Data Security: Protocols Digital Signature
|
|
- Zsigmond Török
- 9 évvel ezelőtt
- Látták:
Átírás
1 Digital Signature A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett által) B: X = E A (D A (X))? 3. hitelességgel kapcsolatos vitás kérdések harmadik személy előtti (pl. bíróság által) tisztázása: - pl. aláíró fél próbál tagadni (pl. kedvezőtlenné vált időközben a tartalom) - a címzett fél módosította az aláírt üzenetet Digital Signature A digitális aláírás és a valódi kézjegy közös tulajdonságai: 1. Az aláírás hiteles: amikor B ellenőrzi az aláírást A publikus kulcsával, meggyőződik, hogy azt csak A küldhette 2. Az aláírás nem hamisítható: csak A ismeri a saját titkos kulcsát 3. Az aláírás nem újrahasználható (nem átemelhető másik dokumentumhoz):az aláírás a dokumentum függvénye is 4. Az aláírt dokumentum nem módosítható: ha módosítják a dokumentumot, az eredeti aláírás nem illeszkedik, s ez detektálható 5. Az aláírás letagadhatatlan: B vagy egy harmadik fél A közreműködése nélkül ellenőrizni képes az aláírást
2 Digital Signature 1 blokk méretű üzenetek: Formátumozott rövid üzenet: D A (X) Nem formátumozott rövid üzenet: X, D A (X) > 1 blokk méretű üzenetek: [X, D A (H(X))], H: kriptográfiai hash függvény - egyirányúság - ütközésmentesség Egyirányú (OWHF): egy y hash érték (lenyomat) ismeretében nehéz feladat olyan X' üzenetet (ősképet) kiszámítani, amelyre h=h(x') Ütközésmentes (CRHF): nehéz feladat olyan X, X' (X X') üzenetpárt megadni, amelyeknek azonos a lenyomata, azaz amelyekre H(X)=H(X') D A (H(X))= D A (H(X')) Digital Signature Születésnapi paradoxon alapú támadás: n bites hash lenyomat. Támadó előállít 2 n/2 ártatlan és ugyanennyi csalásra felhasználható dokumentumot. Születésnapi paradoxon: nagy a valószínűsége annak, hogy a két halmazban lesz legalább egy pár azonos hash értékkel Támadó a pár ártatlan tagjára kér aláírást, s ezzel már lesz aláírása a csaló párjára is. Védekezés: aláírás előtt az aláíró eszköz az aláírandó dokumentumhoz illeszt egy véletlenül sorsolt bináris sorozatot. A támadó predikálni nem képes a véletlenített dokumentumot, így a fenti támadást sikerrel nem tudja elvégezni. [(X,R), DA(H(X,R))]
3 Digital Signature "A" szeretne "B"-nek elküldeni egy blokk méretű formátumozott X dokumentumot, úgy hogy az aláírva és rejtjelezve. Két megoldáson gondolkozik: a.) A B: E B (D A (X)) b.) A B: D A (E B (X)) ahol publikus kulcsú technológiát alkalmazunk. Melyik megoldást válassza? b.) esetén egy támadó lecserélheti A aláírását a sajátjára, így a saját nevében továbbíthatja egy általa nem látott, de sejtett tartalmú X üzenetet. Az iterált kriptográfiai hash függvény X=[X 1, X 2,..., X r ], azaz X i üzenetblokkok r hosszúságú sorozata. F: {0,1} 2n {0,1} n iterációs (kompressziós) függvény H i = F(H i-1, X i ), i=1,2,...,r, H 0 = inic. h=h r : lenyomat, hash érték H 0 : publikus inicializáló érték
4 Tulajdonságai: egyirányú hash függvény (1.őskép-ellenálló, OWHF) adott h ----> X nehéz feladat 2.őskép-ellenálló: adott h (=Hash(.,X)) ----> X X, h=hash(.,x ) nehéz feladat ütközés-ellenálló (CRHF): X X, Hash(.,X ) = Hash(.,X) nehéz feladat pszeudo- vagy free-start: a támadó, pl. egy ütközés elõállításához, szabadon választhatja meg az iteráció H 0 kezdőértéket. Damgard-Merkle padding (ütközésmentesség kiterjesztése) Tegyük fel hogy van egy F kompressziós függvényünk ütközés-ellenálló tulajdonsággal. Ha az X=[X 1, X 2,..., X r-1 ] üzenetet kiegészítjük egy X r blokkal, amely tartalmazza az X üzenet bithosszát (nulla bitekkel kiegészítve egész blokkhosszra), az F kompressziós függvényre épülő iterációs hash függvény CRHF lesz. Bizonyítás: Indirekt: 1. eset: X=[X 1, X 2,..., X r ], X =[X 1, X 2,..., X r ] párra azonos output: iteráció outputtól visszafelé görgetése a visszafelé legelső eltérő üzenetblokkig, ellentmondásra jutunk az iterációs fv. feltételezett ütközés ellenálló tulajdonságával. 2.eset: X=[X 1, X 2,..., X r1 ], X =[X 1, X 2,..., X r2 ], r1 r2 párra azonos output: az utolsó blokkok különböznek, s már itt ellentmondásra jutunk az iterációs fv. feltételezett ütközés ellenálló tulajdonságával.
5 Igazoljunk hash függvény tulajdonságokat: a.) az egyszerű modulo-32 ellenőrzőösszeg (32 bites szavak 32 bites összege) nem egyirányú, b.) az f(x)=x 2-1 mod p (p prím) leképezés nem OWHF, c.) az f(x)=x 2 mod pq (p és q nagy, titkos prímek) leképezés OWHF, de nem CRHF. d.) az f(x,k)= E k (x) (E a DES kódolás) leképezés d1.) (x,k) párban nem OWHF, d2.) nem OWHF x-ben, ha k ismert, d3.) OWHF k-ban, ha akár x és f(x,k) is ismert, illetve választott b.) modulo p szerinti gyökvonás ismert, könnyű feladat c.) (+x) 2 = (-x) 2 (mod p) Legyen h(x) = 1 x, ha x bitmérete n 0 g(x), egyébként ahol g(x): {0,1} {0,1} n CRHF tulajdonságú. Mutassuk meg, hogy CRHF tulajdonság nem implikálja az OWHF tulajdonságot! h(x) CRHF: - ha az input mérete nem n, akkor 0 bittel kezdődő lenyomatunk van, ellenkező esetben 1 bittel kezdődő, - nem lehet az input pár mindkét tagjának mérete n, ami a h(x) alakjából triviális, -nem lehet az sem, hogy az input pár mindkét tagjának mérete n-től különböző, mivel g(x) ütközés-ellenálló. h(x) nem OWHF: az 1 bittel kezdődő lenyomatok mindegyikéhez triviálisan ismert az őskép (azaz az 1 bitet követő bitsorozat).
6 Biztonságos-e egy f : {0,1} 3n {0,1} n iterációs (kompressziós) függvényre épülő hash függvény, ahol: f(x, y, z)=(x y) z (x+y)), x = y = z ahol (x op y) bitenként értelmezett OR, AND vagy XOR, továbbá MD megerősítést is alkalmazzuk. Nem, mivel f(x,y,z) = f(y,x,z). Mutassuk meg, hogy az iterációs függvény nem CRHF tulajdonságú akkor a hash függvény sem lehet az. Létezik M,M pár h(h0 ; M)= h(h0 ; M ) Hash(H0 ; [M,m])= Hash(H0 ; [M,m]) tetszőleges m üzenet esetén. Egy H iterációs hash függvényt támadunk. a.) Nehéz feladat-e H(m,H0)=H(m*,H0*), m m* pszeudo ütközést előállítani? b.) Mi a válasz, ha DM paddinget is alkalmaz a támadott tömörítő eljárás? a.) Nem nehéz. H(H0,[m1,m2]) = f(m2,f(h0,m1)) = H(H0*,m2), ahol H0*=f(H0,m1) b.) A támadás nem működik MD padding mellett, mivel H(H0,[m1,m2, hossz_1]) H(H0*,[m2, hossz_2]).
7 Tekintsünk egy ideális H hash függvényt, amely n bit méretű hash értéket ad, s tekinthetjük véletlenszerűnek a leképezést. Mutassuk meg, hogy az ütközéshez szükséges számítások várható értékére jó közelítés 2 n/2. m 1, m 2,..., m t inputok X ij =0, ha H(m i ) H(m j ), egyébként 1 P{X ij =1}=2 -n E[X ij ]= 2 -n E [X] = Σ i Σ j i<j E[X ij ] = (t 2 /2) 2 -n E [X] = 1 t=2 n/2 n bites hash lenyomatot képező r-iterációs iteratív hash függvényből n =2n bites lenyomatot képzőt szeretnénk előállítani olyan módon, hogy a két utolsó iteráció eredményét konkatenáljuk azaz H r-1 H r lenyomatot használunk, H r helyett. Megfelelő-e ez a fajta konstrukciós ötlet? Nem. A kapott hash függvény ellen 2 n /2 -nél kisebb számításigényű születésnapi ütközéses támadás végrehajtható : Elegendő csak magára az n bites H r-1 -re végrehajtani ezt a támadást, hiszen, ha m=[m 1, M 2,..., M r-1 ], m =[M 1, M 2,..., M r-1 ] üzenetpárra ütközés áll elő H r-1 -re, akkor egy fixen tartott H r -rel meghosszabbítva m és m üzeneteket, előáll az ütközés H r -re, s így H r-1 H r -re is. A nevezett támadás 2 n/2 számításigényű maradt, tehát a dimenziónövekedés nem hatékony.
8 Tegyük fel, hogy egy A űrjármű leszálláshoz készülődik egy távoli bolygó B űrállomásán, s ehhez először azonosítania kell magát. A feltételek a következők: 1. B ismeri A jelszavát, ezen kívül más közös titkuk nincs. 2. A mod2 összeadásnál bonyolultabb műveletet nem tud végezni. 3. A lesugárzott jeleket egy, az űrállomás környéki C támadó is lehallgathatja, mivel nem lehet jól koncentrálni a sugárzást. Ugyanakkor a bolygón levő űrállomás képes úgy jeleket továbbítani, hogy azok a bolygó felszínén nem vehetők. Javasoljon egy kétlépéses protokollt az azonosításra! Legyen pw a jelszó. B választ egy jelszó bitméretű r véletlen számot: (1) B->A : r (2) A->B : pw+r (mod 2 +) Username: Password: igen/nem A jelszavas rendszerek szokásos problémái: 1.) a nem megfelelő jelszóválasztás, 2.) a jelszó nyílt alakban történő továbbítása rendszerbe jutás pontjától (pl. terminál klaviatúra) az ellenőrzés pontjáig (pl. gazdagép), 3.) a jelszavak nem eléggé védett tárolása felhasználó oldalán, ellenőrzés oldalán (jelszófile) P ID f(p) f =? f egyirányú függvény Jelszó tábla (ID1,f(P1)) (ID2,f(P2))
9 Kihívás és válaszvárás (challenge and response) 1. A B: r1 2. B A: y1=f(p2,r1) 3. A: y1=f(p2,r1)? 4. B A: r2 5. A B: y2=f(p1,r2) 6. B: y2=f(p1,r2)? - mindkét legális fél birtokában van partnere jelszavának (P1,P2) - jelszavak nem kerülnek nyíltan átvitelre: 'kihívás és válaszvárás' módszere (challenge and response) véletlen elemek szerepe - kommunikáló páronként kell egy-egy jelszó-párt egyeztetni - a szótár alapú támadás veszélye nem csökkent Attól tartunk, hogy egy aktív támadó képes az átküldött jelszót elfogni, s kicsit később saját céljaira felhasználni. Ez ellen még az egyszer használatos jelszó sem véd. Szeretnénk tehát, hogy az átküldött azonosító ne legyen felhasználható a támadó által még ez esetben sem. Nem támaszkodhatunk rejtjelező kódolóra, vagy véletlen forrásra. Hash függvényünk azonban van. Mit tehet két, egyébként egymásban megbízó fél? Egy PW jelszót a rendszeren kívül kicserél a két fél (ha azonosítási irányt is meg kívánunk különböztetni, akkor két különböző jelszót használunk). Azonosításkor átküldjük a [T;Hash(T;PW)] üzenetet, ahol T jelöli az időt. A másik fél ellenőrizheti az időbeli frissességet, majd ezután ő is előállítja Hash(T;PW) elemet. A támadó nem képes sem a PW megismerésére, sem replay, sem pedig pre-play támadásra. Hátránya, hogy megkívánja, hogy a szerver oldalon nyíltan rendelkezésre álljon a jelszó.
10 Egyszer használatos jelszó Ini1. A: r generálása Ini2. A B: ID A, n, y=f n (r) 1. A B: P1=f n-1 (r) 1.1 B: y=f(p1)? 2. A B: P2=f n-2 (r) 2.1 B: y=f 2 (P2)?... i. A B: Pi=f n-i (r) i.1 B: y=f i (P2)? Biztos lehet B abban, hogy A-val áll szemben? (hitelesítés) Partnerhitelesítés nyilvános kulcsú rejtjelező függvények felhasználával: 'kihívás és válaszvárás' típusú partnerazonosítási protokoll B azonosítja magát A felé 1. B A: R 2. A B: y=d A (R) 3. B: R=E A (y)? A protokoll biztonságosnak tűnik, de nem az: Egy C támadó dekódoltat egy lehallgatott y=e A (x)=x e mod n rejtjelezett blokkot! Védekezés: A ellenőrzi a 2.lépés eredményét, mielőtt továbbítaná B felé.
11 Finomított támadás (vak aláírás): 1. C választ egy R véletlen természetes számot, ahol r<n és (r,n)=1 2. C a következő előkészítő számításokat végzi el: v=r e mod n w=vy mod n (y=e A (x)=x e mod n) t=r -1 mod n (r = v d mod n) 3. C megszemélyesíti B-t: 1'.C(B) A: w 2'. A C(B): u= D A (w)= w d mod n 3'. C(B): tu = r -1 w d = r -1 v d y d = v -d v d y d = y d = x mod n, ahol r = v d mod n Javított protokoll: 1. B A: R2 2. A B: D A (R1) 3. A B: z=d A (R1 R2) 4. B: R1 R2 = E A (z)? - C már nem képes megszemélyesíteni A-t. - Ha A is azonosítani kívánja B-t, akkor ugyanezen protokollt lejátsszák fordított szereposztással. - Elkerülhető a fenti támadás olyan módon is, hogy rejtjelezésre és azonosításra más kulcskészletet használunk!
12 Fiat-Shamir protokoll: Kulcskiosztó központ (B): p,q primek véletlen választása n=pq modulus "A" ügyfél rendszerbe lépése (kulcsokat kap a központban): u titkos kulcs (véletlen szám) v=u 2 (mod n) nyilvános kulcs A protokoll alapeleme a következő négy lépés: 1. A B: z=r 2 (mod n) (0<R<n véletlen szám) 2. B A: b (b véletlen bit) 3. A B: R,ha b=0 w=r u (mod n),ha b=1 4. B: z=r 2 (mod n)?,ha b=0 w 2 =z v (mod n)?,ha b=1 Hogyan próbálhatja egy C támadó megszemélyesíteni A felet? 1.) C végrehajtja az 1. lépést, megfigyeli a 2. lépésbeli b bitet. b=0 : C sikeres b=1 : C nehéz feladatot kap: gyököt vonjon z v szorzatból modulo n támadás sikervalószínűsége=1/2 1. A B: z=r 2 (mod n) (0<R<n véletlen szám) 2. B A: b (b véletlen bit) 3. A B: R,ha b=0 w=r u (mod n),ha b=1 4. B: z=r 2 (mod n)?,ha b=0 w2=z v (mod n)?,ha b=1
13 2.) C megpróbálja előrejelezni a 2. lépésben átküldésre kerülő b bitet. C sejtése b=0: 1. C B: z=r 2 (mod n) 3. C B: w=r (mod n) C sejtése b=1: 1. C B: z=r 2 v -1 (mod n) 3. C B: w=r (mod n) (zv négyzetgyöke mod n) b véletlen támadás sikervalószínűsége=1/2 1. A B: z=r2 (mod n) (0<R<n véletlen szám) 2. B A: b (b véletlen bit) 3. A B: R,ha b=0 w=r u (mod n),ha b=1 4. B: z=r2 (mod n)?,ha b=0 w2=z v (mod n)?,ha b=1 Támadás sikervalószínűségének csökkentése: t -szer megismételjük a protokoll alapelemet támadás sikervalószínűsége=2 -t A módszer további finomítása: k db kulcs pár: (v 1,v 2,...,v k ; u 1,u 2,...,u k ) v i =u i 2 (mod n). 2. B A: b 1,b 2,...,b k 3. A B: w=r u b1 1 u b2 2 u bk k (mod n) 4. B: w 2 =z v b1 1 v b2 2 v bk k (mod n) támadás sikervalószínűsége=2 -tk
14 Alkalmazás: intelligens kártyás azonosító rendszer A: kártya és a tulajdonosa, B: azonosító terminál Biztonsági cél: hiteles terminálok biztonságosan azonosíthassák a kártyát (tulajdonosát), de csalási célú terminálok semmilyen használható titokhoz ne jussanak. (terminálok üzemeltetője és a kártya kiállítója nem ugyanaz: pl. kártya egy pénzhelyettesítő POS (Point Of Sale) terminál felé) v=f(i,c), f : kriptográfiai hash függvény: v méret-szűkítése különböző felhasználóknak különböző v nyilvános kulcs I : ügyfél nyilvános azonosító([név,számlaszám,kártyaszám]), c : (kicsi) nyilvános érték (választása: v kvadr. maradék legyen) u : titkos kulcs a kártyán ki nem olvasható módon kerül elhelyezésre A kártya lehetővé teszi a nyilvános adatelemek (I,c) ellenőrzését (olvasását) Miért nem közvetlenül aknázzuk ki a mod n, n=pq gyökvonás nehézségét? 1. B A: R 2 (mod n) 2. A B: R (mod n) (Tf., hogy "A" ismeri p és q primeket is.) A félnek gyököt kellene vonnia, s ennek a számításigénye jóval meghaladja a Fiat-Shamir protokoll számításigényét, amely ügyesen kikerüli a gyökvonás feladatát.
15 Access control KERBEROS: Erőforrások (nyomtató, fájl szerver, távoli alkalmazásfuttatás, általában távoli szolgáltatások) biztonságos hozzáférés-megoldása 1 Kerberos Kerberos domain blokkvázlata A rendszer elemei: felhasználók, Kerberos szerver, jegyszolgáltató szerverek (TGS, Ticket Granting Server), szolgáltatást futtató szerverek. User TGS Service Access control 1. U Kerb: u_id, s_id 2. Kerb U: E Ku,kerb [K u,tgs, E K tgs,kerb [T u, tgs ] ] 3. U TGS: E Ktgs, kerb [T u, tgs ], E Ku, tgs [A u ] 4. TGS U: E Ku, tgs [K u, s, E Ks, tgs [T u, s ] ] 5. U S: E Ks, tgs [T u, s ], E Ku, s [A' u ] 6. S U: E Ku, s [időpecsét+1] //opcionális T u,tgs (ticket): s_id, u_id, user IP cím, időpecsét, érvényesség, K u,tgs A u (authenticator): u_id, user IP cím, időpecsét
Data Security: Protocols Digital Signature (Tk.7.fejezet)
Digital Signature (Tk.7.fejezet) A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett által) B: X
Data Security: Protocols Digital Signature (Tk.7.fejezet)
Digital Signature (Tk.7.fejezet) A digitális aláírás protokollok feladatai:. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett által) B: X =
Kriptográfiai protokollok
Kriptográfiai protokollok Protokollosztályok - partnerhitelesítés - kulcskiosztás - üzenetintegritás - digitális aláírás - egyéb(titokmegosztás, zero knowledge...) 1 Shamir "háromlépéses" protokollja Titok
Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X)
Digitális aláírás és kriptográfiai hash függvények A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett
Adatbiztonság PPZH 2011. május 20.
Adatbiztonság PPZH 2011. május 20. 1. Mutassa meg, hogy a CBC-MAC kulcsolt hashing nem teljesíti az egyirányúság követelményét egy a k kulcsot ismerő fél számára, azaz tetszőleges MAC ellenőrzőösszeghez
Data Security: Access Control
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált
Data Security: Protocols Integrity
Integrity Az üzenethitelesítés (integritásvédelem) feladata az, hogy a vételi oldalon detektálhatóvá tegyük azon eseményeket, amelyek során az átviteli úton az üzenet valamilyen módosulást szenvedett el.
Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)
Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.
Data Security: Access Control
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált
KÓDOLÁSTECHNIKA PZH. 2006. december 18.
KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)
SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába
SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record
Adatbiztonság 1. KisZH (2010/11 tavaszi félév)
Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Ez a dokumentum a Vajda Tanár úr által közzétett fogalomlista teljes kidolgozása az első kiszárthelyire. A tartalomért felelősséget nem vállalok, mindenki
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise - kimerítő kulcskeresés: határa ma 64 bit számítási teljesítmény költsége feleződik 18 havonta 25 éven belül 80 bit - differenciális kriptoanalízis:
Kriptográfiai alapfogalmak
Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig
Data Security: Concepts
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Concepts 1. Hozzáférésvédelem
Adatbiztonság a gazdaságinformatikában ZH 2015. december 7. Név: Neptun kód:
Adatbiztonság a gazdaságinformatikában ZH 015. december 7. Név: Neptun kód: 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek almaza {a,b}, kulcsok almaza {K1,K,K3,K4,K5}, rejtett üzenetek almaza
Operációs rendszerek. A védelem célja. A fenyegetés forrásai. Védelmi tartományok. Belső biztonság. Tartalom
Tartalom Operációs rendszerek 12. Az operációs rendszerek biztonsági kérdései Simon Gyula A védelem célja A fenyegetés forrásai Belső biztonság Külső biztonság Felhasznált irodalom: Kóczy-Kondorosi (szerk.):
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Data Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
IP alapú távközlés. Virtuális magánhálózatok (VPN)
IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,
ELEKTRONIKUS ALÁÍRÁS E-JOG
E-JOG 2001. évi XXXV. törvény Az elektronikus aláírás törvényi fogalma: elektronikusan aláírt elektronikus dokumentumhoz azonosítás céljából logikailag hozzárendelt vagy azzal elválaszthatatlanul összekapcsolt
Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek.
Elektronikus aláírás Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Jogi háttér Hitelesít szervezetek. Miért van szükség elektronikus aláírásra? Elektronikus
Biztonság a glite-ban
Biztonság a glite-ban www.eu-egee.org INFSO-RI-222667 Mi a Grid biztonság? A Grid probléma lehetővé tenni koordinált erőforrás megosztást és probléma megoldást dinamikus több szervezeti egységből álló
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás
2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális
Elektronikus aláírás. Gaidosch Tamás. Állami Számvevőszék
Elektronikus aláírás Gaidosch Tamás Állami Számvevőszék 2016.05.24 Tartalom Mit tekintünk elektronikus aláírásnak? Hogyan működik? Kérdések 2 Egyszerű elektronikus aláírás 3 Demo: valódi elektronikus aláírás
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai
Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens
A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Titkosítás NetWare környezetben
1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
Data Security. 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II.
Data Security 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II. Data Security: Concepts 1. Access control 2. Encryption 3. Identification 4. Integrity protection
Hitelesítés elektronikus aláírással BME TMIT
Hitelesítés elektronikus aláírással BME TMIT Generátor VIP aláíró Internet Visszavont publikus kulcsok PC Hitelesítő központ Hitelesített publikus kulcsok Aláíró Publikus kulcs és személyes adatok hitelesített
Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA
30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus
Kvantumkriptográfia II.
LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket
Elektronikus hitelesítés a gyakorlatban
Elektronikus hitelesítés a gyakorlatban Tapasztó Balázs Vezető termékmenedzser Matáv Üzleti Szolgáltatások Üzletág 2005. április 1. 1 Elektronikus hitelesítés a gyakorlatban 1. Az elektronikus aláírás
Számítógépes Hálózatok. 7. gyakorlat
Számítógépes Hálózatok 7. gyakorlat Gyakorlat tematika Hibajelző kód: CRC számítás Órai / házi feladat Számítógépes Hálózatok Gyakorlat 7. 2 CRC hibajelző kód emlékeztető Forrás: Dr. Lukovszki Tamás fóliái
Data Security. 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II.
Data Security 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II. Data Security: Access Control A Rossz talált egy bankkártyát, s szeretné a pénzt megszerezni. Tudja,
Dr. Bakonyi Péter c.docens
Elektronikus aláírás Dr. Bakonyi Péter c.docens Mi az aláírás? Formailag valamilyen szöveg alatt, azt jelenti, hogy valamit elfogadok valamit elismerek valamirıl kötelezettséget vállalok Azonosítja az
Waldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Adat integritásvédelem
Kriptográfia 3 Integritásvédelem Autentikáció Adat integritásvédelem Manipuláció detektáló kód és kódverifikálás MDC " f (K e,data) $ True, with probability 1 g(k v,data,mdc) = if MDC = f(k e,data) % &
IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:
IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3
Kulcsgondozás. Kulcskiosztás
Slide 1 Kulcsgondozás Egy kriptográfiai eszközöket is használó rendszer csak annyira lehet biztonságos, amennyire a kulcsgondozása az. A kulcsgondozás alapvető feladatai, a biztonságos kulcs-: generálás
Elektronikus levelek. Az informatikai biztonság alapjai II.
Elektronikus levelek Az informatikai biztonság alapjai II. Készítette: Póserné Oláh Valéria poserne.valeria@nik.bmf.hu Miről lesz szó? Elektronikus levelek felépítése egyszerű szövegű levél felépítése
Best of Criptography Slides
Best of Criptography Slides Adatbiztonság és Kriptográfia PPKE-ITK 2008. Top szlájdok egy helyen 1 Szimmetrikus kulcsú rejtjelezés Általában a rejtjelező kulcs és a dekódoló kulcs megegyezik, de nem feltétlenül.
Kriptoprotokollok. alapjai. Protokoll
Kriptoprotokollok alapjai Támadások és kivédésük Protokoll Kommunikációs szabály gyjtemény Üzenetek formája Kommunikáló felek viselkedése Leírás üzenet formátumok szekvencia diagramok állapotgépek Pénz
Számítógépes Hálózatok 2012
Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód
Adott egy szervezet, és annak ügyfelei. Nevezzük a szervezetet bank -nak. Az ügyfelek az Interneten keresztül érzékeny információkat, utasításokat
! # $%&'() Adott egy szervezet, és annak ügyfelei. Nevezzük a szervezetet bank -nak. Az ügyfelek az Interneten keresztül érzékeny információkat, utasításokat küldenek a banknak. A bank valahogy meggyzdik
S, mint secure. Nagy Attila Gábor Wildom Kft. nagya@wildom.com
S, mint secure Wildom Kft. nagya@wildom.com Egy fejlesztő, sok hozzáférés Web alkalmazások esetében a fejlesztést és a telepítést általában ugyanaz a személy végzi Több rendszerhez és géphez rendelkezik
ÜGYFÉL OLDALI BEÁLLÍTÁSOK KÉZIKÖNYVE
ÜGYFÉL OLDALI BEÁLLÍTÁSOK KÉZIKÖNYVE Felhasználói leírás E-HATÁROZAT 2012 - verzió 1.2 Érvényes: 2012. május 24-től. Azonosító: ehatarozat_ugyfél_ beallitasok_kezikonyv_felh_v1.2_20120524_tol 1/15 1 Tartalom
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Bankkártya elfogadás a kereskedelmi POS terminálokon
Bankkártya elfogadás a kereskedelmi POS terminálokon Költségcsökkentés egy integrált megoldással 2004. február 18. Analóg-Digitál Kft. 1 Banki POS terminál elemei Kliens gép processzor, memória, kijelző,
Hírek kriptográfiai algoritmusok biztonságáról
Hírek kriptográfiai algoritmusok biztonságáról Dr. Berta István Zsolt K+F igazgató Microsec Kft. http://www.microsec.hu Mirıl fogok beszélni? Bevezetés Szimmetrikus kulcsú algoritmusok
Emlékeztet! matematikából
Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod
Webalkalmazás-biztonság. Kriptográfiai alapok
Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):
TANÚSÍTVÁNY. tanúsítja, hogy a. Giesecke & Devrient GmbH, Germany által előállított és forgalmazott
TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési
Információs rendszerek elméleti alapjai. Információelmélet
Információs rendszerek elméleti alapjai Információelmélet Az információ nem növekedés törvénye Adatbázis x (x adatbázis tartalma) Kérdés : y Válasz: a = f(y, x) Mennyi az a információtartalma: 2017. 04.
RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
Single Sign On, Kerberos. Felhasználó hitelesítés
Single Sign On, Kerberos Felhasználó hitelesítés Single Sign On környezet Alap helyzet: Sok gép, sok szolgáltatás, emberek jönnek - mennek Sok jelszó, amit fejben kell tartani, gyakran kéne cserélni. Általában
Számítógépes Hálózatok. 4. gyakorlat
Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet
Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...
Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus
Hálózati biztonság (772-775) Kriptográfia (775-782)
Területei: titkosság (secrecy/ confidentality) hitelesség (authentication) letagadhatatlanság (nonrepudiation) sértetlenség (integrity control) Hálózati biztonság (772-775) Melyik protokoll réteg jöhet
Aláírási jogosultság igazolása elektronikusan
Aláírási jogosultság igazolása elektronikusan Dr. Berta István Zsolt Microsec Kft. http://www.microsec.hu Elektronikus aláírás (e-szignó) (1) Az elektronikus aláírás a kódolás
ÜGYFÉLKAPU AZONOSÍTÁSI SZOLGÁLTATÁS
ÜGYFÉLKAPU AZONOSÍTÁSI SZOLGÁLTATÁS SZOLGÁLTATÁS LEÍRÓ LAP 2017. július 1. v2.1 EREDETI 2 Tartalom 1. A SZOLGÁLTATÁSI LEÍRÁSA... 3 2. A SZOLGÁLTATÁS IGÉNYBEVÉTELE... 5 3. A SZOLGÁLTATÁS FELHASZNÁLÁSI TERÜLETEI...
Prímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
2010. ősz 2. pótzh Név: NEPTUN kód: ZH feladatok Hálózati operációs rendszerek_3 tárgyból
ZH feladatok Hálózati operációs rendszerek_3 tárgyból Minden kérdésnél 1 pont szerezhető, összetett kérdéseknél részpont is kapható. Az elégséges osztályzathoz legalább a pontok 50%-át, azaz 5 pontot kell
TANÚSÍTVÁNY. tanúsítja, hogy a Utimaco Safeware AG által kifejlesztett és forgalmazott
TANÚSÍTVÁNY A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztő és általános szolgáltató Kft. a 15/2001.(VIII. 27.) MeHVM rendelet alapján, mint a Magyar Köztársaság Informatikai és Hírközlési
e-szignó Online e-kézbesítés Végrehajtási Rendszerekhez
MICROSEC Számítástechnikai Fejlesztő zrt. e-szignó Online e-kézbesítés Végrehajtási Rendszerekhez Felhasználói útmutató https://online.e-szigno.hu/ 1 Tartalom 1. Bevezetés... 3 2. A rendszer használatának
Algoritmusok és adatszerkezetek 2.
Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen
Metadata specifikáció
Metadata specifikáció Verzió: 1.1 (2011. Szeptember 14.) aai@niif.hu Biztonsági megfontolások Mivel a metadata tartalmazza a föderációban részt vevő tagok és komponensek technikai információit, ezért a
Diszkréció diszkrét logaritmussal
Diszkréció diszkrét logaritmussal Professzor dr. Czédli Gábor. SZTE, Bolyai Intézet 2012. április 28. http://www.math.u-szeged.hu/ czedli/ 1 Számolás modulo p Czédli 2012.04.28 2 /18 Alapok: számolás modulo
A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.
JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
Az elektronikus aláírás és gyakorlati alkalmazása
Az elektronikus aláírás és gyakorlati alkalmazása Dr. Berta István Zsolt Microsec Kft. http://www.microsec.hu Elektronikus aláírás (e-szignó) Az elektronikus aláírás a kódolás
Biztonságos kulcscsere-protokollok
Biztonságos kulcscsere-protokollok Összefoglalás (Victor Shoup: On Formal Methods for Secure Key Exchange alapján) II. rész Tóth Gergely 1 Bevezetés A következőkben a Shoup által publikált cikk fő vonulatának
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 5
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 5 Fehér Béla Raikovich Tamás,
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 11. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? hash függvények
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
Sapientia Egyetem, Műszaki és Humántudományok Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017 Miről volt szó az elmúlt előadáson? A Crypto++
megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Kriptográfia I. Kriptorendszerek
Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás
Algoritmuselmélet. Hashelés. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Algoritmuselmélet Hashelés Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 9. előadás
Technikai tudnivalók a Saxo Trader Letöltéséhez tűzfalon vagy proxy szerveren keresztül
Letöltési Procedúra Fontos: Ha Ön tűzfalon vagy proxy szerveren keresztül dolgozik akkor a letöltés előtt nézze meg a Technikai tudnivalók a Saxo Trader Letöltéséhez tűzfalon vagy proxy szerveren keresztül
(appended picture) hát azért, mert a rendszerek sosem
1 Általános kezdés: Nyilvánvaló, hogy banki, üzleti szférában fontos a biztonság, de máshol? Otthoni gépen? Személyes adatok megszerezhetőek stb. vissza lehet élni vele -> igen tényleg fontos. Beágyazott,
DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON
DIGITÁLIS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON 2013. 08. 12 Készítette: FGSZ Zrt. Informatika és Hírközlés Informatikai Szolgáltatások Folyamatirányítás Az FGSZ Zrt. elkötelezett az informatikai
Azonosításra szolgáló információk
Azonosításra szolgáló információk 1 Elektronikus azonosító típusok 1. Papír vagy plasztik + nyomdatechnika (optikailag leolvasható azonosítók) 1. Vonalkód 2. OCR (Optical character recognition) 3. MRZ
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Számítógépes Hálózatok. 5. gyakorlat
Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet
ELEKTRONIKUS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON
ELEKTRONIKUS TANÚSÍTVÁNY HASZNÁLATA AZ INFORMATIKAI PLATFORMON 2016. 07. 01 Készítette: FGSZ Zrt. Informatika és Hírközlés Folyamatirányítás Az FGSZ Zrt. elkötelezett az informatikai biztonság fejlesztése
A JGrid rendszer biztonsági architektúrája. Magyaródi Márk Juhász Zoltán Veszprémi Egyetem
A JGrid rendszer biztonsági architektúrája Magyaródi Márk Juhász Zoltán Veszprémi Egyetem A JGrid projekt Java és Jini alapú szolgáltatás orientált Grid infrastruktúra IKTA-5 089/2002 (2003-2004) Konzorcium:
Az Outlook levelező program beállítása tanúsítványok használatához
Az Outlook levelező program beállítása tanúsítványok használatához Windows tanúsítványtárban és kriptográfia eszközökön található tanúsítványok esetén 1(10) Tartalomjegyzék 1. Bevezető... 3 2. Az Outlook
ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS
ADATBIZTONSÁG: TITKOSÍTÁS, HITELESÍTÉS, DIGITÁLIS ALÁÍRÁS B uttyán Levente PhD, egyetemi adjunktus, BME Híradástechnikai Tanszék buttyan@hit.bme.hu G yörfi László az MTA rendes tagja, egyetemi tanár BME
Biztonságos mobilalkalmazás-fejlesztés a gyakorlatban. A CryptTalk fejlesztése során alkalmazott módszerek. Dr. Barabás Péter Arenim Technologies
Biztonságos mobilalkalmazás-fejlesztés a gyakorlatban A CryptTalk fejlesztése során alkalmazott módszerek Dr. Barabás Péter Arenim Technologies Agenda CryptTalk Hálózati kommunikáció Authentikált kérések
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra