodilatáció, 1 receptorok: szívben, Gs kapcsolt: camp-szint emelése, pulzusszám növelése, 2 receptorok: tüdőben, simaizmokban, camp szinten keresztül vazodilatáció GABA preszinaptikus GABAB receptor: Gi, Ca2+ csatorna bezárása, posztszinaptikus GABAB receptor: GIRK vagy Gi adenylát cikláz gátlása.
9 Két receptor együttes aktivációja más választ alakít ki mint egymástól független aktivációjuk. Vérlemezkék aggregációjához P2Y1 (Gq foszfolipáz C útvonal aktiválása) és P2TAC (Gi adenilát cikláz gátlása) receptorok együttes aktiválása kell, külön-külön nem okoznak vérlemezke aggregációt. Hippocampális piramissejteken mglur1 és machr együttes aktiviációja késlelteti a tüzeléssorozatok kialakulását, de egyik receptor se képes egyedül ezt a hatást kifejteni.
10 G-protein-kapcsolt receptor (GPCR) dimerizáció lehetséges hatásai: (1) Receptor érésében szerep: ER-ből a sejt felszínre szállítást elősegítése (2) Sejtfelszíni ligand kötés erősségét befolyásolja (3) Kötőhelyek kooperativitását növeli vagy csökkenti, (4) G protein szelektivitásra hat, (5) Kointernalizáció kiváltása akkor is, ha csak az egyiket aktiváltuk, vagy internalizáció blokkolása. (Terrillon and Bouvier EMBO Rep :30-34.)
11 Ca2+ mint másodlagos hírvivő: Fehérjék komformációváltozását képes előidézni: Fehérjékben található oxigén képes a Ca2+-mal komplexet kialakítani oxigén képes körbefogni a Ca2+-mot, 6-8 oxigén atom van leggyakrabban a kelát komplexben ( Citoplazmában levő fehérjék egy része a szabad Ca2+-mal komplexet képez. Citoplazmális [Ca2+] nM.
12 Intracelluláris Ca2+ szintemelkedés: Az ingerelt sejt plazmájában megváltozhat a [Ca2+], ez befolyásolja az ott végbemenő biokémiai folyamatokat eltérő hatás a különféle szövetekre: sejtosztódás megindulása, váladékszemcsék kiürülése bizonyos biokémiai folyamatok ki és bekapcsolódását. citoplazmán belül a Ca2+ mennyisége periodikusan változhat Ca2+ periodikus emelkedése hullámszerűen tovaterjed
13 A Ca2+ nyugalmi állapotban túlnyomórészt a mitokondriumokban, és az endoplazmatikus hálózatban (ER) raktározódik.
14 Inger hatására kialakuló citoplazmatikus [Ca2+] növekedés kialakulásának okai: Ca2+ áramolhat a sejtbe feszültség függő Ca2+ csatornákon vagy receptor-aktivált Ca2+ csatornákon keresztül, Ca2+ áramlik ki az ER-ból. Receptorok egy része (G proteinen keresztül vagy tirozin kinázon keresztül) aktiválja a PLC-t (foszfolipáz-c). PLC hidrolizál egy membrán lipidet PIP2-t amelyből IP3 (inozitoltrifoszfát és DAG (diacylglicerol) lesz.
15 A Ca2+ kiáramlást legtöbbször az inozitol trifoszfát (IP3) váltja ki, az ER falán elhelyezkedő IP3 receptorhoz kötődve. Ca2+ hatására az IP3 receptor ioncsatornává alakul, a Ca2+ a plazmába áramlik.ca2+ kis mennyiségben nyitja, nagy mennyiségben bezárja a csatornát. Plazmából Ca2+ ot Ca2+ pumpák távolítják el, visszajuttatják a mitokondriumba és az ER ba.
16 A sejten belüli Ca2+ növekedés Ca2+ hullámokat alakít ki, ezek szerepe az, hogy a sejt minden részébe eljuttassák az inger keltette kalciumjelet.
17 Intracelluláris Ca2+ koncentráció növekedés jellemzői neuronokban: Szinaptikus potenciálváltozásokkal kapcsolatban lokálisan alakulnak ki egy-egy szinapszis környékén Ca2+ ionok nem diffundálnak messzire, különböző frnftizrk, távoli dendritágak posztszinaptikus Ca2+ jelei nem összegződnek Akciós potenciál által kialakított nagy depolarizáció a neuron jóval nagyobb részén vált ki intracelluláris Ca2+ koncentráció növekedést Akciós potenciál által kiváltott Ca2+ növekedés összegződhet a szinapszis környékén kialakult Ca2+ nóvekedéssel Intracelluláris Ca2+ koncentráció növekedés mérhető Ca2+ ion érzékeny festékek alkalmazásával
18 A: Akciós potenciál által kialakított intracelluláris Ca 2+ szint növekedés C: Dendritikus Ca2+ szint növekedés: lokálisan egy szűk régióban következik be
19 Szabad gyökök: Páratlan elektronnal rendelkező, instabil atomok, atomcsoportok. Az élő sejtben leggyakrabban O-atomokhoz kötődnek páratlan elektronok. Keletkezés: A mitokondriumok működése során a molekuláris oxigén vízzé redukálása egyelektronos redukciós lépésekben történik. Ha a folyamat megakad, reaktív oxigénszármazékok (szuperoxid, hidrogénperoxid, hidroxil szabad gyök) keletkeznek: Endoplazmatikus retikulumban a diszulfidkötések kialakulása során molekuláris oxigén játssza az elektronakceptor szerepét. Jelentős szekréciós aktivitással rendelkező sejtekben a szabad gyök képzés 25% az ER-ben történhet.
20 Reaktív Oxigén gyökök (ROS) mitokondriumon és ER-on kívül még a keletkezhetnek a xenobiotikumokra, citokinekre illetve baktériumokra adott sejtválasz folyamán is. Oxidatív stresszről akkor beszélünk amikor az antioxidáns válasz mértékét felülmúlja a ROS keletkezése. Eredménye: makromolekulák sérülése Betegségek: érelmeszesedés, diabetes, rák, neurodege-neration, Normál funkció: sejtek szaporodása, differenciálódás és túlélés ASK1: apoptózis szignál-regulált kináz1, PI3 kináz PTP protein tirozin foszfatáz Shc Src homology 2 domain-containing IRP Iron regulatory protein ATM DNS damage response, Nrf2 NFE2-like 2, Ref1 redox factor 1, TRX antioxidant and anti-inflammatory response Paul D. Ray, Bo-wen Huang, Yoshiaki Tsuji Cellular signalling 2012 DOI: /j.cellsig
21 Fontosabb szignáltranszdukciós útvonalak
22 Szignalizációs útvonalak: Egy-egy receptor többféle útvonalat is képes aktiválni. Egy-egy enzimet többféle szignalizációs útvonal is aktiválhat Nem útvonalak, hanem egy szignalizációs hálózat van csomópontokkal.
23 Biologists love these kind of diagrams, even though they only show a fraction of all the complicated interactions that take place. No engineer on earth would chose to design such a complex system, to reach a fixed set of goals. Soure: - See more at:
24 Szignalizációs útvonalak és legfontosabb jellemzőik: 1. camp útvonal: Elsők között fedezték fel. A legjobban ismert másodlagos hírvivő A membrán kötött receptor aktiválásakor az adenilát cycláz enzim camp-t készít és a camp aktiválja a további effektorokat amelyek a sejtmembránon érzékelt ligandra adekvált sejtválaszt kialakítják.
25 camp útvonal:
26 2. Cyclic ADP-ribóz szignalizáció és NAADP (nikotinic acid-adenin dinukleotid foszfát) szignalizációs útvonal: Intracelluláris Ca2+ felszabadulás közvetíti a jelet az effektoroknak 3. Feszültségfüggő Ca2+ csatornák: Intracelluláris Ca2+ felszabadulás közvetíti a jelet az effektoroknak 4. Receptorokhoz kapcsolódó szignalizációs útvonalak: Intracelluláris Ca2+ felszabadulás közvetíti a jelet az effektoroknak
27 5. PLC (foszfolipáz C) aktiválást előidéző szignalizációs útvonalak: Inositol 1,4,5-trifoszfát szignalizációs kaszkád Diacylglicerol DAG/protein kináz C szignalizációs kaszkád PIP2 szignalizációs kaszkád Többfunkciós inositol polifoszfát szignalizációs kaszkád 6. PIP2 foszforilációs útvonalak
28 7. NO és cgmp szignalizációs útvonalak: NO szintetáz képzi a NO-t, amely cgmp-n keresztül és nitrozilációs reakciókon keresztül hat. 8. Redox szigálok: NADPH oxidázon keresztül ható receptorok. Reaktív O2 keletkezik (szuperoxidok, H2O2) Tyrozin foszfatáz, transzkripciós faktorok és ioncsatornák aktivitásának modulálásán keresztül hatnak. Szuperoxidok a 7. szignalizációs útvonalon belüli nitrozilációs reakciókban is részt vesznek.
29 9. MAP kináz (mitogén-aktivált protein kináz) szignalizációs útvonal Klasszikus példa a protein foszforilációs kaszkádra amely egy soro párhuzamos útvonalat foglal magába és a sejtosztódással, stresszel és apoptózissal kapcsolatos folyamatokat irányítja.
30
31 10. Nuclear faktor NF- ) szignalizációs útvonal Sokféle funkciója van ennek az útvonalnak. Pl makrofágokban és neurofil granulocitákban a gyulladásos folyamatokat inicializálja. 11. Foszfolipáz D szignalizációs útvonal Foszfatidil-kolin hidrolízisén alapuló útvonal. PLD hidrolizálja a fofoszfatidil-kolint foszfatidik savvá amely másodlagos hírvivőként funkcionálva sokféle celluláris folyamatot képes beindítani.
32 12. Szfingomielin szignalizációs útvonal Bizonyos növekedési faktorok és citokinek hidrolizálják a szfingolipideket és ceramidot illetve szfingozin-1-foszfátot alakítanak ki. A ceramid az apoptózis beindításában a szfingozin-1-foszfát stimulálja a sejtosztódást illetve a Ca2+ felszabadulást a Ca2+ raktárakból. A szfingozin-1-foszfát kijuthat a sejtből és parakrin mediátorként extracelluláris folyamatokat is beindíthat.
33 13. Janus kináz szignál transzducer és transzkripció aktivátor (JAK/STAT) szignalizációs útvonal Gyors információs útvonal a sejtfelszíntől a sejtmagig. Transzkripcióra hat. A STAT jelátvivő és transzkripciós faktor is. STAT aktiváció folyamata: A ligandkötés konformáció változást indukál, ez a JAK kinázok autofoszforilációját okozza.a JAK-ok foszforilálják a receptor intracelluláris részét. A STATok a receptor foszfotirozinjaihoz kötődnek, majd a JAK-ok foszforilálják a STAT-okat A foszforilált STAT-ok homo- vagy heterodimert alkotva, bevándorolnak a sejtmagba, ahol a célgéneket aktiválják.
34 14. Smad szignalizációs útvonal Növekedési faktor -t alakítja ki amely Sad transzkripciós faktoron keresztül hat a transzkripcióra. 15. Wnt szignalizációs útvonal Fejlődést, differenciálódást és sejtosztódást befolyásolja. 16. Hedgehog szignalizációs útvonal Wnt szignalizációs útvonalhoz hasonlóan fejlődést, differenciálódást és sejtosztódást befolyásolja.
35 17. Hippo szignalizációs útvonal Ez az útvonal egy központi protein kináz kaszkáddal rendelkezik, amely hasonló a MAP kináz kaszkádhoz. Sejt növekedését, osztódását és az apoptózis befolyásolja. 18. Notch szignalizációs útvonal Ősi szignalizációs útvonal. A sejtek differenciációjánál a sejtek elköteleződését segíti vmilyen fejlődési irányba.
36 19. Endoplazmatikus retikulum stressz által aktivált szignalizációs útvonal A fehérje szintézis állapotáról küld az ER információt a sejtmagba. 20. AMP szignalizációs útvonal AMP mint metabolikus messzenger aktiválja ezt az útvonalat és a sejt proliferációját szabályozza.
37 Inzulin intracelluláris hatásainzulin receptor Transzmembrán glikoprotein, α és két β alegységből áll. alegységek diszulfid hiddal összekötve Inzulin az α alegységhez köt β alegység köti az inzulin által regulált tirozin kinázt. Inzulin távollétében az α alegység gátolja a β alegység tirozin kináz aktivitását.
38 Rac1: actin regulált GTPáz
39 A szignalizáció szabályozása Receptor Receptor Receptor csendesítés downreguláció inaktiváció Jelátvivő fehérje Gátló fehérje inaktivációja (Alberts és mtsai.: Molecular Biology of the Cell, 2002 nyomán) termelése
40
41 Szignalizáció szabályozása: Adrenalin Koffein, teofillin hatásai: foszfodiészteráz gátló. Ca2+ kiáramlást okoz az intracelluláris raktárakból. Foszfodieszteráz Teofillin: A1 A2 adenozin receptor antagonista. teofillin koffein camp hidrolízis Effektor enzim
Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező metabolit aktiválja őket (mindkettő)
Szignáltranszdukció Signáltranszdukciós útvonalak: Kívülről jövő információ aktiválja őket Sejtben keletkező metabolit aktiválja őket (mindkettő) Információ átvitel másodlagos hírvivőkkel vagy fehérje-fehérje
9. előadás Sejtek közötti kommunikáció
9. előadás Sejtek közötti kommunikáció Intracelluláris kommunikáció: Elmozdulás aktin szálak mentén miozin segítségével: A mikrofilamentum rögzített, A miozin mozgékony, vándorol az aktinmikrofilamentum
1. Mi jellemző a connexin fehérjékre?
Sejtbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start 2019-02-25 20:35:53 : Felhasznált idő 00:01:02 Név: Minta Diák Eredmény: 0/121 azaz 0% Kijelentkezés 1. Mi jellemző a connexin fehérjékre? (1.1)
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés
Receptorok és szignalizációs mechanizmusok
Molekuláris sejtbiológia: Receptorok és szignalizációs mechanizmusok Dr. habil Kőhidai László Semmelweis Egyetem Genetikai, Sejt- és Immunbiológiai Intézet Sejtek szignalizációs kapcsolatai Sejtek szignalizációs
2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék
Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája 1. Receptor fehérje Jel molekula (ligand; elsődleges
Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék
Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája Receptor fehérje Jel molekula (ligand; elsődleges
3. Főbb Jelutak. 1. G protein-kapcsolt receptor által közvetített jelutak 2. Enzim-kapcsolt receptorok által közvetített jelutak 3.
Jelutak 3. Főbb Jelutak 1. G protein-kapcsolt receptor által közvetített jelutak 2. Enzim-kapcsolt receptorok által közvetített jelutak 3. Egyéb jelutak I. G-protein-kapcsolt receptorok 1. által közvetített
Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció
Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus PERIFÉRIÁS IDEGRENDSZER Receptor
a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel.
Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. eceptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus eceptor végződések Érző neuron
Szignalizáció - jelátvitel
Jelátvitel autokrin Szignalizáció - jelátvitel Összegezve: - a sejt a,,külvilággal"- távolabbi szövetekkel ill. önmagával állandó anyag-, információ-, energia áramlásban áll, mely autokrin, parakrin,
A sejtfelszíni receptorok három fő kategóriája
A sejtfelszíni receptorok három fő kategóriája 1. Saját enzimaktivitás nélküli receptorok 1a. G proteinhez kapcsolt pl. adrenalin, szerotonin, glukagon, bradikinin receptorok 1b. Tirozin kinázhoz kapcsolt
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi
8. előadás. Sejt-sejt kommunikáció és jelátvitel
8. előadás Sejt-sejt kommunikáció és jelátvitel A sejt-sejt szignalizáció evolúciója A Saccharomyces cerevisiae (sörélesztő) élesztőnek két párosodási típusa van: a és α A különböző párosodási típusokba
Receptorok, szignáltranszdukció jelátviteli mechanizmusok
Receptorok, szignáltranszdukció jelátviteli mechanizmusok Sántha Péter 2016.09.16. A sejtfunkciók szabályozása - bevezetés A sejtek közötti kommunikáció fő típusai: Endokrin Parakrin - Autokrin Szinaptikus
16. A sejtek kommunikációja: jelátviteli folyamatok (szignál-transzdukció)
16. A sejtek kommunikációja: jelátviteli folyamatok (szignál-transzdukció) 2016. február 25. Lippai Mónika lippai@elte.hu Minden sejt érzékel többféle, más sejtek által kibocsájtott jelmolekulát. - A jeleket
S-2. Jelátviteli mechanizmusok
S-2. Jelátviteli mechanizmusok A sejtmembrán elválaszt és összeköt. Ez az információ-áramlásra különösen igaz! 2.1. A szignál-transzdukció elemi lépései Hírvivô (transzmitter, hormon felismerése = kötôdés
ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3.
Jelutak ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3. előadás Jelutak 1. a sejtkommunikáció alapjai 1. Bevezetés 2. A sejtkommunikáció
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi
ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás
Jelutak ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi- és hormonális kommunikáció 3. előadás Jelutak 1. a sejtkommunikáció alapjai 1. Bevezetés
Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai
Jelutak ÖSSZ TARTALOM 1. Az alapok 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi és hormonális kommunikáció 3. előadás Jelutak 1. a sejtkommunikáció alapjai 1. Bevezetés
a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:
Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció
A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János
A sejtek közöti kommunikáció formái BsC II. Sejtélettani alapok Dr. Fodor János 2010. 03.19. I. Kommunikáció, avagy a sejtek informálják egymást Kémiai jelátvitel formái Az üzenetek kémiai úton történő
Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál
Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza
Jelátviteli útvonalak 1
Jelátviteli útvonalak 1 Információ metabolizmus Szignál transzdukció 1 Jelátviteli séma Mi lehet a jel? Hormonok Növekedési faktorok Fejlődési szignálok Neurotranszmitterek Antigének Sejtfelszíni glikoproteinek
JELÁTVITEL I A JELÁTVITELRŐL ÁLTALÁBAN, RECEPTOROK INTRACELLULÁRIS (NUKLEÁRIS) RECEPTOROK G FEHÉRJÉHEZ KÖTÖTT RECEPTOROK
JELÁTVITEL I A JELÁTVITELRŐL ÁLTALÁBAN, RECEPTOROK INTRACELLULÁRIS (NUKLEÁRIS) RECEPTOROK G FEHÉRJÉHEZ KÖTÖTT RECEPTOROK A jelátvitel hírvivő molekula (messenger) elektromos formában kódolt információ
TÁMOP /1/A
Előadás száma Előadás címe Dia sorszáma Dia címe 1. Bevezetés 1. 2. Bevezetés 1. (Cím) 3. Történet 4. Jelátvitel 5. Sejt kommunikációs útvonalak 1. 6. Sejt kommunikációs útvonalak 2. 7. A citokinek hatásmechanizmusai
Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus
Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus Ravi L. Rungta, Louis-Philippe Bernier, Lasse Dissing-Olesen, Christopher J. Groten,Jeffrey M. LeDue,
Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag
Jelutak Apoptózis 1. Bevezetés 2. Külső jelút 3. Belső jelút Apoptózis Sejtmag Kondenzálódó sejtmag 1. autofágia nekrózis Lefűződések Összezsugorodás Fragmentálódó sejtmag Apoptotikus test Fagocita bekebelezi
Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút
Jelutak Apoptózis 1. Bevezetés 2. Külső jelút 3. Belső jelút Apoptózis Sejtmag 1. Kondenzálódó sejtmag apoptózis autofágia nekrózis Lefűződések Összezsugorodás Fragmentálódó sejtmag Apoptotikus test Fagocita
Idegsejtek közötti kommunikáció
Idegsejtek közötti kommunikáció Idegrendszer funkcionális alapegysége: neuron (idegsejt) Neuronok morfológiája: Morfológia leírása: Soma és dendritek geometria leírása: dendritek száma, elágazások száma
Immunológia alapjai. 10. előadás. Komplement rendszer
Immunológia alapjai 10. előadás Komplement rendszer A gyulladás molekuláris mediátorai: Miért fontos a komplement rendszer? A veleszületett (nem-specifikus) immunválasz része Azonnali válaszreakció A veleszületett
Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet
Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Az ioncsatorna fehérjék szerkezete, működése és szabályozása Panyi György www.biophys.dote.hu Mesterséges membránok
(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.
Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs
JELUTAK 2. A Jelutak Komponensei
JELUTAK 2. A Jelutak Komponensei TARTALOM - 1. Előadás: A jelutak komponensei 1. Egy egyszerű jelösvény 2. Jelmolekulák 3. Receptorok 4. Intracelluláris jelmolekulák 1 1.1. Egy tipikus jelösvény sémája
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi
Immunológia alapjai. 16. előadás. Komplement rendszer
Immunológia alapjai 16. előadás Komplement rendszer A gyulladás molekuláris mediátorai: Plazma enzim mediátorok: - Kinin rendszer - Véralvadási rendszer Lipid mediátorok Kemoattraktánsok: - Chemokinek:
Jelátviteli útvonalak 2
Jelátviteli útvonalak 2 Információ metabolizmus Szignál transzdukció GPCR: PLC és foszfoinozitid kaszkád Szignál (pl. adrenalin) + receptor (pl. 1 -adrenerg) G q foszfolipáz-c (PLC) IP 3 (hidrofil) + DAG
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi
Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika
Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Panyi György 2014. November 12. Mesterséges membránok ionok számára átjárhatatlanok Iontranszport a membránon keresztül:
A T sejt receptor (TCR) heterodimer
Immunbiológia - II A T sejt receptor (TCR) heterodimer 1 kötőhely lánc lánc 14. kromoszóma 7. kromoszóma V V C C EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL lánc: VJ régió lánc: VDJ régió Nincs szomatikus
Jelátvitel az idegrendszerben:
Jelátvitel az idegrendszerben: Másodlagos hírvivő rendszerek: Feladatuk: Elektromos jel továbbítása a sejtszervecskék felé. Eredmény: Posztszinaptikus receptorok kémiai módosítása (foszforilálás, csatorna
A jel-molekulák útja változó hosszúságú lehet. A jelátvitel. hírvivő molekula (messenger) elektromos formában kódolt információ
A jelátvitel hírvivő molekula (messenger) elektromos formában kódolt információ A jel-molekulák útja változó hosszúságú lehet 1. Endokrin szignalizáció: belső elválasztású mirigy véráram célsejt A jelátvitel:
A somatomotoros rendszer
A somatomotoros rendszer Motoneuron 1 Neuromuscularis junctio (NMJ) Vázizom A somatomotoros rendszer 1 Neurotranszmitter: Acetil-kolin Mire hat: Nikotinos kolinerg-receptor (nachr) Izom altípus A parasympathicus
Hormonok hatásmechanizmusa
Hormonok hatásmechanizmusa Signal transduction pathways 1. Signal recognition ligand binding; cell contact 2. Transduction transfer of signal to cell interior modulate the activity of protein kinases and
MOLEKULÁRIS FORRÓDRÓTOK Jeltovábbító folyamatok a sejtekben
WILHELM IMOLA KRIZBAI ISTVÁN MOLEKULÁRIS FORRÓDRÓTOK Jeltovábbító folyamatok a sejtekben A mikor azt mondjuk, kommunikáció az élõvilágban, általában az egyedek (állatok, emberek) közötti verbális és nonverbális
A glükóz reszintézise.
A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt
Immunológia alapjai. Az immunválasz szupressziója Előadás. A szupresszióban részt vevő sejtes és molekuláris elemek
Immunológia alapjai 19 20. Előadás Az immunválasz szupressziója A szupresszióban részt vevő sejtes és molekuláris elemek Mi a szupresszió? Általános biológiai szabályzó funkció. Az immunszupresszió az
Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.
Vércukorszint szabályozása: Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből. Szövetekben monoszacharid átalakítás enzimjei: Szénhidrát anyagcserében máj központi szerepű. Szénhidrát
Sejt - kölcsönhatások az idegrendszerben
Sejt - kölcsönhatások az idegrendszerben dendrit Sejttest Axon sejtmag Axon domb Schwann sejt Ranvier mielinhüvely csomó (befűződés) terminális Sejt - kölcsönhatások az idegrendszerben Szinapszis típusok
JELUTAK 1. A Sejtkommunikáció Alapjai: Általános lapelvek
JELUTAK 1. A Sejtkommunikáció Alapjai: Általános lapelvek 1 ÖSSZ-TARTALOM: 1. Az alapok 1. Előadás 2. A jelutak komponensei 1. Előadás 3. Főbb jelutak 2. Előadás 4. Idegi kommunikáció 3. Előadás TARTALOM
Egy idegsejt működése
2a. Nyugalmi potenciál Egy idegsejt működése A nyugalmi potenciál (feszültség) egy nem stimulált ingerelhető sejt (neuron, izom, vagy szívizom sejt) membrán potenciálját jelenti. A membránpotenciál a plazmamembrán
Membránpotenciál, akciós potenciál
A nyugalmi membránpotenciál Membránpotenciál, akciós potenciál Fizika-Biofizika 2015.november 3. Nyugalomban valamennyi sejt belseje negatív a külső felszínhez képest: negatív nyugalmi potenciál (Em: -30
RECEPTOROK JELÁTVITEL Sperlágh Beáta
RECEPTOROK JELÁTVITEL perlágh Beáta Összefoglalás A receptorok az élővilág jelfelismerésre specializálódott makromolekulái, központi szerepet játszanak a sejtek közötti információátvitelben. Az ezernél
Intracelluláris ion homeosztázis I.-II. Február 15, 2011
Intracelluláris ion homeosztázis I.II. Február 15, 2011 Ca 2 csatorna 1 Ca 2 1 Ca 2 EC ~2 mm PLAZMA Na /Ca 2 cserélő Ca 2 ATPáz MEMBRÁN Ca 2 3 Na ATP ADP 2 H IC ~100 nm citoszol kötött Ca 2 CR CSQ SERCA
1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói
1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis
Sejt - kölcsönhatások. az idegrendszerben és az immunrendszerben
Sejt - kölcsönhatások az idegrendszerben és az immunrendszerben A sejttől a szervezetig A sejtek között, ill. a sejtek és környezetük közötti jelátviteli folyamatok összessége az a struktúrált kölcsönhatásrendszer,
INTRACELLULÁRIS PATOGÉNEK
INTRACELLULÁRIS PATOGÉNEK Bácsi Attila, PhD, DSc etele@med.unideb.hu Debreceni Egyetem, ÁOK Immunológiai Intézet INTRACELLULÁRIS BAKTÉRIUMOK ELLENI IMMUNVÁLASZ Példák intracelluláris baktériumokra Intracelluláris
A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban
A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban 17. Központi idegrendszeri neuronok ingerületi folyamatai és szinaptikus összeköttetései 18. A kalciumháztartás zavaraira
IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel
IONCSATORNÁK I. Szelektivitás és kapuzás II. Struktúra és funkció III. Szabályozás enzimek és alegységek által IV. Akciós potenciál és szinaptikus átvitel V. Ioncsatornák és betegségek VI. Ioncsatornák
A sejtfelszíni receptorok három fő kategóriája
A sejtfelszíni receptorok három fő kategóriája 1. Saját enzimaktivitás nélküli receptorok 1a. G proteinhez kapcsolt pl. adrenalin, szerotonin, glukagon, bradikinin receptorok 1b. Tirozin kinázhoz kapcsolt
Endokrinológia. Közös jellemzők: nincs kivezetőcső, nincs végkamra - hámsejt csoportosulások. váladékuk a hormon
Közös jellemzők: Endokrinológia nincs kivezetőcső, nincs végkamra - hámsejt csoportosulások váladékuk a hormon váladékukat a vér szállítja el - bő vérellátás távoli szervekre fejtik ki hatásukat (legtöbbször)
Gyógyszerészeti neurobiológia. Idegélettan
Az idegrendszert felépítő sejtek szerepe Gyógyszerészeti neurobiológia. Idegélettan Neuronok, gliasejtek és a kémiai szinapszisok működési sajátságai Neuronok Információkezelés Felvétel Továbbítás Feldolgozás
A kemotaxis kiváltására specializálódott molekula-család: Cytokinek
A kemotaxis kiváltására specializálódott molekula-család: Cytokinek Cytokinek - definíció Cytokin (Cohen 1974): Sejtek közötti kémi miai kommunikációra alkalmas anyagok; legtöbbjük növekedési vagy differenciációs
Asztroglia Ca 2+ szignál szerepe az Alzheimer kórban FAZEKAS CSILLA LEA NOVEMBER
Asztroglia Ca 2+ szignál szerepe az Alzheimer kórban FAZEKAS CSILLA LEA 2017. NOVEMBER Az Alzheimer kór Neurodegeneratív betegség Gyógyíthatatlan 65 év felettiek Kezelés: vakcinákkal inhibitor molekulákkal
IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3-
Ionáromok IONCSATORNÁK 1. Osztályozás töltéshordozók szerint: 1. pozitív töltésű ion: Na+, K+, Ca2+ 2. negatív töltésű ion: Cl-, HCO3-3. Non-specifikus kationcsatornák: h áram 4. Non-specifikus anioncsatornák
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a écsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés
Az immunológia alapjai
Az immunológia alapjai 8. előadás A gyulladásos reakció kialakulása: lokális és szisztémás gyulladás, leukocita migráció Berki Timea Lokális akut gyulladás kialakulása A veleszületeh és szerzeh immunitás
Az immunrendszer működésében résztvevő sejtek Erdei Anna Immunológiai Tanszék ELTE
Az immunrendszer működésében résztvevő sejtek Erdei Anna Immunológiai Tanszék ELTE Tanárszakosok, 2017. Bev. 2. ábra Az immunválasz kialakulása 3.1. ábra A vérsejtek képződésének helyszínei az élet folyamán
Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g
Glikolízis Minden emberi sejt képes glikolízisre. A glukóz a metabolizmus központi tápanyaga, minden sejt képes hasznosítani. glykys = édes, lysis = hasítás emberi szervezet napi glukózigénye: kb. 160
OTKA ZÁRÓJELENTÉS
NF-κB aktiváció % Annexin pozitív sejtek, 24h kezelés OTKA 613 ZÁRÓJELENTÉS A nitrogén monoxid (NO) egy rövid féléletidejű, számos szabályozó szabályozó funkciót betöltő molekula, immunmoduláns hatása
A Földön előforduló sejtek (pro- és eukarioták) közös és eltérő tulajdonságai. A sejtes szerveződés evolúciója.
A tárgy neve: Sejtbiológia előadás 1. Jellege: Törzs Gazda tanszék: Állattani és Sejtbiológiai Tanszék Felelős oktató: Dr. Gulya Károly Kredit: 2 Heti óraszám: 2 Típus: előadás Számonkérés: K A Földön
Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál
Membránpotenciál Vig Andrea 2014.10.29. Nyugalmi membránpotenciál http://quizlet.com/8062024/ap-11-nervous-system-part-5-electrical-flash-cards/ Akciós potenciál http://cognitiveconsonance.info/2013/03/21/neuroscience-the-action-potential/
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a écsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMO-4.1.2-08/1/A-2009-0011 Az orvosi
Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására
Szalma Katalin Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására Témavezető: Dr. Turai István, OSSKI Budapest, 2010. október 4. Az ionizáló sugárzás sejt kölcsönhatása Antone
FARMAKODINÁMIA. mit tesz a gyógyszer a szervezettel
FARMAKODINÁMIA mit tesz a gyógyszer a szervezettel Gyógyszerhatások alapvető mechanizmusai 1. Kötődés FEHÉRJÉKHEZ - receptorok - enzimek - ioncsatornák - transzportfehérjék (carrierek) - szerkezeti fehérjék
Új szignalizációs utak a prodromális fázisban. Oláh Zita
Új szignalizációs utak a prodromális fázisban Oláh Zita 2015.10.07 Prodromális fázis Prodromalis fázis: De mi történik?? Beta-amiloid: OK vagy OKOZAT? Beta-amiloid hogyan okozhat neurodegenerációt? Tau
Energiatermelés a sejtekben, katabolizmus. Az energiaközvetítő molekula: ATP
Energiatermelés a sejtekben, katabolizmus Az energiaközvetítő molekula: ATP Elektrontranszfer, a fontosabb elektronszállító molekulák NAD: nikotinamid adenin-dinukleotid FAD: flavin adenin-dinukleotid
Citrátkör, terminális oxidáció, oxidatív foszforiláció
Citrátkör, terminális oxidáció, oxidatív foszforiláció A citrátkör jelentősége tápanyagok oxidációjának közös szakasza anyag- és energiaforgalom központja sejtek anyagcseréjében elosztórendszerként működik:
Vezikuláris transzport
Molekuláris Sejtbiológia Vezikuláris transzport Dr. habil KŐHIDAI László Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet 2005. november 3. Intracelluláris vezikul uláris transzport Kommunikáció
Membránszerkezet, Membránpotenciál, Akciós potenciál. Biofizika szeminárium
Membránszerkezet, Membránpotenciál, Akciós potenciál Biofizika szeminárium 2013. 09. 09. Membránszerkezet Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens
Sejt- és fejlődésbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start :42:23 : Felhasznált idő 00:00:14 Név: minta
Sejt- és fejlődésbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start 2018-03-07 20:42:23 : Felhasznált idő 00:00:14 Név: minta Eredmény: 0/205 azaz 0% Kijelentkezés 1. Mi jellemző a sejtciklus egyes
Gyulladásos folyamatok szabályoz polifenolokkal. Pécsi Tudományegyetem
Gyulladásos folyamatok szabályoz lyozása vörösbor polifenolokkal Prof. Dr. Sümegi S Balázs Pécsi Tudományegyetem Általános Orvostudományi Kar Biokémiai és s Orvosi Kémiai K Intézet A legismertebb növényi
4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3)
Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, 2009. jan. 6. Villamosmérnöki és Informatikai Kar Semmelweis Egyetem Budapest Egészségügyi Mérnök Mesterképzés Felvételi kérdések orvosi élettanból
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterkézés megfeleltetése az Euróai Unió új társadalmi kihívásainak a écsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMO-4.1.2-08/1/A-2009-0011 Az orvosi biotechnológiai
Membránszerkezet. Membránszerkezet, Membránpotenciál, Akciós potenciál. Folyékony mozaik modell. Membrán-modellek. Biofizika szeminárium
Membránszerkezet, Membránpotenciál, Akciós potenciál Membránszerkezet Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens kötésekkel összetartott lipidekből
Intracelluláris és intercelluláris kommunikáció
Intracelluláris és intercelluláris kommunikáció Transzportfolyamatok a sejten belül Ciklózis: Az endoplazma sejten belüli (sejtmag körüli) áramlása A ciklózis teszi lehetővé, hogy a sejten belül az egyik
The Involvement of Lipids in Alzheimer Disease. Készítette: Ivitz Eszter
The Involvement of Lipids in Alzheimer Disease Készítette: Ivitz Eszter 2014. 10. 03. Bevezetés Alzheimer-kór (AK) demencia leggyakoribb formája (becslések szerint 81 millió beteg 2040-re) Jelenleg nincs
LIPID ANYAGCSERE (2011)
LIPID ANYAGCSERE LIPID ANYAGCSERE (2011) 5 ELİADÁS: 1, ZSÍRK EMÉSZTÉSE, FELSZÍVÓDÁSA + LIPPRTEINEK 2, ZSÍRSAVAK XIDÁCIÓJA 3, ZSÍRSAVAK SZINTÉZISE 4, KETNTESTEK BIKÉMIÁJA, KLESZTERIN ANYAGCSERE 5, MEMBRÁN
Az idegi működés strukturális és sejtes alapjai
Az idegi működés strukturális és sejtes alapjai Élettani és Neurobiológiai Tanszék MTA-ELTE NAP B Idegi Sejtbiológiai Kutatócsoport Schlett Katalin a kurzus anyaga elérhető: http://physiology.elte.hu/agykutatas.html
1b. Fehérje transzport
1b. Fehérje transzport Fehérje transzport CITOSZÓL Nem-szekretoros útvonal sejtmag mitokondrium plasztid peroxiszóma endoplazmás retikulum Szekretoros útvonal lizoszóma endoszóma Golgi sejtfelszín szekretoros
Speciális működésű sejtek
Speciális működésű sejtek Mirigysejt Izomsejt Vörösvérsejt Idegsejt Mirigysejt Kémiai anyagok termelése Váladék kibocsátása A váladék anyaga lehet: Fehérje Szénhidrát Lipid Víz+illatanyag Vörösvérsejt
A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol)
19 11 12 13 C 21 22 20 18 D 17 16 23 24 25 26 27 HO 2 3 1 A 4 5 10 9 B 6 8 7 14 15 A KOLESZTERIN SZERKEZETE (koleszterin v. koleszterol) - a koleszterin vízben rosszul oldódik - szabad formában vagy koleszterin-észterként
Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i
Zsírsav szintézis Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P 2 i A zsírsav szintáz reakciói Acetil-CoA + 7 Malonil-CoA + 14 NADPH + 14 H = Palmitát + 8 CoA-SH + 7 CO 2 + 7
Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt
Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt apoláros szerkezet (szabad membrán átjárhatóság) szteroid hormonok, PM hormonok, retinoidok hatásmech.: sejten belül
Sejtek közötti kommunikáció
Sejtek közötti kommunikáció Szerv/szövet homeosztázisa szempontjából fontos: A sejt érzékeli a változásokat környezetében és arra megfelelő választ ad. Többsejtűekben a szignál molekulák koordinálják a
BIOKÉMIA. Simonné Prof. Dr. Sarkadi Livia egyetemi tanár.
BIOKÉMIA Simonné Prof. Dr. Sarkadi Livia egyetemi tanár e-mail: sarkadi@mail.bme.hu Tudományterületi elhelyezés Alaptudományok (pl.: matematika, fizika, kémia, biológia) Alkalmazott tudományok Interdiszciplináris
Immunológia alapjai 7-8. előadás Adhéziós molekulák és ko-receptorok.
Immunológia alapjai 7-8. előadás Adhéziós molekulák és ko-receptorok. Az immunválasz kezdeti lépései: fehérvérsejt migráció, gyulladás, korai T sejt aktiváció, citokinek. T sejt receptor komplex ITAMs
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
Kevéssé fejlett, sejthártya betüremkedésekből. Citoplazmában, cirkuláris DNS, hisztonok nincsenek
1 A sejtek felépítése Szerkesztette: Vizkievicz András A sejt az élővilág legkisebb, önálló életre képes, minden életjelenséget mutató szerveződési egysége. Minden élőlény sejtes szerveződésű, amelyek