Hallgatói segédlet. Konvekciós szárítás
|
|
- Gyöngyi Barnané
- 5 évvel ezelőtt
- Látták:
Átírás
1 BUDAPESTI MŰSZAKI ÉS AZDASÁTUDOMÁNYI EYETEM Épületgépészeti és épészeti Eljárástechnika Tanszék Hallgatói segédlet Konvekciós szárítás Készítette: Átdolgozta: Bothné Dr. Fehér Kinga, adjunktus Dr. Poós Tibor, adjunktus Szabó Viktor, egyetemi tanársegéd Budapest, augusztus 31.
2 1. Mérés célja Félüzemi konvekciós szárító csatorna megismerése, szárítás folyamán lejátszódó egyidejű hő- és anyagátadási folyamat vizsgálata. ipszlap szárítási görbéinek felvétele koncentrált paraméterű mérés segítségével (m-t, T-t, N-t, N-X), a szárítás különböző szakaszainak azonosítása. Az állandó száradási sebességű tartományban a hőátadási tényezőt (α) és a párolgási tényezőt (σ) meghatározása. Átlagos hőátadási tényező számítása Nu=f(Re) kriteriális egyenletből. Az átadási tényezők ismeretében a Lewis törvényen keresztül megvizsgálni a hő- és anyagátadás analógiáját. 2. A mérőberendezés leírása (1. ábra) Ventilátor szállítja a beszívó mérőperemen átáramló levegőt, amely egy elektromos fűtőtesten áthaladva felmelegszik az általunk előzetesen beállított hőmérsékletre. A levegő térfogatáramát a csatorna keresztmetszetébe helyezett pillangószeleppel állíthatjuk be. A felmelegített levegő terelőlapokkal és áramlássimító csövekkel ellátott csővezetéken keresztül jut el a szárítótérbe. Itt helyezkedik el egy mérlegen a próbatest. A szárítógáz a mérőteret elhagyva a szabadba áramlik egy kéményen keresztül. 2
3 1. ábra A mérőberendezés vázlata 3. A mérés elmélete Konvekciós szárítás esetén a hőáram a gáz főtömegéből a száradó anyagba irányul, míg az ezzel egyidejűleg az anyagáram iránya ezzel ellentétes. A konvekciós szárítás történhet folyamatosan, vagy szakaszosan. A mérés során a gáz állapotjelzői állandónak tekinthetők, tehát szakaszos szárítást vizsgálunk. A száradó anyag pillanatnyi nedvességtartalma: X m m S mna ms m S g L / g (1) A száradási sebesség: N 1 A é dm dt na m A S é dx dt m A S é X t kg / m 2 s (2) A száradó anyagra jellemző görbék (2. ábra) segítségével jól elkülöníthetők a szárítás különböző szakaszai. 3
4 2. ábra. A száradó anyag hőmérsékletének és tömegének alakulása a száradási idő függvényében 3. ábra. A száradó anyag nedvességtartalma és száradási sebessége a szárítási idő függvényében 4
5 Látható, hogy rövid kialakulási szakasz után a száradás egyenletes sebességűvé válik, majd a száradási sebesség csökken. 1. Kialakulási szakasz (A-B): a szárítandó anyag hőmérséklete a kiindulási hőmérsékletről az egyensúlyi hőmérséklethez, a nedves hőmérő hőmérséklethez tart. 2. Állandó száradási sebességű szakasz (B-C): ekkor a szabad nedvesség párolog az anyag felületéről, a száradási sebesség állandó. Az anyag hőmérséklete is állandó és megegyezik a nedves hőmérő hőmérsékletével. 3. Csökkenő száradási sebességű szakasz (C-D): a próbatest felületén először száraz foltok jelennek meg, a száraz foltok alóli pórusokból, kapillárisokból is megindul a nedvesség eltávozása. Mikor az anyag felületén már nem található nedvesség, egy párolgási front indul az anyag belseje felé a próbatestet egy növekvő vastagságú száraz felületi rétegre és egy zsugorodó nedves magra osztva. 4. Kiegyenlítődési szakasz (D): mikor a párolgási front eléri a próbatest középvonalát, az anyag gyakorlatilag kiszáradt. A tömegcsökkenés rendkívül lelassul (gyakorlatilag megáll), az anyag hőmérséklete a szárítógáz hőmérsékletéhez tart. A felületi szabad nedvesség párolgásának szakaszában a szárítandó anyagnak átadott hőáram: Q T TF Aé (3) A szárítás ezen szakaszában ez a hőáram teljes egészében a nedvesség elpárologtatására fordítódik, így a hőáramsűrűségre írható, hogy: T T N r q (4) Innen a hőátadási tényező meghatározható: F N áll r áll (5) T TF 5
6 A felületi hőmérséklet a nedves hőmérő hőmérsékletével egyenlő és a nedves levegő h-y diagramjáról határozható meg. A konvekciós szárításnál az időegységenként és felületegységenként a szárítandó anyag felületéről a szárító levegőbe áramló pára mennyisége a párolgási sebesség. A párolgási sebesség felírható a levegő párolgó felszínnél valamint a főtömegben mérhető abszolút nedvességtartalom különbség, mint hajtóerő, valamint σ párolgási tényező szorzataként: N áll YF Y (6) Ha az állandó száradási sebesség ismert, σ párolgási tényező számítható. A hőátadás és az anyagátadás közötti kapcsolat: cnle z (7) ahol cn nedves gáz fajhője (levegő-vízgőz rendszer esetén T C és Y 3-20 g/kg tartományban cn = 1 kj/kgk), Le Lewis-szám (levegő-vízgőz rendszer esetén Le = 1), z konstans (0 z 1). 4. A mérés menete A szárítócsatornában adott méretű, desztillált vízzel benedvesített és jég közé helyezett (0-10 C-ra lehűtött) gipszlapot szárítunk a próbatest körül áramló meleg levegővel. A ventilátor indítása után beállítjuk a szárítógáz hőmérsékletét és térfogatáramát. Csak az állandósult állapot beállta után helyezzük a próbatestet a mérőtérbe és indítjuk el a mérést. A próbatest felületén a gipszlapba öntött termoelemek mérik a hőmérsékletet a száradó anyag hossza mentén. A mérés során a próbatest felületi hőmérsékleteit és a szárító gáz hőmérsékletét, nedvességtartalmát egy adatgyűjtő folyamatosan regisztrálja. A mérőtérben lévő Sartorius mérleg által folyamatosan mutatott tömegcsökkenést meghatározott időközönként feljegyezzük. A mérés során szükséges még megmérni a környezeti levegő hőmérsékletét és abszolút nedvességtartalmát, valamint a 6
7 belépő mérőperemen nyomásesést is. A szárítógáz térfogatáramát a csatorna beszívó csonkjára épített belépő mérőperemmel mérjük. A mérés folyamán a mérőperem által nyomásesést állandó értéken tartjuk. A mérést akkor állítjuk le, amikor már nincs számottevő tömegcsökkenés. A mérés végeztével a próbatestet 1 napig kb. 100 C-os szárító kemencében szárítjuk tovább. 1 nap múlva lemérjük a tömegét és ezt tekintjük a teljesen kiszárított próbatest tömegének. 5. A kiértékelés módszere: A hőátadási tényező: ahol N r áll (8) T TF N áll m A S é X t (9) A számított hőátadási tényező: 0,5 1/ 3 5 Nu 0,664 Re Pr ha Re110 (10) szám L Nu és Re v L A kritériális egyenletbe behelyettesítve Nu és Re számokat kifejezhető a számított hőátadási tényező. A Re-hoz szükséges a gázsebesség meghatározása: A mérőperemen beáramló térfogatáram: d 2p 2 MP MP (11) be 4 körny V A mérőtérben levő térfogatáram: V V be körny (12) ahol ρkörny levegő sűrűsége környezeti hőmérsékleten ρ levegő sűrűsége a szárító tér hőmérsékletén. 7
8 A gáz sebessége a mérőtérben: v V A cs (13) Tehát mindezeket behelyettesítve a kritériális egyenletbe: 0,5 szám L vl 1/ 3 (14) 0,664 Innen a számított hőátadási tényező kifejezhető. Az így kapott hőátadási tényező a lap hossza mentén egy átlagos értéket ad. A lap egyes pontjain a hőátadási tényező kiszámítására alkalmas kritériális egyenlet: 0,5 3 Nu 0,332 Re Pr 1/ (15) ahol Pr Nu számli v L Re i (16) (17) ahol a Reynolds számban és a Nusselt számban a jellemző méret (L i ) a lap szélétől távolság. A hőátadási tényező értéke tehát számítható és ábrázolható a lap hossza mentén. 6. A feladat Számolni kell: szárítólevegő belépő térfogatárama (V be); térfogatáram a mérőtérben (V ); gázsebesség a mérőtérben; Reynolds-szám; számított átlagos hőátadási tényező (α szám ) (10); hőátadási tényező a szárított anyag hossza mentén; állandó száradási sebesség; 8
9 állandó száradási sebesség szakaszán hőátadási tényező (α ) (8); α σ ellenőrzése (7). Diagramon ábrázolni kell: o m[g] t [min] o T [ C] t [min] o N [ kg m 2 s ] X [g g ] o N [ kg ] t [min] m 2 s o Mollier-diagram Meg kell határozni a szárítás különböző szakaszait. Össze kell hasonlítani: az elméleti hőátadási tényezőt az elméleti helyi hőátadási tényezők átlagával; a próbatest felületi hőmérsékletét a nedves hőmérő hőmérséklettel; a és elméleti hőátadási tényezők értékét; a hőátadási és párolgási tényezők hányadosát a Lewis törvénnyel; 7. Jelölésjegyzék A [m 2 ] keresztmetszet c [J/kgK] fajhő d [m] átmérő L [m] hossz Le [1] Lewis szám m [kg] tömeg N [kg/m 2 s] száradási sebesség Nu [1] Nusselt szám Q [J/s] hőáram p [Pa] nyomás Pr [1] Prandtl szám q [J/m 2 s] hőáramsűrűség r [J/kg] párolgási hő 9
10 Re [1] Reynolds szám T [ C] hőmérséklet t [s] idő V [m 3 /s] térfogatáram v [m/s] sebesség X [kg/kg] nedvességtartalom Y [kg/kg] absz. nedvességtartalom z konstans α [W/m 2 K] hőátadási tényező λ [W/mK] hővezetési tényező ν [m 2 /s] kinematikai viszkozitás ρ [kg/m 3 ] sűrűség σ [kg/m 2 s] párolgási tényező indexek: áll állandó be bemenő cs csatorna elm elméleti F felületi gáz kr kritikus körny környezeti L folyadék MP mérőperem na nedves anyag n nedves gáz S szilárd * egyensúlyi 10
11 8. Levegő vízgőz Mollier-diagram 11
12 9. Mérésnél felhasznált eszközök BUDAPESTI MŰSZAKI ÉS AZDASÁTUDOMÁNYI EYETEM Épületgépészeti és épészeti Eljárástechnika Tanszék Berendezés/ yártmány Típusa yári sz. Tulajdonságok Felhasználási helye mérőeszköz megnevezése 1. Villanymotor Evig VZ 32/ ,0 kw; Ventilátor forgatása 2890/min 380/220 V 2. Ventilátor NVH m 3 /h 2880/min Szárítólevegő áramoltatása 3. Kalorifer Thermoteam Kft. LF-36 99/130 PN= kw BME Szárítólevegő melegítése 4. Mérleg Sartorius E 2000 D V 8VA Szárított anyag mérlegelése 5. Páratartalom mérő Almemo FH A TT: C RH: 5..98% DT: C MH: g/kg 6. Hőelemek réz-konstantán 7. Mérőperem α = 0,6 ε 1 d=0,1 m 8. U-csöves manométer Levegő relatív nedvességtartalmá nak és hőmérsékletének mérése Térfogatáramhoz nyomásmérés Nyomásmérés 9. Adatgyűjtő 10. ipszlap 150x100x5 Szárított anyag
13 10. Konstansok és anyagjellemzők BUDAPESTI MŰSZAKI ÉS AZDASÁTUDOMÁNYI EYETEM Épületgépészeti és épészeti Eljárástechnika Tanszék α = 0,6 (átfolyási szám, beszívó mérőperem esetén) ε 1 ρ lev ; λ; υ; Pr: (interpoláció) Levegő tulajdonságai T x 10^6 Pr C kg/m 3 W/mK m 2 /s 1 0,0 1,252 0, ,90 0,71 10,0 1,206 0, ,66 0,71 20,0 1,164 0, ,70 0,71 30,0 1,127 0, ,58 0,71 40,0 1,092 0, ,60 0,71 50,0 1,057 0, ,58 0,71 60,0 1,025 0, ,40 0,71 70,0 0,996 0, ,65 0,71 80,0 0,968 0, ,50 0,71 r: fázisváltozási hő, a szárított anyag átlagos hőmérsékletéhez tartozó Telített vízgőz párolgási hője T h=r C kj/kg , , , , , , , , , , ,4 A mérés kiértékeléséhez szükségesek még a következő adatok: A szárítókemencében kiszárított próbatest teljesen száraz tömege: ms= g A szárítócsatorna keresztmetszete: Acs = 0,105 m 2 A beszívó mérőperem átmérője: d mp = 0,1 m A gipszlap mérete: x x mm
Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:
Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi
RészletesebbenTÉRFOGATÁRAM MÉRÉSE. Mérési feladatok
Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése
RészletesebbenRészletes összefoglaló jelentés
Részletes összefoglaló jelentés 1. Hőátadási tényező vizsgálata egyidejű hő- és anyagátadási folyamatok esetén Az egyidejű hő- és anyagátadással járó szárítási folyamatoknál számos szerző utalt a hőátadási
RészletesebbenMÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában
Tanév,félév 2010/2011 1. Tantárgy Áramlástan GEATAG01 Képzés egyetem x főiskola Mérés A B C Nap kedd 12-14 x Hét páros páratlan A mérés dátuma 2010.??.?? A MÉRÉSVEZETŐ OKTATÓ TÖLTI KI! DÁTUM PONTSZÁM MEGJEGYZÉS
RészletesebbenNYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
RészletesebbenBUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta
RészletesebbenEllenáramú hőcserélő
Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez
RészletesebbenLemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
RészletesebbenHALLGATÓI SEGÉDLET. Térfogatáram-mérés. Tőzsér Eszter, MSc hallgató Dr. Hégely László, adjunktus
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Térfogatáram-mérés Készítette: Átdolgozta: Ellenőrizte: Dr. Poós Tibor, adjunktus
Részletesebben3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
RészletesebbenÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés 1. A mérés célja A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett
RészletesebbenÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE
1. A mérés célja ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE KÜLÖNBÖZŐ FORDULATSZÁMOKON (AFFINITÁSI TÖRVÉNYEK) A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele különböző fordulatszámokon,
RészletesebbenDIFFÚZIÓS ELJÁRÁSOK ÉS BERENDEZÉSEK
BUDAPESI MŰSZAKI ÉS AZDASÁUDOMÁNI EEEM ÉPÉSZMÉRNÖKI KAR Épületgépészeti és épészeti Eljárástechnika anszék Dr. Örvös Mária - Dr. Poós ibor DIÚZIÓS ELJÁRÁSOK ÉS BERENDEZÉSEK I. RÉSZ (Szárítás) Budapest,
Részletesebben54 582 06 0010 54 01 Épületgépész technikus Épületgépészeti technikus
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenHŐÁTADÁSI TÉNYEZŐ VIZSGÁLATA EGYIDEJŰ HŐ- ÉS ANYAGÁTADÁSI FOLYAMATOKNÁL* SZENTGYÖRGYI S., ÖRVÖS M., SZENDREY R.
HŐÁTADÁSI TÉNYEZŐ IZSGÁLATA EGYIDEJŰ HŐ- ÉS ANYAGÁTADÁSI FOLYAMATOKNÁL* SZENTGYÖRGYI S., ÖRÖS M., SZENDREY R. Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar egyipari és Élelmiszeripari
RészletesebbenFűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
RészletesebbenTérfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr)
Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr) 1. Folyadékáram mérése torlócsővel (Prandtl-csővel) Torlócsővel csak egyfázisú folyadék vagy gáz áramlása mérhető. A folyadék vagy gáz
Részletesebben1. feladat Összesen 17 pont
1. feladat Összesen 17 pont Két tartály közötti folyadékszállítást végzünk. Az ábrán egy centrifugál szivattyú- és egy csővezetéki (terhelési) jelleggörbe látható. A jelleggörbe alapján válaszoljon az
Részletesebben1. feladat Összesen 25 pont
1. feladat Összesen 25 pont Centrifugál szivattyúval folyadékot szállítunk az 1 jelű, légköri nyomású tartályból a 2 jelű, ugyancsak légköri nyomású tartályba. A folyadék sűrűsége 1000 kg/m 3. A nehézségi
RészletesebbenMérésadatgyűjtés, jelfeldolgozás.
Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások
RészletesebbenFIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
Részletesebben1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont
1. feladat Összesen 8 pont Az ábrán egy szállítóberendezést lát. A) Nevezze meg a szállítóberendezést!... B) Milyen elven működik a berendezés?... C) Nevezze meg a szállítóberendezést számokkal jelölt
RészletesebbenSegédlet az ADCA szabályzó szelepekhez
Segédlet az ADCA szabályzó szelepekhez Gőz, kondenzszerelvények és berendezések A SZELEP MÉRETEZÉSE A szelepek méretezése a Kv érték számítása alapján történik. A Kv érték azt a vízmennyiséget jelenti
Részletesebben2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
RészletesebbenDanfoss Hőcserélők és Gömbcsapok
Danfoss Hőcserélők és Gömbcsapok Hőcserélők elméleti háttere T 2 In = 20 C m 2 = 120 kg/s Cp 2 = 4,2 kj/(kg C) T 2 Out = X Q hőmennyiség T 1 In = 80 C m 1 = 100kg/s T 1 Out = 40 C Cp 1 = 4,0 kj/(kg C)
RészletesebbenEgyidejű hő- és anyagátadás dobszárítókban
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Pattantyús-Ábrahám Géza Gépészeti Tudományok Doktori Iskola Egyidejű hő- és anyagátadás
RészletesebbenFluidizáció. Δp = v 0 2 ρ f ( L + 1,75] (1) ) (1 ε) [ 150(1 ε) Elméleti összefoglalás
Fluidizáció Elméleti összefoglalás Fluidizáció során egy finom szemcséjű, porszerű szilárd anyagot alúlról felfelé áramló fluidummal (gáz, folyadék) olyan lebegő állapotba hozunk és abban tartunk, amit
RészletesebbenX. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
X. FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolozsvár, 2005. március 18-19. GYIDJŰ HŐ- ÉS ANYAGTARANSZPORT VIZSGÁLATA KONVKTÍV SZÁRÍTÁS SORÁN Simon rika, Dr. Örvös ária Abstract The decrease of the heat transfer
Részletesebben1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
RészletesebbenVIZSGA ÍRÁSBELI FELADATSOR
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
RészletesebbenÁramlástechnikai mérések
Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek
RészletesebbenMérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése
Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének
RészletesebbenHŐÁTADÁSI FOLYAMATOK SZÁMÍTÁSA
HŐÁTADÁSI FOLYAMATOK SZÁMÍTÁSA KOHÓMÉRNÖKI MESTERKÉPZÉSI SZAK HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI
Részletesebben1. feladat Összesen 5 pont. 2. feladat Összesen 19 pont
1. feladat Összesen 5 pont Válassza ki, hogy az alábbi táblázatban olvasható állításokhoz mely szivattyúcsővezetéki jelleggörbék rendelhetők (A D)! Írja a jelleggörbe betűjelét az állítások utáni üres
RészletesebbenÉPÜLETGÉPÉSZET ISMERETEK
ÉRETTSÉGI VIZSGA 2017. május 17. ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Épületgépészet
Részletesebben3. Mérőeszközök és segédberendezések
3. Mérőeszközök és segédberendezések A leggyakrabban használt mérőeszközöket és használatukat is ismertetjük. Az ipari műszerek helyi, vagy távmérésre szolgálnak; lehetnek jelző és/vagy regisztráló műszerek;
RészletesebbenVI. Az emberi test hőegyensúlya
VI. Az emberi test hőegyensúlya A hőérzetet befolyásoló tényezők: Levegő hőmérséklete, annak térbeli, időbeli eloszlása, változása Környező felületek közepes sugárzási hőmérséklete Levegő rel. nedvességtartalma,
RészletesebbenA diplomaterv keretében megvalósítandó feladatok összefoglalása
A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert
RészletesebbenFizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
Részletesebben5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
RészletesebbenHidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
RészletesebbenFORGATTYÚS HAJTÓMŰ KISFELADAT
Dr. Lovas László FORGATTYÚS HAJTÓMŰ KISFELADAT Segédlet a Jármű- és hajtáselemek III. tantárgyhoz Kézirat 2013 FORGATTYÚS HAJTÓMŰ KISFELADAT 1. Adatválaszték p 2 [bar] V [cm3] s/d [-] λ [-] k f [%] k a
RészletesebbenKörnyezetmérnöki ismeretek 5. Előadás
Környezetmérnöki ismeretek 5. Előadás Épített környezet védelme, energetika, állagvédelem Irodalom: MSZ-04-140-2:1991 Épületenergetika kézikönyv, Bausoft, 2009 (http://www.eepites.hu/segedletek/muszaki-segedletek/epuletenergetika)
RészletesebbenA BÍRÁLÓ TÖLTI KI! Feladat: A B C/1 C/2 C/3 ÖSSZES: elégséges (2) 50,1..60 pont
ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK A vastagon bekeretezett részt vizsgázó tölti ki!... név (a személyi igazolványban szereplő módon) HELYSZÁM: Hallgatói azonosító (NEPTUN): KÉPZÉS: 2N-00 2N-0E 2NK00
RészletesebbenM é r é s é s s z a b á l y o z á s
1. Méréstechnikai ismeretek KLÍMABERENDEZÉSEK SZABÁLYOZÁSA M é r é s é s s z a b á l y o z á s a. Mérőműszerek méréstechnikai jellemzői Pontosság: a műszer jelzésének hibája nem lehet nagyobb, mint a felső
RészletesebbenLégköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
Részletesebben1. feladat Összesen 21 pont
1. feladat Összesen 21 pont A) Egészítse ki az alábbi, B feladatrészben látható rajzra vonatkozó mondatokat! Az ábrán egy működésű szivattyú látható. Az betűk a szivattyú nyomócsonkjait, a betűk pedig
RészletesebbenBME Hidrodinamikai Rendszerek Tanszék 2. MÉRÉS
2. MÉRÉS VÍZMELEGÍTŐ IDŐÁLLANDÓJÁNAK MEGHATÁROZÁSA 1. Bevezetés A mérés célja, egy vízmelegítő időállandójának meghatározás adott térfogatáram és fűtési teljesítmény mellett. Az időállandó mellett a vízmelegítő
RészletesebbenÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
RészletesebbenVIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola
A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI
RészletesebbenBUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék VARJU EVELIN
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék VARJU EVELIN Térfogati hőátadási tényező meghatározása fluidizációs szárításnál TDK
RészletesebbenÁramlástan Tanszék Méréselőkészítő óra I. Horváth Csaba & Nagy László
Áramlástan Tanszék www.ara.bme.hu óra I. Horáth Csaba horath@ara.bme.hu & Nagy László nagy@ara.bme.hu M1 M Várhegyi Zsolt arhegyi@ara.bme.hu M3 Horáth Csaba horath@ara.bme.hu M4 M10 Bebekár Éa berbekar@ara.bme.hu
RészletesebbenJelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Kovács Viktória Barbara Laza Tamás Ván Péter. Hőközlés.
Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: KF - MŰSZAKI HŐTAN II. 1. ZÁRTHELYI Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Bihari Péter Both Soma Farkas Patrik
RészletesebbenHogyan mûködik? Mi a hõcsõ?
Mi a hõcsõ? olyan berendezés, amellyel hõ közvetíthetõ egyik helyrõl a másikra részben folyadékkal telt, légmentesen lezárt csõ ugyanolyan hõmérséklet-különbség mellett 000-szer nagyobb hõmennyiség átadására
RészletesebbenÉpületgépész technikus Épületgépész technikus
É 004-06//2 A 0/2007 (II. 27.) SzMM rendelettel módosított /2006 (II. 7.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.
RészletesebbenA hőmérséklet-megoszlás és a közepes hőmérséklet számítása állandósult állapotban
A HŐMÉRSÉKLET ÉS HŐKÖZLÉS KÉRDÉSEI BETONRÉTEGBE ÁGYAZOTT FŰTŐCSŐKÍGYÓK ESETÉBEN A LINEÁRIS HŐVEZETÉS TÖRVÉNYSZERŰSÉGEINEK FIGYELEMBEVÉTELÉVEL Általános észrevételek A sugárzó fűtőtestek konstrukciójából
RészletesebbenHőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
RészletesebbenHŐKÖZLÉS ZÁRTHELYI BMEGEENAMHT. Név: Azonosító: Helyszám: K -- Munkaidő: 90 perc I. 30 II. 40 III. 35 IV. 15 ÖSSZ.: Javította:
HŐKÖZLÉS ZÁRTHELYI dja meg az Ön képzési kódját! Név: zonosító: Helyszám: K -- BMEGEENMHT Munkaidő: 90 perc dolgozat megírásához szöveges adat tárolására nem alkalmas számológépen, a Segédleten, valamint
RészletesebbenKS-409.3 / KS-409.1 ELŐNYPONTOK
KS-409.3 / KS-409.1 AUTOMATIZÁLT IZOKINETIKUS MINTAVEVŐ MÉRŐKÖR SÓSAV, FLUORIDOK, ILLÉKONY FÉMEK TÖMEGKONCENTRÁCIÓJÁNAK, EMISSZIÓJÁNAK MEGHATÁROZÁSÁRA ELŐNYPONTOK A burkoló csőből könnyen kivehető, tisztítható
RészletesebbenAZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.
AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás
RészletesebbenHatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
RészletesebbenÉPÜLETGÉPÉSZET ISMERETEK
ÉRETTSÉGI VIZSGA 2018. május 16. ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Épületgépészet
RészletesebbenFajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)
Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés
Részletesebben5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,
RészletesebbenFázisátalakulások vizsgálata
Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk
RészletesebbenZaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
RészletesebbenHalmazállapot-változások
Halmazállapot-változások A halmazállapot-változások fajtái Olvadás: szilárd anyagból folyékony a szilárd részecskék közötti nagy vonzás megszűnik, a részecskék kiszakadnak a rácsszerkezetből, és kis vonzással
RészletesebbenFolyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar
Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg
RészletesebbenA gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése;
A gyakorlat célja az időben állandósult hővezetési folyamatok analitikus számítási módszereinek megismerése; a hőellenállás mint modellezést és számítást segítő alkalmazásának elsajátítása; a különböző
RészletesebbenMÉRÉSI JEGYZŐKÖNYV. A mérési jegyzőkönyvet javító oktató tölti ki! Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés
MÉRÉSI JEGYZŐKÖNYV Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés 2008/09 I félév Kalorikus gépek Bsc Mérés dátuma 2008 Mérés helye Mérőcsoport száma Jegyzőkönyvkészítő Mérésvezető oktató D gépcsarnok
RészletesebbenMŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS
MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG
RészletesebbenSzent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:
RészletesebbenÉPÜLETEK KOMFORTJA Hőkomfort 2 Dr. Magyar Zoltán
ÉPÜLETEK KOMFORTJA Hőkomfort 2 Dr. Magyar Zoltán BME Épületenergetikai és Épületgépészeti Tanszék 1 2 100 Felhasználói elégedettség Komfort és levegőminőség E M B E R Felhasználói well-being Felhasználói
Részletesebben7. lakás 1. Fűtőanyag elnevezése: tűzifa Összetétel (kg/kg): Szén Hidrogén Oxigén Víz Hamu
7. lakás 1 Épület: 7. lakás kandalló kémény 9700 Szombathely, Szőllősi sétány 8665/1. hrsz. Megrendelő: SZOVA Zrt. 9700 Szombathely, Welther K. u. 4. Tervező: Szatmári Örs, G 18-0477 9800 Vasvár, Hunyadi
RészletesebbenAz α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
RészletesebbenBUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK KALORIKUS GÉPEK
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK KALORIKUS GÉPEK Gyakorlati feladatok gyűjteménye Összeállította: Kun-Balog Attila Budapest 2014
RészletesebbenKS 404 220 TÍPUSÚ IZOKINETIKUS MINTAVEVŐ SZONDA SZÉLCSATORNA VIZSGÁLATA
KS 44 22 TÍPUSÚ IZOKINETIKUS MINTAVEVŐ SZONDA SZÉLCSATORNA VIZSGÁLATA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM 1782 27 MÁJUS A KÁLMÁN SYSTEM KÖRNYEZETVÉDELMI MŰSZER FEJLESZTŐ GYÁRTÓ KERESKEDELMI
RészletesebbenKS-502-VS ELŐNYPONTOK
KS-502-VS MIKROPROCESSZOR VEZÉRLÉSŰ NAGY HATÓTÁVOLSÁGÚ LEVEGŐ, GÁZMINTAVEVŐ GÁZMOSÓEDÉNYEKEN ÉS / VAGY SZORPCIÓS, VOC ÉS / VAGY PUF CSÖVEKEN TÖRTÉNŐ MINTAGÁZ ÁTSZÍVÁSRA Kalibrált mikró venturi térfogatáram-mérő.
RészletesebbenPOLIMERTECHNIKA Laboratóriumi gyakorlat
MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata
RészletesebbenHő- és füstelvezetés, elmélet-gyakorlat
Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu
RészletesebbenKÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:
GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT
RészletesebbenSzárítás kemence Futura
Szárítás kemence Futura Futura, a nemzetközi innovációs díjat Futura egy univerzális szárító gép, fa és egyéb biomassza-alapanyag. Egyesíti az innovatív technikai megoldások alapján, 19-26 szabadalmazott
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
06. OKTÓBER VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER. tétel Anyagvizsgálatok gyakorlat I. Viszkozitás mérése Höppler-féle viszkoziméterrel A mérés megkezdése
RészletesebbenA VAQ légmennyiség szabályozók 15 méretben készülnek. Igény esetén a VAQ hangcsillapított kivitelben is kapható. Lásd a következő oldalon.
légmennyiség szabályozó állítómotorral Alkalmazási terület A légmennyiségszabályozókat a légcsatorna-hálózatban átáramló légmennyiség pontos beállítására és a beállított érték állandó szinten tartására
RészletesebbenTájékoztató. Használható segédeszköz: számológép. Értékelési skála:
A 29/2016. (VIII. 26.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 582 01 Épületgépész technikus Tájékoztató A vizsgázó az első lapra írja fel a
RészletesebbenTermodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Részletesebben1.5. VENTILÁTOR MÉRÉS
1.5. VENTILÁTOR MÉRÉS 1.5.1 A mérés célja A mérés célja egy ventilátorból és a vele összeépített háromfázisú aszinkron motorból álló gépcsoport üzemi jelleggörbéinek felvétele. Ez a következő függvénykapcsolatok
RészletesebbenA 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű
Részletesebben1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
RészletesebbenHőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja
RészletesebbenCiklon mérése. 1. A mérés célja. 2. A berendezés leírása
Ciklon mérése. A mérés célja Ciklont az iar számos területén (élelmiszeriar, vegyiar, éítőiar, energiaiar) használnak különböző szemcsés, oros anyagok levegőből való eltávolítására. A mérés során a hallgatók
RészletesebbenTömeg (2) kg/darab NYLATRON MC 901 NYLATRON GSM NYLATRON NSM 40042000 40050000 40055000 50. Átmérő tűrései (1) mm. Átmérő mm.
NYLTRON M 901, kék (színezett, növelt szívósságú, öntött P 6) NYLTRON GSM, szürkésfekete; (MoS, szilárd kenőanyagot tartalmazó, öntött P 6) NYLTRON NSM, szürke (szilárd kenőanyag kombinációt tartalmazó
RészletesebbenH08 HATÁRRÉTEG SEBESSÉGPROFIL MÉRÉSE TÉGLALAP KERESZTMETSZETŰ CSATORNÁBAN
H08 HATÁRRÉTEG SEBESSÉGPROFIL MÉRÉSE TÉGLALAP KERESZTMETSZETŰ CSATORNÁBAN 1. Elméleti bevezető: Határréteg alatt a viszkózus áramló folyadéknak azt a szilárd felület melletti rétegét értjük, amelyen belül
RészletesebbenÉgés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
RészletesebbenGépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés
BME Gépészeti Eljárástechnika Tanszék zakaszos rektifikálás mérés Budapest, 006 1. Elméleti összefoglaló A mérés célja: laboratóriumi rektifikáló oszlopban szakaszos rektifikálás elvégzése, etanol víz
Részletesebben2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
RészletesebbenSZŰRŐSZÖVET VIZSGÁLATA (ZSÁKOS PORSZŰRŐ)
MINTA Mérési segédlet BME-ÁRAMLÁSTAN TANSZÉK SZŰRŐSZÖVET VIZSGÁLATA (ZSÁKOS PORSZŰRŐ) (Mérési segédlet) 1. A mérés célja Nagy hatásfokú porszűrési feladatokra alkalmas eszköz az ún. zsákos porszűrő. Ez
RészletesebbenMŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:
Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika
RészletesebbenÉPÜLETEK KOMFORTJA Hőkomfort 1 Dr. Magyar Zoltán
ÉPÜLETEK KOMFORTJA Hőkomfort 1 Dr. Magyar Zoltán BME Épületenergetikai és Épületgépészeti Tanszék 1 2 Általános bevezetés A Komfortelmélet mindössze néhány évtizedes múltra visszatekintő szaktárgy. Létrejöttének
Részletesebben